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Abstract

Genome-wide association studies (GWASs) have identified specific genetic variants associated 

with complex human traits and behaviors, such as educational attainment, mental disorders, 

and personality. However, small effect sizes for individual variants, uncertainty regarding the 

biological function of discovered genotypes, and potential “outside-the-skin” environmental 

mechanisms leave a translational gulf between GWAS results and scientific understanding that 

will improve human health and well-being. We propose a set of social, behavioral, and brain-

science research activities that map discovered genotypes to neural, developmental, and social 

mechanisms and call this research program phenotypic annotation. Phenotypic annotation involves 

(a) elaborating the nomological network surrounding discovered genotypes, (b) shifting focus 

from individual genes to whole genomes, and (c) testing how discovered genotypes affect life-

span development. Phenotypic-annotation research is already advancing the understanding of 

GWAS discoveries for educational attainment and schizophrenia. We review examples and discuss 

methodological considerations for psychologists taking up the phenotypic-annotation approach.
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Differences in DNA sequences between people are an important source of individual 

differences in their psychology (Turkheimer, 2000). More closely related relatives more 
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strongly resemble one another in factors such as memory, intelligence, personality, 

self-esteem, physical health, and mental health; everything is heritable (Polderman et 

al., 2015). Yet these family-based estimates of heritability are “black boxes” regarding 

mechanisms: Heritability estimates reveal neither which genetic variants are important nor 

how differences in DNA sequences result in, for example, a person being smarter, more 

prone to depression, or more likely to have a psychotic break.

Still a Black Box? From Twin Studies to Genome-Wide Association Studies (GWASs)

Now, GWASs (see the Appendix for a glossary of key terms used in this article) are peering 

inside the black box of heritability. The GWAS method is hypothesis free, meaning that it 

does not focus on specific genetic variants selected on the basis of prior knowledge about 

biological function. Rather, a GWAS surveys genetic variation across the genome. Each 

one of millions of common genetic variants known as single-nucleotide polymorphisms 

(SNPs) is tested, with a rigorous statistical correction to control the Type I error rate. Despite 

initial skepticism, GWAS discoveries for human diseases, traits, and behaviors now number 

in the thousands (Visscher et al., 2017). Specific SNPs have been identified in GWASs 

of psychology-relevant phenotypes, including neuroticism, schizophrenia, reproductive 

behavior, intelligence, and educational attainment (https://www.ebi.ac.uk/gwas/).

Despite the accelerating pace of GWAS discovery, heritabilities of human traits and 

behaviors largely remain black boxes. A key finding from GWASs has been confirmation 

that genetic influence on variation in most human phenotypes reflects the combined effects 

of very large numbers of individual genetic variants, each of which has a tiny effect size 

(R2 < .01; Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015). However, discovered SNPs 

have turned up only rarely in or near the genes that researchers had hypothesized would 

be important, and, as we discuss below, the biology linking discovered SNPs to phenotypes 

is often unclear (Boyle, Li, & Pritchard, 2017). Thus, GWASs have opened the black box 

of heritability only to find thousands on thousands of smaller black boxes—genotypes of 

uncertain function that are correlated with phenotypes via unknown mechanisms.

The dominant approach to making sense of GWAS results is bioinformatics annotation. To 

annotate is to add notes that explain and interpret a text. Bioinformatics annotation takes 

the minimal text rendered by a GWAS, a list of associations between individual SNPs and 

a phenotype, and attempts to explain that text using insights from biology. For example, 

bioinformatics annotation might draw on research about which tissues and in what types 

of cells genes are expressed, how genes have changed over the course of human evolution, 

or whether gene products are targeted by known pharmacological agents (e.g., Wray et 

al., 2018). This approach is particularly powerful when (a) links between GWAS-identified 

variants and genes are clear (e.g., the SNP rs6265, a genome-wide significant “hit” in 

GWASs of obesity and smoking, changes the protein encoded by the gene BDNF from 

valine to methionine); (b) the biology of the phenotype is well known, as in GWASs of 

well-characterized blood molecules such as lipids; and (c) knowledge of genes relevant to 

that biology is available, as in GWASs of blood proteins, in which genes encoding the 

protein or its regulators are known.
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Often, however, these three conditions are not met, and this may be especially true 

for GWASs of phenotypes relevant to behavioral and brain scientists. In the first case, 

links between GWAS-identified variants and the genes whose function they affect are not 

straightforward. For example, an early GWAS discovery for obesity, a variant in the gene 

FTO, was recently revealed to influence obesity primarily through the regulation not of FTO 
but of the gene IRX3, nearly 1 million nucleotides away (Claussnitzer et al., 2015). This 

in-trans mechanism, in which a variant affects a phenotype by regulating a spatially distal 

gene, is likely to be common. For example, in a recent GWAS of blood proteins, 10% of 

replicated genome-wide significant associations were in trans, with some variants even on 

different chromosomes from DNA sequences known to encode those proteins (Suhre et al., 

2017). In addition to the difficulty of annotating variants to genes, knowledge of the biology 

that influences phenotypic variation is frequently incomplete (Johnson et al., 2017). In fact, 

it is precisely this challenge that motivated the GWAS approach in the first place.

Finally, even a perfect understanding of biology would be an imperfect understanding of 

mechanism, because genetic effects can involve “outside-the-skin” processes—mechanisms 

that are not located entirely inside a person’s body or brain but rather operate through 

exposure to physical or social environments. For example, among the first GWAS 

discoveries for lung cancer were nicotine-receptor gene polymorphisms, which exert their 

effect via smoking behavior causing exposure to carcinogens in cigarette smoke (Wassenaar 

et al., 2011). Other, less-easy-to-annotate GWAS discoveries may similarly have biology 

→ behavior → environment → phenotype mechanisms of action on disease risk. In sum, 

small effect sizes, uncertain biology, and outside-the-skin processes leave a translational 

gulf between bioinformatics-annotated GWAS results and scientific understanding that can 

improve human health and well-being. We propose phenotypic annotation as a research 

agenda that can help bridge that gulf.

Phenotypic Annotation: DNA Variants as Building Blocks of Life Courses

Phenotypic annotation comprises a set of social, behavioral, and brain-science research 

activities that map connections between GWAS discoveries and the neural, developmental, 

and social processes that give rise to psychological experiences and behavior. Whereas 

current biologically focused approaches to GWAS translation are bottom-up research 

strategies intended to answer the question, “How do the genetic variants associated with this 

phenotype change genome biology?” phenotypic annotation is a top-down strategy designed 

to investigate the question, “How do the genetic variants associated with this phenotype 

change the development and behavior of an organism?” (Belsky, Moffitt, & Caspi, 2013). 

Phenotypic annotation involves three important shifts in thinking about genotype–phenotype 

relationships: (a) from genotypes to genomes, (b) from discovery phenotypes to nomological 

networks, and (c) from proximate biology to life-course development.

From genotypes to genomes—Following up the tiny individual effects identified in 

a GWAS presents a challenge in terms of statistical power, and studies that include the 

measurements needed to investigate mechanisms of genetic effects rarely have sufficient 

sample sizes. A solution to this challenge is suggested by evidence that genetic effects 

tend to combine additively, resulting in a quantitative polygenic distribution of genetic 
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influence (Plomin, Haworth, & Davis, 2009). This polygenic distribution can be measured 

by applying GWAS results as a scoring algorithm to genetic data from an independent 

sample of participants. Specifically, a participant’s polygenic score is calculated as the 

genome-wide weighted average of phenotype-associated alleles, where weights are typically 

effect sizes from an independent-discovery GWAS (Dudbridge, 2013; Fig. 1). Polygenic 

scores solve the small-effects problem by aggregating signals from SNPs across the genome 

into a single measure with a larger effect. For example, polygenic scores based on GWASs 

of education and intelligence can explain as much as 10% of phenotypic variance (Plomin & 

von Stumm, 2018).

As a result, samples numbering only in the hundreds to thousands can be well powered to 

test genetic effects, opening the door to a breadth of behavioral and brain-science research 

designs, including randomized trials of behavioral interventions, longitudinal cohort studies, 

and neuroimaging studies. This gain in statistical power comes with a loss of granularity: 

Associations with polygenic scores cannot be attributed to specific genes. However, much 

of biology is itself polygenic (Iacono, Vaidyanathan, Vrieze, & Malone, 2014). Polygenic 

scores, then, are useful tools for testing whether biological intermediaries, such as brain 

structure or function, might mediate GWAS-discovered genetic associations with more 

complex traits and behaviors.

From GWAS-discovery phenotypes to nomological networks—It would be a 

mistake to conceptualize the SNPs discovered in a GWAS as narrowly measuring genetic 

risk for the precise phenotype studied in the GWAS itself. For example, genes discovered 

in a GWAS of educational attainment are not “education genes” per se (Belsky et al., 

2016). Discovered SNP associations may arise from genetic influence on any correlate of 

the discovery phenotype (Belsky & Israel, 2014). In this way, results from hypothesis-free 

GWAS discoveries pose an interpretive challenge similar to the classic construct-validity 

problem. Newly discovered SNPs have been selected on the basis of their criterion validity 
(i.e., their ability to predict the phenotype used in the original GWAS), but the constructs 

measured by the resulting polygenic score remains largely unexplored. As Cronbach and 

Meehl described more than 60 years ago, “‘learning more about’ a theoretical construct 

is a matter of elaborating the nomological network in which it occurs, or of increasing 

the definiteness of its components” (Cronbach & Meehl, 1955, p. 290). We suggest 

that learning more about the theoretical construct of genetic influence, as measured by 

GWAS discoveries, can be advanced by elaborating the nomological network in which SNP–

phenotype associations are embedded.

As an example, studies focused on genetics discovered in GWASs of educational attainment 

have revealed a surprisingly consistent nomological network, including behavioral patterns 

of achievement leading up to and extending beyond the completion of formal schooling, 

cognitive and personological characteristics known to influence educational success, 

early realization of developmental milestones in language and reading, and environments 

conducive to educational success, including family socioeconomic status, neighborhood 

conditions, and peer characteristics (Barth, Papageorge, & Thom, 2017; Belsky, Domingue, 

et al., 2018; Belsky et al., 2016; Conley et al., 2015; Domingue, Belsky, Conley, Harris, & 

Boardman, 2015; Krapohl et al., 2017).
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Phenotypic-annotation analyses of genetic loci discovered in GWASs of schizophrenia 

have yielded a more complicated picture. Polygenic scores illustrate expected associations 

with childhood mental health problems (Nivard et al., 2017), early neurocognitive deficits 

(Riglin et al., 2017), and life-course cognitive decline (McIntosh et al., 2013). Moreover, 

schizophrenia-associated genetic variants appear to be more common among individuals in 

creative professions (Power et al., 2015) and are associated with putative environmental 

risk factors for the disorder, including neighborhood disadvantage and illicit drug use 

(Power et al., 2015; Sariaslan et al., 2016). However, puzzlingly, polygenic scores from 

schizophrenia GWASs are not consistently associated with symptom severity or frequency 

of psychotic episodes (Jones et al., 2016; Stepniak et al., 2014), and there is a surprising 

positive genetic correlation between schizophrenia and educational attainment (Bansal et al., 

2018). A further possible research challenge is that schizophrenia genetics may be related to 

nonparticipation or loss to follow up (Taylor et al., 2018). Overall, more work, particularly 

focused on early development, is needed to elucidate what neural, cognitive, and behavioral 

constructs are being tapped by genes discovered in GWASs of schizophrenia.

From proximate biology to life-course development—Individual differences in 

human psychology do not spring forth like Athena from Zeus’s head but are rather 

shaped over time through developmental processes in which early emerging differences 

structure trajectories and shape future outcomes (Belsky, Moffitt, & Caspi, 2013). Thus, 

a necessary step in understanding mechanisms through which GWAS-discovered genetics 

influence psychology and behavior is to address the question of when in human development 

genetic influences manifest. For example, SNPs discovered in GWASs of adult body mass 

index are associated with accelerations in weight gain during early and middle childhood 

(Belsky et al., 2012). SNPs discovered in GWASs of adult smoking behavior are associated 

with accelerated progression from smoking initiation to dependence during adolescence 

(Belsky, Moffitt, Baker, et al., 2013). SNPs discovered in GWASs of educational attainment 

are associated with an accelerated pace of cognitive development and the acquisition of 

self-control and interpersonal skills from infancy through middle childhood (Belsky et al., 

2016). By interrogating how polygenic scores constructed from GWASs of adult samples 

are related to phenotypes measured in early life, these studies illuminate the developmental 

intermediaries between genotypes that are established at conception and adult phenotypes 

that are canalized later in development.

The developmental processes linking GWAS discoveries with mature phenotypes might 

involve gene–environment correlations. Childhood social and physical environments that 

predict individual differences in health and achievement across life are themselves heritable 

(Plomin & Bergeman, 1991). One implication of gene–environment correlations is that 

genetic differences potentially confound putative environmental effects. A second, less 

appreciated implication is that environments might mediate genetic effects (Scarr & 

McCartney, 1983). Specifically, genetic differences between people might cause them to 

select into different environments, a process known as active/evocative gene–environment 

correlation. These environments could then reinforce or magnify differences in traits or 

behaviors. For example, a child’s genes might influence his or her tendencies toward 

antisocial behavior in ways that lead to social assortment with delinquent peers (Mann 
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et al., 2016). This peer environment might, in turn, incentivize or facilitate opportunities for 

more antisocial behavior. Genetic differences between people might also become correlated 

with their environments when those environments are shaped by genetic relatives. For 

example, genes influence sexual behavior in ways that make some adolescents more likely 

to experience early, out-of-wedlock parenthood. Children of such unions will inherit their 

parents’ genes along with a single-parent environment that may affect sexual behavior 

(Mendle et al., 2009). Such “passive” gene–environment correlations (so-called because 

they arise without any active niche picking on the part of the child) are a known potential 

confound of associations between family environments and child outcomes. However, they 

can also confound or contaminate GWAS discoveries of genetic effects. Because genotypes 

are shared between relatives, an association between a child’s genotype and his or her 

phenotype could reflect the effect of a parental genotype that is mediated through an 

environmental pathway (Koellinger & Harden, 2018; Kong et al., 2018).

Research that integrates environmental measures and polygenic scores can now be used to 

test specific hypotheses about environmental processes that mediate and moderate genetic 

effects. For example, polygenic scores for educational attainment, age at first birth, and 

schizophrenia show correlations with a range of measured environments, including family 

social class (Belsky, Domingue, et al., 2018), growing up without a father in the home 

(Gaydosh, Belsky, Domingue, Boardman, & Harris, 2018), peer delinquency (Krapohl 

et al., 2017), and neighborhood conditions (Belsky, Caspi, et al., 2018; Sariaslan et al., 

2016). Polygenic scores will be particularly useful in longitudinal studies, which can trace 

reciprocal associations between people and their environments, and in multigenerational 

family designs, which provide opportunities to test for indirect genetic effects, that 

is, genetic effects that are mediated via the family environment provided by siblings, 

parents, and grandparents (Bates et al., 2018; Kong et al., 2018; Liu, 2018). Finally, 

studies capitalizing on shifts in macroenvironmental contexts, such as policy reforms 

or government changes, can test the environmental conditions under which genotype–

phenotype relationships are preserved or disrupted (Barcellos, Carvalho, & Turley, 2018; 

Rimfeld et al., 2018).

What’s Next?

Previous efforts to integrate genetics into psychological science have been strained by 

an enduring fear that studying genetics will reinvigorate the eugenics movement, by the 

practical difficulties of addressing certain research questions within twin studies, and, 

more recently, by the poor reproducibility of candidate gene findings. But the ethical and 

reproducible integration of psychology and genetics is not only possible but also essential to 

the success of both fields.

Now, large-scale GWASs and polygenic-score analysis offer new opportunities to bring 

genetics and psychological science together (Table 1). Phenotypic annotation is an approach 

to understanding GWAS discoveries that leverages the expertise of psychological scientists 

in how to measure traits, behaviors, and environments and the strength of psychological 

theories for understanding how individuals and their environments interact. By shifting focus 

from the proximate biology of genomes to the life-course development of humans, including 
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the environments that individuals grow up in and that they build for themselves, phenotypic 

annotation provides an opportunity for psychological scientists to help unpack the many 

black boxes the GWAS era has delivered.
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Appendices

Appendix

Glossary of key terms

Genome-wide association study (GWAS): data-mining analysis in which variants scattered 

across the genome, typically single-nucleotide polymorphisms, are individually regressed 

on a phenotype. Because of the large number of statistical tests, which can number in the 

millions, a GWAS adopts stringent p-value thresholds (e.g., p < 5 × 10−8) to avoid false 

discoveries.

Heritability: the proportion of variance in a measured phenotype that can be statistically 

accounted for by genetic differences between people.

Missing heritability: the difference in heritability estimate from twin studies and the 

heritability that can be explained by measured DNA differences between unrelated people. 

Typically, twin-study estimates of heritability are about twice as large as the variance 

explained by measured single-nucleotide polymorphisms. Causes of missing heritability 

remain much debated in genetics. Potential causes include interactions between genes 

(epistasis), unmeasured Gene × Environment interactions, and rare DNA variants that have 

not been measured.

Phenotype: anything that is not a genotype—including physical and personality 

characteristics, behaviors, disease diagnoses, brain structure and function, gene-expression 

levels, and DNA methylation states.

Single-nucleotide polymorphism (SNP): a single-nucleotide change in the human DNA 

sequence prevalent in more than 1% of a population. A strand of DNA is composed of a 

unique sequence of four nucleotides: guanine (G), cytosine (C), thiamine (T), and adenine 

(A). For example, one person might have an A at a particular location on his or her genome, 

whereas another person has a C.
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Fig. 1. 
Polygenic scoring. Polygenic scores aggregate information from up to millions of single-

nucleotide polymorphisms (SNPs) across the genome into a single composite index 

summarizing genome-wide genetic influence on a target phenotype. The procedure of 

computing a polygenic score is conducted using whole-genome SNP data on a research 

participant and scoring information from some external database, typically a published 

genome-wide association study (GWAS). In the first step, the participant’s SNP genotypes 

are assigned weights that indicate the direction and magnitude of that SNP’s association 

with a target phenotype. Most often these weights are the effect sizes, b j, estimated in 

a GWAS that did not include the research participant. Next, the number of phenotype-

associated alleles (0, 1, or 2) at each SNP (j) is counted, and the count is multiplied by the 

weight, b j. Finally, the weighted count is summed across SNPs to compute the participant’s 

polygenic score. The resulting distribution of polygenic scores across participants is normal. 

Polygenic-score analysis often involves two additional features. First, because polygenic 

scores draw information from many sites across the genome, they are sensitive to bias 

arising from allele-frequency differences between populations of different ancestry, called 

population stratification (Martin et al., 2017). Polygenic-score analysis is therefore typically 

conducted within populations that share genetic ancestry (e.g., Europeans), and the analysis 

usually includes covariate adjustment for principal components estimated from genome-

wide SNP data to account for any residual population stratification (Price et al., 2006). 

Second, polygenic-score analysis is sometimes restricted to a subset of SNPs. This includes 

procedures to select SNPs that are statistically independent of one another and procedures 

to select SNPs that meet other criteria, such as having p values in the discovery GWAS 

that fall below a certain threshold. To date, evidence suggests that polygenic scores are best 
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constructed using data from all available SNPs (Dudbridge & Newcombe, 2016; Ware et al., 

2017).
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	Abstract
	Still a Black Box? From Twin Studies to Genome-Wide Association Studies (GWASs)Now, GWASs (see the Appendix for a glossary of key terms used in this article) are peering inside the black box of heritability. The GWAS method is hypothesis free, meaning that it does not focus on specific genetic variants selected on the basis of prior knowledge about biological function. Rather, a GWAS surveys genetic variation across the genome. Each one of millions of common genetic variants known as single-nucleotide polymorphisms (SNPs) is tested, with a rigorous statistical correction to control the Type I error rate. Despite initial skepticism, GWAS discoveries for human diseases, traits, and behaviors now number in the thousands (Visscher et al., 2017). Specific SNPs have been identified in GWASs of psychology-relevant phenotypes, including neuroticism, schizophrenia, reproductive behavior, intelligence, and educational attainment (https://www.ebi.ac.uk/gwas/).Despite the accelerating pace of GWAS discovery, heritabilities of human traits and behaviors largely remain black boxes. A key finding from GWASs has been confirmation that genetic influence on variation in most human phenotypes reflects the combined effects of very large numbers of individual genetic variants, each of which has a tiny effect size (R2 < .01; Chabris, Lee, Cesarini, Benjamin, & Laibson, 2015). However, discovered SNPs have turned up only rarely in or near the genes that researchers had hypothesized would be important, and, as we discuss below, the biology linking discovered SNPs to phenotypes is often unclear (Boyle, Li, & Pritchard, 2017). Thus, GWASs have opened the black box of heritability only to find thousands on thousands of smaller black boxes—genotypes of uncertain function that are correlated with phenotypes via unknown mechanisms.The dominant approach to making sense of GWAS results is bioinformatics annotation. To annotate is to add notes that explain and interpret a text. Bioinformatics annotation takes the minimal text rendered by a GWAS, a list of associations between individual SNPs and a phenotype, and attempts to explain that text using insights from biology. For example, bioinformatics annotation might draw on research about which tissues and in what types of cells genes are expressed, how genes have changed over the course of human evolution, or whether gene products are targeted by known pharmacological agents (e.g., Wray et al., 2018). This approach is particularly powerful when (a) links between GWAS-identified variants and genes are clear (e.g., the SNP rs6265, a genome-wide significant “hit” in GWASs of obesity and smoking, changes the protein encoded by the gene BDNF from valine to methionine); (b) the biology of the phenotype is well known, as in GWASs of well-characterized blood molecules such as lipids; and (c) knowledge of genes relevant to that biology is available, as in GWASs of blood proteins, in which genes encoding the protein or its regulators are known.Often, however, these three conditions are not met, and this may be especially true for GWASs of phenotypes relevant to behavioral and brain scientists. In the first case, links between GWAS-identified variants and the genes whose function they affect are not straightforward. For example, an early GWAS discovery for obesity, a variant in the gene FTO, was recently revealed to influence obesity primarily through the regulation not of FTO but of the gene IRX3, nearly 1 million nucleotides away (Claussnitzer et al., 2015). This in-trans mechanism, in which a variant affects a phenotype by regulating a spatially distal gene, is likely to be common. For example, in a recent GWAS of blood proteins, 10% of replicated genome-wide significant associations were in trans, with some variants even on different chromosomes from DNA sequences known to encode those proteins (Suhre et al., 2017). In addition to the difficulty of annotating variants to genes, knowledge of the biology that influences phenotypic variation is frequently incomplete (Johnson et al., 2017). In fact, it is precisely this challenge that motivated the GWAS approach in the first place.Finally, even a perfect understanding of biology would be an imperfect understanding of mechanism, because genetic effects can involve “outside-the-skin” processes—mechanisms that are not located entirely inside a person’s body or brain but rather operate through exposure to physical or social environments. For example, among the first GWAS discoveries for lung cancer were nicotine-receptor gene polymorphisms, which exert their effect via smoking behavior causing exposure to carcinogens in cigarette smoke (Wassenaar et al., 2011). Other, less-easy-to-annotate GWAS discoveries may similarly have biology → behavior → environment → phenotype mechanisms of action on disease risk. In sum, small effect sizes, uncertain biology, and outside-the-skin processes leave a translational gulf between bioinformatics-annotated GWAS results and scientific understanding that can improve human health and well-being. We propose phenotypic annotation as a research agenda that can help bridge that gulf.Phenotypic Annotation: DNA Variants as Building Blocks of Life CoursesPhenotypic annotation comprises a set of social, behavioral, and brain-science research activities that map connections between GWAS discoveries and the neural, developmental, and social processes that give rise to psychological experiences and behavior. Whereas current biologically focused approaches to GWAS translation are bottom-up research strategies intended to answer the question, “How do the genetic variants associated with this phenotype change genome biology?” phenotypic annotation is a top-down strategy designed to investigate the question, “How do the genetic variants associated with this phenotype change the development and behavior of an organism?” (Belsky, Moffitt, & Caspi, 2013). Phenotypic annotation involves three important shifts in thinking about genotype–phenotype relationships: (a) from genotypes to genomes, (b) from discovery phenotypes to nomological networks, and (c) from proximate biology to life-course development.From genotypes to genomes—Following up the tiny individual effects identified in a GWAS presents a challenge in terms of statistical power, and studies that include the measurements needed to investigate mechanisms of genetic effects rarely have sufficient sample sizes. A solution to this challenge is suggested by evidence that genetic effects tend to combine additively, resulting in a quantitative polygenic distribution of genetic influence (Plomin, Haworth, & Davis, 2009). This polygenic distribution can be measured by applying GWAS results as a scoring algorithm to genetic data from an independent sample of participants. Specifically, a participant’s polygenic score is calculated as the genome-wide weighted average of phenotype-associated alleles, where weights are typically effect sizes from an independent-discovery GWAS (Dudbridge, 2013; Fig. 1). Polygenic scores solve the small-effects problem by aggregating signals from SNPs across the genome into a single measure with a larger effect. For example, polygenic scores based on GWASs of education and intelligence can explain as much as 10% of phenotypic variance (Plomin & von Stumm, 2018).As a result, samples numbering only in the hundreds to thousands can be well powered to test genetic effects, opening the door to a breadth of behavioral and brain-science research designs, including randomized trials of behavioral interventions, longitudinal cohort studies, and neuroimaging studies. This gain in statistical power comes with a loss of granularity: Associations with polygenic scores cannot be attributed to specific genes. However, much of biology is itself polygenic (Iacono, Vaidyanathan, Vrieze, & Malone, 2014). Polygenic scores, then, are useful tools for testing whether biological intermediaries, such as brain structure or function, might mediate GWAS-discovered genetic associations with more complex traits and behaviors.From GWAS-discovery phenotypes to nomological networks—It would be a mistake to conceptualize the SNPs discovered in a GWAS as narrowly measuring genetic risk for the precise phenotype studied in the GWAS itself. For example, genes discovered in a GWAS of educational attainment are not “education genes” per se (Belsky et al., 2016). Discovered SNP associations may arise from genetic influence on any correlate of the discovery phenotype (Belsky & Israel, 2014). In this way, results from hypothesis-free GWAS discoveries pose an interpretive challenge similar to the classic construct-validity problem. Newly discovered SNPs have been selected on the basis of their criterion validity (i.e., their ability to predict the phenotype used in the original GWAS), but the constructs measured by the resulting polygenic score remains largely unexplored. As Cronbach and Meehl described more than 60 years ago, “‘learning more about’ a theoretical construct is a matter of elaborating the nomological network in which it occurs, or of increasing the definiteness of its components” (Cronbach & Meehl, 1955, p. 290). We suggest that learning more about the theoretical construct of genetic influence, as measured by GWAS discoveries, can be advanced by elaborating the nomological network in which SNP–phenotype associations are embedded.As an example, studies focused on genetics discovered in GWASs of educational attainment have revealed a surprisingly consistent nomological network, including behavioral patterns of achievement leading up to and extending beyond the completion of formal schooling, cognitive and personological characteristics known to influence educational success, early realization of developmental milestones in language and reading, and environments conducive to educational success, including family socioeconomic status, neighborhood conditions, and peer characteristics (Barth, Papageorge, & Thom, 2017; Belsky, Domingue, et al., 2018; Belsky et al., 2016; Conley et al., 2015; Domingue, Belsky, Conley, Harris, & Boardman, 2015; Krapohl et al., 2017).Phenotypic-annotation analyses of genetic loci discovered in GWASs of schizophrenia have yielded a more complicated picture. Polygenic scores illustrate expected associations with childhood mental health problems (Nivard et al., 2017), early neurocognitive deficits (Riglin et al., 2017), and life-course cognitive decline (McIntosh et al., 2013). Moreover, schizophrenia-associated genetic variants appear to be more common among individuals in creative professions (Power et al., 2015) and are associated with putative environmental risk factors for the disorder, including neighborhood disadvantage and illicit drug use (Power et al., 2015; Sariaslan et al., 2016). However, puzzlingly, polygenic scores from schizophrenia GWASs are not consistently associated with symptom severity or frequency of psychotic episodes (Jones et al., 2016; Stepniak et al., 2014), and there is a surprising positive genetic correlation between schizophrenia and educational attainment (Bansal et al., 2018). A further possible research challenge is that schizophrenia genetics may be related to nonparticipation or loss to follow up (Taylor et al., 2018). Overall, more work, particularly focused on early development, is needed to elucidate what neural, cognitive, and behavioral constructs are being tapped by genes discovered in GWASs of schizophrenia.From proximate biology to life-course development—Individual differences in human psychology do not spring forth like Athena from Zeus’s head but are rather shaped over time through developmental processes in which early emerging differences structure trajectories and shape future outcomes (Belsky, Moffitt, & Caspi, 2013). Thus, a necessary step in understanding mechanisms through which GWAS-discovered genetics influence psychology and behavior is to address the question of when in human development genetic influences manifest. For example, SNPs discovered in GWASs of adult body mass index are associated with accelerations in weight gain during early and middle childhood (Belsky et al., 2012). SNPs discovered in GWASs of adult smoking behavior are associated with accelerated progression from smoking initiation to dependence during adolescence (Belsky, Moffitt, Baker, et al., 2013). SNPs discovered in GWASs of educational attainment are associated with an accelerated pace of cognitive development and the acquisition of self-control and interpersonal skills from infancy through middle childhood (Belsky et al., 2016). By interrogating how polygenic scores constructed from GWASs of adult samples are related to phenotypes measured in early life, these studies illuminate the developmental intermediaries between genotypes that are established at conception and adult phenotypes that are canalized later in development.The developmental processes linking GWAS discoveries with mature phenotypes might involve gene–environment correlations. Childhood social and physical environments that predict individual differences in health and achievement across life are themselves heritable (Plomin & Bergeman, 1991). One implication of gene–environment correlations is that genetic differences potentially confound putative environmental effects. A second, less appreciated implication is that environments might mediate genetic effects (Scarr & McCartney, 1983). Specifically, genetic differences between people might cause them to select into different environments, a process known as active/evocative gene–environment correlation. These environments could then reinforce or magnify differences in traits or behaviors. For example, a child’s genes might influence his or her tendencies toward antisocial behavior in ways that lead to social assortment with delinquent peers (Mann et al., 2016). This peer environment might, in turn, incentivize or facilitate opportunities for more antisocial behavior. Genetic differences between people might also become correlated with their environments when those environments are shaped by genetic relatives. For example, genes influence sexual behavior in ways that make some adolescents more likely to experience early, out-of-wedlock parenthood. Children of such unions will inherit their parents’ genes along with a single-parent environment that may affect sexual behavior (Mendle et al., 2009). Such “passive” gene–environment correlations (so-called because they arise without any active niche picking on the part of the child) are a known potential confound of associations between family environments and child outcomes. However, they can also confound or contaminate GWAS discoveries of genetic effects. Because genotypes are shared between relatives, an association between a child’s genotype and his or her phenotype could reflect the effect of a parental genotype that is mediated through an environmental pathway (Koellinger & Harden, 2018; Kong et al., 2018).Research that integrates environmental measures and polygenic scores can now be used to test specific hypotheses about environmental processes that mediate and moderate genetic effects. For example, polygenic scores for educational attainment, age at first birth, and schizophrenia show correlations with a range of measured environments, including family social class (Belsky, Domingue, et al., 2018), growing up without a father in the home (Gaydosh, Belsky, Domingue, Boardman, & Harris, 2018), peer delinquency (Krapohl et al., 2017), and neighborhood conditions (Belsky, Caspi, et al., 2018; Sariaslan et al., 2016). Polygenic scores will be particularly useful in longitudinal studies, which can trace reciprocal associations between people and their environments, and in multigenerational family designs, which provide opportunities to test for indirect genetic effects, that is, genetic effects that are mediated via the family environment provided by siblings, parents, and grandparents (Bates et al., 2018; Kong et al., 2018; Liu, 2018). Finally, studies capitalizing on shifts in macroenvironmental contexts, such as policy reforms or government changes, can test the environmental conditions under which genotype–phenotype relationships are preserved or disrupted (Barcellos, Carvalho, & Turley, 2018; Rimfeld et al., 2018).What’s Next?Previous efforts to integrate genetics into psychological science have been strained by an enduring fear that studying genetics will reinvigorate the eugenics movement, by the practical difficulties of addressing certain research questions within twin studies, and, more recently, by the poor reproducibility of candidate gene findings. But the ethical and reproducible integration of psychology and genetics is not only possible but also essential to the success of both fields.Now, large-scale GWASs and polygenic-score analysis offer new opportunities to bring genetics and psychological science together (Table 1). Phenotypic annotation is an approach to understanding GWAS discoveries that leverages the expertise of psychological scientists in how to measure traits, behaviors, and environments and the strength of psychological theories for understanding how individuals and their environments interact. By shifting focus from the proximate biology of genomes to the life-course development of humans, including the environments that individuals grow up in and that they build for themselves, phenotypic annotation provides an opportunity for psychological scientists to help unpack the many black boxes the GWAS era has delivered.
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