
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10738  | https://doi.org/10.1038/s41598-024-61124-0

www.nature.com/scientificreports

Emerging opportunities 
of using large language models 
for translation between drug 
molecules and indications
David Oniani 1,9, Jordan Hilsman 1,9, Chengxi Zang 2,3, Junmei Wang 4, Lianjin Cai 4, 
Jan Zawala 5 & Yanshan Wang 1,6,7,8*

A drug molecule is a substance that changes an organism’s mental or physical state. Every approved 
drug has an indication, which refers to the therapeutic use of that drug for treating a particular 
medical condition. While the Large Language Model (LLM), a generative Artificial Intelligence (AI) 
technique, has recently demonstrated effectiveness in translating between molecules and their 
textual descriptions, there remains a gap in research regarding their application in facilitating the 
translation between drug molecules and indications (which describes the disease, condition or 
symptoms for which the drug is used), or vice versa. Addressing this challenge could greatly benefit 
the drug discovery process. The capability of generating a drug from a given indication would allow 
for the discovery of drugs targeting specific diseases or targets and ultimately provide patients with 
better treatments. In this paper, we first propose a new task, the translation between drug molecules 
and corresponding indications, and then test existing LLMs on this new task. Specifically, we consider 
nine variations of the T5 LLM and evaluate them on two public datasets obtained from ChEMBL 
and DrugBank. Our experiments show the early results of using LLMs for this task and provide a 
perspective on the state-of-the-art. We also emphasize the current limitations and discuss future 
work that has the potential to improve the performance on this task. The creation of molecules from 
indications, or vice versa, will allow for more efficient targeting of diseases and significantly reduce 
the cost of drug discovery, with the potential to revolutionize the field of drug discovery in the era of 
generative AI.
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Drug discovery is a costly process1 that identifies chemical entities with the potential to become therapeutic 
agents2. Due to its clear benefits and significance to health, drug discovery has become an active area of research, 
with researchers attempting to automate and streamline drug discovery3,4. Approved drugs have indications, 
which refer to the use of that drug for treating a particular disease, condition, or symptoms5. They specify whether 
the drug is intended for treatment, prevention, mitigation, cure, relief, or diagnosis of that particular ailment. The 
creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases and sig-
nificantly reduce the cost of drug discovery, with the potential to revolutionize the field.

Large Language Models (LLMs) have become one of the major directions of generative Artificial Intelligence 
(AI) research, with highly performant models like GPT-36, GPT-47, LLaMA8, and Mixtral9 developed in the 
recent years and services like ChatGPT reaching over 100 million users10,11. LLMs utilize deep learning methods 
to perform various Natural Language Processing (NLP) tasks, such as text generation12,13 and neural machine 
translation14,15. The capabilities of LLMs are due in part to their training on large-scale textual data, making the 
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models familiar with a wide array of topics. LLMs have also demonstrated promising performance in a variety 
of tasks across different scientific fields16–19. Since LLMs work with textual data, the first step is usually finding 
a way to express a problem in terms of text or language.

An image or a diagram is a typical way to present a molecule, but methods for obtaining textual representa-
tions of molecules do exist. One such method is the Simplified Molecular-Input Line-Entry System (SMILES)20, 
which is usually considered as a language for describing molecules. As SMILES strings represent drugs in textual 
form, we can assess the viability of LLMs in translation between drug molecules and their indications. In this 
paper, we consider two tasks: drug-to-indication and indication-to-drug, where we seek to generate indications 
from the SMILES strings of drugs, and SMILES strings from possible indications, respectively. Translation 
between drugs and the corresponding indication will allow for finding a cure for diseases that have no current 
treatment.

Research efforts have attempted de-novo drug discovery through the use of AI, including graph neural 
networks21,22 and, more recently, forms of generative AI23. There are numerous existing efforts for molecular 
design and drug discovery using AI, such as GPT-based models using scaffold SMILES strings accompanied 
with desired properties of the output molecule24. Others have used T5 architecture for various tasks, such as 
reaction prediction25 and converting between molecular captions and SMILES strings26. Additional work in 
the field is centered around the generation of new molecules from gene expression signatures using generative 
adversarial networks27, training recurrent neural networks on known compounds and their SMILES strings, 
then fine-tuning for specific agonists of certain receptors28, or using graph neural networks to predict drugs and 
their corresponding indications from SMILES29. As such, there is an established promise in using AI for drug 
discovery and molecular design. Efforts to make data more friendly for AI generation of drugs also include the 
development of the Self-Referencing Embedded Strings (SELFIES)30, which can represent every valid molecule. 
The reasoning is that such a format will allow generative AI to construct valid molecules while maintaining cru-
cial structural information in the string. The collection of these efforts sets the stage for our attempt at generating 
drug indications from molecules.

With advancements in medicinal chemistry leading to an increasing number of drugs designed for complex 
processes, it becomes crucial to comprehend the distinctive characteristics and subtle nuances of each drug. In 
this direction, researchers have released many resources, including datasets that bridge medicines and chemi-
cal ingredients like TCMBank31,32, models for generating high-quality molecular representations to facilitate 
Computer-Aided Drug Design (CADD)33, and models for drug-drug interactions34,35. This has also led to the 
development of molecular fingerprints, such as the Morgan fingerprint36 and the MAP4 fingerprint37, which use 
unique algorithms to vectorize the characteristics of a molecule. Computation of fingerprint representations is 
rapid, and they maintain much of the features of a molecule38. Molecular fingerprinting methods commonly 
receive input in the form of SMILES strings, which serve as a linear notation for representing molecules in their 
structural forms, taking into account the different atoms present, the bonds between atoms, as well as other 
key characteristics, such as branches, cyclic structures, and aromaticity20. Since SMILES is a universal method 
of communicating the structure of different molecules, it is appropriate to use SMILES strings for generat-
ing fingerprints. Mol2vec39 feeds Morgan fingerprints to the Word2vec40 algorithm by converting molecules 
into their textual representations. Bidirectional Encoder Representations from Transformers (BERT)41-based 
models have also been used for obtaining molecular representations, including models like MolBERT42 and 
ChemBERTa43, which are pretrained BERT instances that take SMILES strings as input and perform downstream 
tasks on molecular representation and molecular property prediction, respectively. Other efforts in using AI for 
molecular representations include generating novel molecular graphs through the use of reinforcement learning, 
decomposition, and reassembly44 and the prediction of 3D representations of small molecules based on their 
2D graphical counterparts45.

In this paper, we evaluate the capabilities of MolT5, a T5-based model, in translating between drugs and 
their indications through the two tasks, drug-to-indication and indication-to-drug, using the drug data from 
DrugBank and ChEMBL. The drug-to-indication task utilizes SMILES strings for existing drugs as input, with the 
matching indications of the drug as the target output. The indication-to-drug task takes the set of indications for 
a drug as input and seeks to generate the corresponding SMILES string for a drug that treats the listed conditions.

We employ all available MolT5 model sizes for our experiments and evaluate them separately across the two 
datasets. Additionally, we perform the experiments under three different configurations: 

1.	 Evaluation of the baseline models on the entire available dataset
2.	 Evaluation of the baseline models on 20% of the dataset
3.	 Fine-tuning the models on 80% of the dataset followed by evaluation on the 20% subset

We found that larger MolT5 models outperformed the smaller ones across all configurations and tasks. It should 
also be noted that fine-tuning MolT5 models has a negative impact on the performance.

Following these preliminary experiments, we train the smallest available MolT5 model from scratch using a 
custom tokenizer. This custom model performed better on DrugBank data than on ChEMBL data on the drug-
to-indication task, perhaps due to a stronger signal between the drug indications and SMILES strings in their 
dataset, owing to the level of detail in their indication descriptions. Fine-tuning the custom model on 80% of 
either dataset did not degrade model performance for either task, and some metrics saw improvement due to 
fine-tuning. Overall, fine-tuning for the indication-to-drug task did not consistently improve the performance, 
which holds for both ChEMBL and DrugBank datasets.

While the performance of the custom tokenizer approach is still not satisfying, there is promise in using 
a larger model and having access to more data. If we have a wealth of high-quality data to train models on 
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translation between drugs and their indications, it may become possible to improve performance and facilitate 
novel drug discovery with LLMs.

In this paper, we make the following contributions: 

1.	 We introduce a new task: translation between drug molecules and indications.
2.	 We conduct various experiments with T5-based LLMs and two datasets (DrugBank and ChEMBL). Our 

experiments consider 16 evaluation metrics across all experiments. In addition, we discuss the current bot-
tlenecks that, if addressed, have the potential to significantly improve the performance on the task.

Results
Evaluation of MolT5 models
We performed initial experiments using MolT5 models from HuggingFace (GitHub links: https://​huggi​ngface.​
co/​laitu​an245/​molt5-​small/​tree/​main, https://​huggi​ngface.​co/​laitu​an245/​molt5-​base/​tree/​main, https://​huggi​
ngface.​co/​laitu​an245/​molt5-​large/​tree/​main). MolT5 offers three model sizes and fine-tuned models of each 
size, which support each task of our experiments. For experiments generating SMILES strings from drug indica-
tions (drug-to-indication), we used the fine-tuned models MolT5-smiles-to-caption, and for generating SMILES 
strings from drug indications (indication-to-drug), we used the models MolT5-caption-to-smiles. For each of our 
Tables, we use the following flags: FT (denotes experiments where we fine-tuned the models on 80% of the dataset 
and evaluated on the remaining 20% test subset), SUB (denotes experiments where the models are evaluated 
solely on the 20% test subset), and FULL (for experiments evaluating the models on the entirety of each dataset).

For evaluating drug-to-indication, we employ the natural language generation metrics BLEU46, ROUGE54–56, 
and METEOR57, as well as the Text2Mol53 metric, which generates similarities of SMILES-Indication pairs. As 
for evaluation of indication-to-drug, we measure exact SMILES string matches, Levenshtein distance47, SMILES 
BLEU scores, the Text2Mol similarity metric, as well as three different molecular fingerprint metrics: MACCS48,49, 
RDK48,50, and Morgan FTS48,51, where FTS stands for fingerprint Tanimoto similarity48, as well as the proportion 
of returned SMILES strings that are valid molecules. The final metric for evaluating SMILES generation is FCD, 
or Fréchet ChemNet Distance, which measures the distance between two distributions of molecules from their 
SMILES strings52. Table 1 presents both drug-to-indication and indication-to-drug metrics, including their 
descriptions, values, and supported intervals.

Table 2 lists four examples of inputs and our model outputs for both drug-to-indication and indication-to-
drug tasks using the large MolT5 model and ChEMBL data. Molecular validity is determined through the use of 
RDKit (https://​www.​rdkit.​org/​docs/​index.​html), an open-source toolkit for cheminformatics, with the reason 
for invalidity given. Indication quality is determined by the Text2Mol string similarity between the ground 
truth and generated indications. We can observe that the proposed model could output valid molecules using 
SMILES strings for a given indication, and output meaningful indication, such as cancer, for a given molecule. 
However, there are some misspelling issues in the generated indication due to the small size of T5 model. We 
hypothesize that LLMs with larger size of parameters could significantly improve the validity of the generated 
molecules and indications.   

Tables 3 and 4 show the results of MolT5 drug-to-indication experiments on DrugBank and ChEMBL data, 
respectively. Larger models tended to perform better across all metrics for each experiment. Across almost all 
metrics for the drug-to-indication task, on both DrugBank and ChEMBL datasets, the model performed the best 
on the 20% subset data. At the same time, both the subset and full dataset evaluations yielded better results than 

Table 1.   Evaluation metrics used in the experiments. ↑ : higher values result in higher string similarity.↓ : 
higher values result in lower string similarity.

Metric Description Values Direction

BLEU46 Computes similarity as geometric mean of n-gram precisions scaled by brevity penalty [0, 1] ↑

Exact Represents whether the string match is exact (1) or not (0) {0, 1} ↑

Levenshtein47 Measures Levenshtein edit distance between two strings [0,∞) ↓

MACCS48,49 Computes Tanimoto similarity between two molecular MACCS fingerprints [0, 1] ↑

RDK48,50 Computes Tanimoto similarity between two molecular RDK fingerprints [0, 1] ↑

Morgan48,51 Computes Tanimoto similarity between two molecular Morgan fingerprints [0, 1] ↑

FCD52 Measures distance between distributions of real-world and LLM-generated molecules [0,∞) ↑

Text2Mol53 Uses pretrained model to compute similarity between SMILES string and text [0, 1] ↑

Validity Represents whether the generated SMILES string is syntactically valid (1) or not (0) {0, 1} ↑

BLEU-246 Computes cumulative 2-gram BLEU score [0, 1] ↑

BLEU-446 Computes cumulative 4-gram BLEU score [0, 1] ↑

ROUGE-154,55 Measures overlap of unigrams between the candidate and reference strings [0, 1] ↑

ROUGE-254,55 Measures overlap of bigrams between the candidate and reference strings [0, 1] ↑

ROUGE-L54,56 Calculates similarity via Longest Common Subsequence (LCS) statistics [0, 1] ↑

METEOR57 Computes similarity between two strings via weighted unigram F-score [0, 1] ↑

Text2Mol53 Uses a pretrained model to compute similarity between two strings [0, 1] ↑

https://huggingface.co/laituan245/molt5-small/tree/main
https://huggingface.co/laituan245/molt5-small/tree/main
https://huggingface.co/laituan245/molt5-base/tree/main
https://huggingface.co/laituan245/molt5-large/tree/main
https://huggingface.co/laituan245/molt5-large/tree/main
https://www.rdkit.org/docs/index.html
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fine-tuning experiments. As MolT5 models are trained on molecular captions, fine-tuning using indications could 
introduce noise and weaken the signal between input and target text. The models performed better on DrugBank 
data than ChEMBL data, which may be due to the level of detail provided by DrugBank for their drug indications. 

Tables 5 and 6 show the results of MolT5 indication-to-drug experiments on DrugBank and ChEMBL data, 
respectively. The tables indicate that fine-tuning the models on the new data worsens performance, reflected 
in FT experiments yielding worse results than SUB or FULL experiments. Also, larger models tend to perform 
better across all metrics for each experiment.

In our drug-to-indication and indication-to-drug experiments, we see that fine-tuning the models causes the 
models to perform worse across all metrics. Additionally, larger models perform better on our tasks. However, 
in our custom tokenizer experiments, we pretrain MolT5-Small without the added layers of SMILES-to-caption 
and caption-to-SMILES. By fine-tuning the custom pretrained model on our data for drug-to-indication and 
indication-to-drug tasks, we aim to see improved results.

Table 2.   First four rows: example SMILES strings from the indication-to-drug task; Last four rows: example 
MolT5 indication generations from the drug-to-indication task.

Input Ground truth Output Validity/similarity

Indication-to-drug

 Diabetes mellitus COCCOc1cnc(NS(=O)(=O)c2ccccc2)nc1 O=C([O-])CC(=O)[O-] Valid

 Coronary artery disease CCOC(=O)C(C)=O CCCCC[C@H](O)CC=CCC=CCCCC(=O)O Valid

 Respiratory system disease CCC1(C)CC(=O)NC(=O)C1 [H+].C(=O)[O-])[O-] Syntax Error

 Hemorrhage CC1=CC(=O)c2ccccc2C1=O C(=O)C(=O)O)O.O)O.O)O.O.O Syntax Error

Drug-to-indication

 CN(C)CCOC(c1ccccc1)c1ccccc1 Allergic disease ... cancer ... eczema ... ... and cancer ... 0.2206

 CCc1cc(C(N)=S)ccn1 Multidrug-resistant tuberculosis osteomyelitis ...  ... cancer 0.2262

 O=C([O-])c1ccccc1.[Na+] Encephalopathy psychosis Inamideamide protein protein proteinamide. 0.0183

 Clc1ccccc1CN1CCc2sccc2C1 Internal carotid artery stenosis ... Recurrent throm-
bophlebitis Amideamideamide. 0.0316

Table 3.   DrugBank drug-to-indication results. Significant values are in [boldunderlined].

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol

FT-small 0.0013 0.0000 0.0011 0.0000 0.0011 0.011 0.0805

SUB-small 0.0224 0.0053 0.0982 0.0068 0.0809 0.1007 0.2368

FULL-small 0.0213 0.0036 0.0965 0.0061 0.0801 0.0987 0.3234

FT-base 0.0006 0.0000 0.0004 0.0000 0.0004 0.0092 0.0683

SUB-base 0.0227 0.0053 0.0973 0.0073 0.0808 0.1020 0.3317

FULL-base 0.0208 0.0034 0.0966 0.0059 0.0803 0.0992 0.3217

FT-large 0.0006 0.0000 0.0007 0.0000 0.0007 0.0110 0.0532

SUB-large 0.0298 0.0097 0.1015 0.0115 0.0835 0.1167 0.5001

FULL-large 0.0281 0.0080 0.1007 0.0098 0.0814 0.1127 0.4864

Table 4.   ChEMBL drug-to-indication results. Significant values are in [boldunderlined].

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol

FT-small 0.0000 0.0000 0.0011 0.0000 0.0011 0.0017 0.1070

SUB-small 0.0005 0.0000 0.0032 0.0000 0.0029 0.0079 0.3353

FULL-small 0.0005 0.0000 0.0033 0.0000 0.0032 0.0078 0.3237

FT-base 0.0000 0.0000 0.0012 0.0000 0.0012 0.0026 0.0799

SUB-base 0.0005 0.0000 0.0033 0.0000 0.0032 0.0076 0.3315

FULL-base 0.0007 0.0000 0.0034 0.0000 0.0033 0.0078 0.3171

FT-large 0.0000 0.0000 0.0011 0.0000 0.0011 0.0010 0.0917

SUB-large 0.0021 0.0007 0.0052 0.0007 0.0049 0.0118 0.4903

FULL-large 0.0019 0.0006 0.0053 0.0007 0.0050 0.0118 0.4830
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Table 5.   DrugBank indication-to-drug results. Significant values are in [boldunderlined].

Model BLEU Exact Levenshtein MACCS RDK Morgan FCD Text2Mol Validity

FT-small 0.0020 0.0000 77.0375 0.0408 0.0023 0.0241 0.0000 0.0000 0.0017

SUB-small 0.1524 0.0000 89.3278 0.2747 0.1729 0.1026 0.0000 0.1663 0.3661

FULL-small 0.1627 0.0003 87.0366 0.2822 0.1644 0.0992 11.2862 0.0645 0.3628

FT-base 0.0002 0.0000 640.9418 0.0000 0.0000 0.0000 0.0000 0.0000 0.0017

SUB-base 0.1563 0.0000 92.9151 0.3147 0.1898 0.1214 0.0000 0.1220 0.3278

FULL-base 0.1614 0.0003 95.0343 0.3145 0.1933 0.1177 11.2079 0.1472 0.3106

FT-large 0.0000 0.0000 1315.0585 0.0000 0.0000 0.0000 0.0000 0.1472 0.0000

SUB-large 0.1314 0.0166 113.3877 0.3907 0.2758 0.1673 0.0000 0.2972 0.5655

FULL-large 0.1375 0.0163 114.6298 0.3982 0.2819 0.1709 5.5990 0.2516 0.5462

Table 6.   ChEMBL indication-to-drug results. Significant values are in [boldunderlined].

Model BLEU Exact Levenshtein MACCS RDK Morgan FCD Text2Mol Validity

FT-small 0.0401 0.0000 84.3199 0.0571 0.0094 0.0070 0.0000 0.0000 0.0142

SUB-small 0.1190 0.0000 126.1835 0.2387 0.1162 0.0629 0.0000 0.0395 0.3246

FULL-small 0.1114 0.0000 132.5282 0.2442 0.1247 0.0656 19.6213 0.0219 0.3199

FT-base 0.0203 0.0000 516.0212 0.1235 0.0237 0.0325 0.0000 0.0000 0.0098

SUB-base 0.1956 0.0000 76.7455 0.2997 0.1878 0.0945 0.0000 0.0566 0.3662

FULL-base 0.1935 0.0000 77.3259 0.2996 0.1924 0.0922 19.6774 0.0620 0.3404

FT-large 0.0115 0.0000 339.3972 0.0000 0.0000 0.0000 0.0000 0.0620 0.0000

SUB-large 0.0699 0.0000 276.5310 0.3590 0.2613 0.0851 0.0000 0.1934 0.3140

FULL-large 0.0684 0.0000 280.9910 0.3559 0.2626 0.0830 16.3108 0.0482 0.3199

Table 7.   Results for MolT5 augmented with custom tokenizer, drug-to-indication. Significant values are in 
[boldunderlined].

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol

FT-DrugBank 0.0006 0.0000 0.0013 0.0000 0.0013 0.0141 0.0706

FT-ChEMBL 0.0000 0.0000 0.0011 0.0000 0.0011 0.0017 0.0699

SUB-DrugBank 0.0008 0.0000 0.0014 0.0000 0.0013 0.0137 0.0811

SUB-ChEMBL 0.0000 0.0000 0.0012 0.0000 0.0012 0.0012 0.0836

FULL-DrugBank 0.0010 0.0000 0.0014 0.0000 0.0014 0.0133 0.0787

FULL-ChEMBL 0.0000 0.0000 0.0016 0.0000 0.0016 0.0014 0.0868

Table 8.   Results for MolT5 augmented with custom tokenizer, indication-to-drug. Significant values are in 
[boldunderlined].

Model BLEU Exact Levenshtein MACCS RDK Morgan FCD Text2Mol Validity

FT-DrugBank 0.0154 0.0000 174.0865 0.0440 0.0354 0.0513 0.0000 0.0000 0.0050

FT-ChEMBL 0.0136 0.0000 454.1142 0.1455 0.0233 0.0327 0.0000 0.0000 0.0073

SUB-DrugBank 0.0175 0.0000 170.0050 0.0452 0.0140 0.0532 0.0000 0.0000 0.0067

SUB-ChEMBL 0.0252 0.0000 281.2072 0.0605 0.0239 0.0493 0.0000 0.1989 0.0090

FULL-DrugBank 0.0174 0.0000 175.9574 0.0825 0.0552 0.0532 0.0000 0.0728 0.0087

FULL-ChEMBL 0.0234 0.0000 286.5869 0.1180 0.0449 0.0356 0.0000 0.2707 0.0072
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Evaluation of custom tokenizer
Tables 7 and 8 show the evaluation of MolT5 pretrained with the custom tokenizer on the drug-to-indication 
and indication-to-drug tasks, respectively. For drug-to-indication, the model performed better on the DrugBank 
dataset, reflected across all metrics. This performance difference may be due to a stronger signal between drug 
indication and SMILES strings in the DrugBank dataset, as the drug indication contains more details. Fine-tuning 
the model on 80% of either of the datasets did not worsen the performance for drug-to-indication as it did in 
the baseline results, and some metrics showed improved results. The results for indication-to-drug are more 
mixed. The model does not consistently perform better across either dataset and fine-tuning the model affects 
the evaluation metrics inconsistently.

Discussion
In this paper, we proposed a novel task of translating between drugs and indications, considering both drug-
to-indication and indication-to-drug subtasks. We focus on generating indications from the SMILES strings of 
existing drugs and generating SMILES strings from sets of indications. Our experiments are the first attempt at 
tackling this problem. After conducting experiments with various model configurations and two datasets, we 
hypothesized potential issues that need further work. We believe that properly addressing these issues could 
significantly improve the performance of the proposed tasks.

The signal between SMILES strings and indications is poor. In the original MolT5 task (translation between 
molecules and their textual descriptions), “similar” SMILES strings often had similar textual descriptions. In 
the case of drug-to-indication and indication-to-drug tasks, similar SMILES strings might have completely dif-
ferent textual descriptions as they are different drugs, and their indications also differ. One could also make a 
similar observation about SMILES strings that are different: drug indications may be similar. Having no direct 
relationships between drugs and indications makes it hard to achieve high performance on proposed tasks. We 
hypothesize that having an intermediate representation that drugs (or indications) map to may improve the 
performance. As an example, mapping a SMILES string to its caption (MolT5 task) and then caption to indica-
tion may be a potential future direction of research.

The signal between drugs and indications is not the only issue: the data is also scarce. Since we do not consider 
random molecules and their textual descriptions but drugs and their indications, the available data is limited 
by the number of drugs. In the case of both ChEMBL and DrugBank datasets, the number of drug-indication 
pairs was under 10000, with the combined size also being under 10000. Finding ways to enrich data may help 
establish a signal between SMILES strings and indications and could be a potential future avenue for exploration.

Overall, the takeaway from our experiments is that larger models tend to perform better. By using a larger 
model and having more data (or data that has a stronger signal between drug indications and SMILES strings), 
we may be able to successfully translate between drug indications and molecules (i.e., SMILES strings) and 
ultimately facilitate novel drug discovery.

We note that our experiments did not involve human evaluation of the generated indications and relied 
entirely on automated metrics. We acknowledge that such metrics may not correlate well with human 
judgment58–60. At the same time, manually reviewing thousands of indications would have been expensive and 
would involve a lot of human labor. Future work could potentially consider incorporating humans in the loop 
or using LLMs to assess the quality of generated indications.

Experiments with other models and model architectures can be another avenue for exploration. Some 
potential benefits may include better performance, lower latency, and improved computational complexity. As 
an example, our current method uses the transformer architecture, which has the overall time complexity of 
O(n2 · d + n · d

2) (where n is the sequence length and d is the embedding dimension), with O(n2 · d) being the 
time complexity of the attention layer alone. On the other hand, State Space Models (SSMs), such as Mamba61, 
scale linearly with the sequence length.

Methods
This section describes the dataset, analysis methods, ML models, and feature extraction techniques used in 
this study. Figure 1 shows the flowchart of the process. We adjust the workflow of existing models for generat-
ing molecular captions to instead generate indications for drugs. By training LLMs on the translation between 
SMILES strings and drug indications, we endeavor to one day be able to create novel drugs that treat medical 
conditions.

Data
Our data comes from two databases, DrugBank62 and ChEMBL63, which we selected due to the different ways 
they represent drug indications. DrugBank gives in-depth descriptions of how each drug treats patients, while 
ChEMBL provides a list of medical conditions each drug treats. Table 9 outlines the size of each dataset, as well 
as the length of the SMILES and indication data. In the case of DrugBank, we had to request access to use the 
drug indication and SMILES data. The ChEMBL data was available without request but required establishing a 
database locally to query and parse the drug indication and SMILES strings into a workable format. Finally, we 
prepared a pickle file for both databases to allow for metric calculation following the steps presented in MolT526.

Models
We conducted initial experiments using the MolT5 model, based on the T5 architecture26. The T5 basis of the 
model gives it textual modality from pretraining on the natural language text dataset Colossal Clean Crawled 



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10738  | https://doi.org/10.1038/s41598-024-61124-0

www.nature.com/scientificreports/

Corpus (C4)64, and the pretraining on 100 million SMILES strings from the ZINC-15 dataset65 gives the model 
molecular modality.

In our experiments, we utilized fine-tuned versions of the available MolT5 models: SMILES-to-caption, fine-
tuned for generating molecular captions from SMILES strings, and caption-to-SMILES, fine-tuned for generating 
SMILES strings from molecular captions. However, we seek to evaluate the model’s capacity to translate between 
drug indications and SMILES strings. Thus, we use drug indications in the place of molecular captions, yielding 
our two tasks: drug-to-indication and indication-to-drug.

The process of our experiments begins with evaluating the baseline MolT5 model for each task on the entirety 
of the available data (3004 pairs for DrugBank, 6127 pairs for ChEMBL), on a 20% subset of the data (601 pairs 
for DrugBank, 1225 pairs for ChEMBL), and then fine-tuning the model on 80% (2403 pairs for DrugBank, 4902 
pairs for ChEMBL) of the data and evaluating on that same 20% subset.

After compiling the results of the preliminary experiments, we decided to use a custom tokenizer with the 
MolT5 model architecture. While the default tokenizer leverages the T5 pretraining, the reason is that treating 
SMILES strings as a form of natural language and tokenizing it accordingly into its component bonds and mol-
ecules could improve model understanding of SMILES strings and thus improve performance.

MolT5 with custom tokenizer
The tokenizer for custom pretraining of MolT5 that we selected came from previous work on adapting trans-
formers for SMILES strings66. This tokenizer separates SMILES strings into individual bonds and molecules. 
Figure 2 illustrates the behavior of both MolT5 and custom tokenizers. Due to computational limits, we only 
performed custom pretraining of the smallest available MolT5 model, with 77 million parameters. Our pretrain-
ing approach utilized the model configuration of MolT5 and JAX (https://​jax.​readt​hedocs.​io/​en/​latest/​index.​
html) / Flax (https://​github.​com/​google/​flax) to execute the span-masked language model objective on the ZINC 
dataset64. Following pretraining, we assessed model performance on both datasets. The experiments comprised 
three conditions: fine-tuning on 80% (2403 pairs for DrugBank, 4902 pairs for ChEMBL) of the data and evalu-
ating on the remaining 20% (601 pairs for DrugBank, 1225 pairs for ChEMBL), evaluating on 20% of the data 
without fine-tuning, and evaluating on 100% (3004 pairs for DrugBank, 6127 pairs for ChEMBL) of the data.

Figure 1.   Overview of the methodology of the experiments: drug data is compiled from ChEMBL and 
DrugBank and utilized as input for MolT5. Our experiments involved two tasks: drug-to-indication and 
indication-to-drug. For the drug-to-indication task, SMILES strings of existing drugs were used as input, 
producing drug indications as output. Conversely, for the indication-to-drug task, drug indications of the same 
set of drugs were the input, resulting in SMILES strings as output. Additionally, we augmented MolT5 with a 
custom tokenizer in pretraining and evaluated the resulting model on the same tasks.

Table 9.   Dataset Details.

Dataset statistic DrugBank ChEMBL

Number of drug-Indication pairs 3004 6127

Minimum indication length (characters) 19 34

Minimum SMILES length (characters) 1 1

Average indication length (characters) 259 114

Average SMILES length (characters) 59 67

Maximum indication length (characters) 3517 524

Maximum SMILES length (characters) 710 1486

https://jax.readthedocs.io/en/latest/index.html
https://jax.readthedocs.io/en/latest/index.html
https://github.com/google/flax
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Data availability
ChEMBL and DrugBank datasets are publicly available.
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