
ACCELERATED PARALLEL MRI USING MEMORY EFFICIENT 
AND ROBUST MONOTONE OPERATOR LEARNING (MOL)

Aniket Pramanik,
Mathews Jacob

The University of Iowa, Iowa City, USA

Abstract

Model-based deep learning methods that combine imaging physics with learned regularization 

priors have been emerging as powerful tools for parallel MRI acceleration. The main focus of 

this paper is to determine the utility of the monotone operator learning (MOL) framework in 

the parallel MRI setting. The MOL algorithm alternates between a gradient descent step using a 

monotone convolutional neural network (CNN) and a conjugate gradient algorithm to encourage 

data consistency. The benefits of this approach include similar guarantees as compressive sensing 

algorithms including uniqueness, convergence, and stability, while being significantly more 

memory efficient than unrolled methods. We validate the proposed scheme by comparing it with 

different unrolled algorithms in the context of accelerated parallel MRI for static and dynamic 

settings.

1. INTRODUCTION

Compressive sensing (CS) algorithms have revolutionized accelerated Magnetic Resonance 

Imaging (MRI). These methods consider the recovery of images from noisy and highly 

undersampled multi-channel measurements by posing the recovery as a convex optimization 

problem. The benefits of CS algorithms include theoretical guarantees on uniqueness, 

convergence, and stability. In recent years, model-based deep-learning (MoDL) has gained 

tremendous success in parallel MRI [1, 2]. These algorithms alternate between a gradient 

descent step to minimize data consistency, followed by a denoising step using a CNN. The 

alternating optimization blocks are unrolled for few iterations and are trained end-to-end 

with weights shared across iterations. The image quality of the reconstructions offered by 

deep unrolled (DU) approaches often surpasses the ones from CS algorithms, in addition to 

being significantly more efficient in computation during inference.

The central challenge with DUs, which involves algorithm unrolling, is its high memory 

demand during training. This drawback restricts its utility in high-dimensional applications 

including 2D+time and 3D applications. Several strategies that trade computational 

complexity for reduce memory footprint have been introduced to reduce the memory 
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demands [3, 4]. The deep equilibrium (DEQ) framework was introduced as a memory-

efficient alternative where non-expansive optimization blocks are iterated until convergence 

to a fixed point [5]. Since DEQ relies on fixed point iterations rather than back-propagation, 

it reduces memory demand by a factor of the number of iterations, while its computational 

complexity is comparable to an unrolled network [6]; the tradeoffs offered by this 

scheme are better than the above discussed strategies [3, 4]. Unlike unrolled methods, the 

backpropagation steps in DEQ will be accurate only if the forward iterations converge. The 

convergence of several DEQ schemes were rigorously analyzed in [5, 7]. However, these 

theoretical convergence guarantees are unfortunately not valid in the highly undersampled 

setting, when the forward model is low-rank or ill-conditioned.

We had recently introduced a DEQ scheme to address the limitations of DUs in [8]. This 

algorithm inherits many of the desirable properties of CS methods including uniqueness of 

the solution, guaranteed convergence, and robustness to input perturbations. The approach 

relies on a forward-backward splitting algorithm, where the score function rather than its 

proximal map, is modeled by a CNN; the algorithm alternates between a gradient step to 

improve the prior probability and a conjugate gradient algorithm to enforce data consistency 

using a damping parameter α. We constrain the score network to be a monotone operator, 

which we show, is a necessary and sufficient condition for the fixed point of the iterations 

to be unique. Current algorithms such as MoDL and RED are special cases of the proposed 

algorithm, when the damping parameter α = 1. Since the monotone operator is central to 

our approach, we call it as Monotone Operator Learning (MOL) [8]. We have introduced 

theoretical guarantees on the uniqueness of the fixed point of the algorithm, the convergence 

of the algorithm to the fixed point even when the forward model is low-rank, and the 

stability of the algorithm to adversarial perturbations. It is also shown that a monotone 

operator can be constructed as a residual CNN, where a Lipschitz constraint is enforced on 

the CNN. Traditional DEQ schemes use spectral normalization layer by layer which is a 

very conservative bound on Lipschitz of the CNN [5] ; our experiments show that the use 

of this bound translates to poor reconstructions. We had introduced a Lipschitz regularized 

training loss (MOL-LR), which can offer a more realistic bound. While the basic theory was 

introduced in [8], the results in [8] were stated without proofs. In addition, the preliminary 

experimental results in [8] were restricted by the small 2D training dataset and the limited 

number of algorithms we compared against.

The main focus of this work is to rigorously validate the theoretical results in [8] using 

experimental data in the context of parallel MRI. We also show the preliminary utility of 

the algorithm in a 2D+time cardiac cine MRI application, where it is challenging to use 

unrolled algorithms because of memory constraints. We review the theoretical results [8] 

and provide full proofs in the arXiv version [9]; they are not included in this conference 

version because of space constraints. In this paper, we compare the proposed MOL-LR [8] 

reconstructions against the DEQ scheme (DE-GRAD) in [5], MOL-SN, UNET and DU 

approaches MoDL [2], ADMM-Net [10] in the context of 2D parallel MRI. We test our 

hypothesis to conclude that the performance of the proposed DEQ scheme is comparable to 

that of the unrolled algorithms, while being significantly more memory efficient. We also 

evaluate the sensitivity of the algorithms to Gaussian and worst-case input perturbations. 
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This experiment is expected to reveal the benefit of the theoretical bound on robustness in 

[8].

2. MONOTONE OPERATOR LEARNING

We will now briefly review the MOL algorithm introduced in [8]. The results in [8] were 

stated without proofs. We now restate the main results for accessibility, while a careful 

reader can find the proofs in the full arXiv version [9]. Consider recovery of an image x ∈ ℂ
from its noisy under-sampled measurements b such that b = A x + n where A is a linear 

operator and n is Gaussian noise. The maximum aposteriori (MAP) estimate of x solves for,

C x = argmin
x

λ
2 ∥ Ax − b ∥2

2 + ϕ x

(1)

where ϕ x = − log p x  with p x  representing the prior probability density, while λ = 1
σ2

accounts for measurement noise. The minima of (1) satisfies the relation:

λAH(Ax − b)
G(x)

+ ∇xϕ(x)
ℱ(x)

= 0.

(2)

Here, ℱ is the gradient of ϕ x  and is often termed as the score function. As discussed 

earlier, one of the strengths of CS formulations is the uniqueness of the solutions. The 

uniqueness of the solutions that satisfy (2) were analyzed in [8] using the theory of 

monotone operators, defined as

Assumption: The operator ℱ:ℂM ℂM is m-monotone if:

ℜ x−y, ℱ x − ℱ y ≥ m ∥ x − y ∥2
2 ,  m > 0.

(3)

for all x, y ∈ ℂM. Here, ℜ x  denotes the real part of x. The following result from [9] 

provides the necessary and sufficient condition for the solution of (2) to be unique.

Proposition 2.1 [9] The fixed point of (2) is unique for a specific b, iff ℱ is m-monotone 
with m > 0.

Proposition 2.2 [9] ℱ:ℂM ℂM is m-monotone if it can be represented as a residual CNN, 

ℱ = ℐ − ℋθ, where ℋθ:ℂM ℂM has a Lipschitz constant, L ℋθ = 1 − m ; 0 < m < 1.
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2.1. Proposed MOL algorithm

With these results, we use a forward-backward splitting of (2) for α > 0, to yield the iterative 

algorithm xn + 1 = I + αG −1 I − αℱ xn , which is expanded as

xn + 1 = ℐ + αλAHA −1 1 − α xn + αℋθ xn

TMOL xn

+ ℐ + αλAHA −1 αλAHb
z

(4)

Proposition 2.3 Consider the algorithm specified by (4), where ℱ is an m-monotone 
operator. Assume that (4) has a fixed point specified by x* b . Then, convergence is 

guaranteed for an arbitrary A operator when

α < 2m
2 − m 2 = αmax

(5)

The algorithms [2, 1, 11] correspond to the special case of α = 1. Setting α = 1 in (5), we see 

that the algorithm will converge if m ≥ 3 − 5 = 0.76 or L ℋθ ≤ 0.24. The denoising ability 

of a network is dependent on its Lipschitz bound; a smaller L ℋθ  bound translates to poor 

performance of the resulting MOL algorithm. The use of the damping factor α < 1 allows us 

to use denoising networks ℋθ with larger Lipschitz bounds and hence improved denoising 

performance. For instance, if we choose m = 0.1; L ℋθ = 0.9, from (5), the algorithm will 

converge if α < 0.055.

The following result bounds the perturbation in the solutions in response to worst case 

measurement noise in b.

Proposition 2.4 [8] Consider z1 and z2 to be measurements with δ = z2 − z1

as the perturbation. Let the corresponding outputs of the MOL algorithm be 
x* z1  and x* z2 , respectively, with Δ = x* z2 − x* z1  as the output perturbation, 

∥ Δ ∥2 ≤ αλ

1 − 1 − 2αm + α2 2 − m 2 ∥ δ ∥2. When α is small, we have limα 0 ∥ Δ ∥2 ≤ λ
m ∥ δ ∥2.

We note from Proposition 2.2 that a monotone ℱ = ℐ − ℋθ can be learned by constraining 

the Lipschitz constant of ℋθ. A common approach is spectral normalization [5, 7]. However, 

this is a conservative estimate, often translating to lower performance. We use the Lipschitz 

estimate [12], l ℋθ = maxx ∈ Ssup
η

∥ ℋθ(x + η) − ℋθ(x) ∥2
2

∥ η ∥2
2

P(x)

. This estimate is less conservative than 

the one using spectral normalization. Our experiments show that the use of this estimate can 

indeed result in algorithms with convergence and robustness as predicted by the theory. 

In the supervised learning setting, we propose to minimize, V θ = ∑i = 0
Nt ∥ xi

* − xi ∥2
2 s.t. 
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P xi
* ≤ T; i = 0, . . , Nt. Here, T = 1 − m. The above loss function is minimized with respect to 

parameters θ of the CNN ℋθ using a log-barrier approach,

θ* = argmin
θ

∑
i = 0

Nt
∥ xi

* − xi ∥2
2 − β log T − P xi

*

Ci

.

(6)

xi
* is a fixed point of (4) that is dependent on the CNN parameters θ. xi; i = 0, . . , Nt and 

bi, i = 0, . . , Nt are the ground truth images in the training dataset and their undersampled 

measurements, respectively.

3. EXPERIMENTS AND RESULTS

The experiments in this paper build upon the preliminary results in [8], where the proposed 

MOL-LR (Lipschitz regularized) algorithm was compared against MOL-SN (spectral 

normalization) and MoDL in terms of performance. However, the models were trained with 

few datasets (90 slices from each of the 4 training subjects). In addition, the experiments 

in [8] did not study the robustness of the proposed algorithm shown in Proposition 2.4 or 

the benefit of the scheme in high-dimensional applications, in comparison to other unrolled 

methods. In this work, we address above limitations of [8] by performing experiments 

on a large publicly available brain MRI data from the Calgary Campinas Dataset (CCP) 

[13]. CCP consists of 12-channel (coil) T1-weighted 2D brain data from 117 subjects. We 

split data from 40, 7 and 20 subjects into training, validation and testing sets respectively. 

Cartesian 2D non-uniform variable density masks are used for 4-fold undersampling of the 

datasets.

We compare the performance of MOL-LR and its robustness to against DEQ methods 

(DE-GRAD, MOL-SN), UNET and DUs (MoDL, ADMM-Net) in the first row of images in 

Fig. 1 for recovery from 4-fold undersampled data. The SENSE, MOL-SN and DE-GRAD 

reconstructions are relatively more noisy compared to other methods. SENSE is a CS 

algorithm, utilizing coil sensitivities obtained from calibration scans. It fails to perform at 

such a high acceleration factor. MOL-SN and DE-GRAD are DEQs with Lipschitz of the 

network bounded by spectral normalization of each layer. Since, this is a very strict bound, 

the CNNs attain a much lower Lipschitz compared to MOL-LR, which translates to poor 

performance. MOL-LR performs at par with DUs (10-iterations of MoDL, ADMM-Net) and 

outperforms UNET.

We study degradation of the reconstructions, when the input measurements are corrupted 

by Gaussian or worst-case perturbations determined using an adversarial attack. The 

experiments in the third row of Fig. 1 (a) show that all the methods perform similarly 

on Gaussian noise. By contrast, the experiments in the second row of Fig. 1 (a) show that 

MOL-SN and MOL-LR are relatively more robust to adversarial noise, compared to MoDL, 

UNET, and ADMM-Net. Both MOLS-N and MOL-LR are associated with guarantees on 
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robustness. The plots in Fig. 1 (b) shows drop in PSNR with respect to percentage of 

Adversarial/Gaussian noise (0% to 20% for ϵ = 0.0,0.2  and shows similar trend.

We demonstrate the benefit of reduced memory demand in MOL over unrolled networks 

through experiments on 2D+time cardiac data, run on a 16GB GPU. While MOL-LR 3D 

performs recovery in 3D, MoDL [2] could do it only in 2D due to lack of memory for 

multiple unrolls. MOL-LR 3D outperforms MoDL 2D as shown in Fig. 2. MoDL 2D’s poor 

performance can be attributed to lack of temporal information which is well utilized by 

MOL-LR 3D.

4. CONCLUSION

In this paper, we demonstrate the benefits of a DEQ-based monotone operator learning 

(MOL), proposed in [8]. Similar to compressed sensing algorithms with convex priors, 

MOL possesses guarantees for uniqueness of the solution, convergence to the fixed-point 

and stability to input perturbations. MOL is found to have ten-fold reduction in memory 

consumption compared to one consumed by 10-iterations of unrolled networks. Results 

show that MOL is significantly more robust to adversarial attacks and performs at par 

on noiseless data, compared to unrolled networks. We apply MOL to higher-dimensional 

problems which cannot be done for unrolled networks due to memory constraints.
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Fig. 1. 
Sensitivity of the algorithms to input perturbations. In (a), the rows correspond to 

reconstructed magnitude results of 4x accelerated multi-channel brain data for no noise, 

10% worst-case (adversarial) and 10% gaussian noise, respectively. The PSNR (dB) values 

are reported for each case. The data was undersampled using a Cartesian 2D non-uniform 

variable-density mask; (b) shows plots of PSNR vs percentage of Adversarial or Gaussian 

Noise in terms of ϵ (from 0% to 20%).
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Fig. 2. 
MOL recovery of 2D+time cine data at 6x acceleration. PSNR (dB) values are reported 

for each case. The data is retrospectively undersampled using a Poisson density sampling 

pattern.
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