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Amid the discourse on foreign influence investigations in research, this study examines
the impact of NIH-initiated investigations starting in 2018 on U.S. scientists’ produc-
tivity, focusing on those collaborating with Chinese peers. Using publication data from
2010 to 2021, we analyze over 113,000 scientists and find that investigations coincide
with reduced productivity for those with China collaborations compared to those with
other international collaborators, especially when accounting for publication impact.
The decline is particularly pronounced in fields that received greater preinvestigation
NIH funding and engaged more in U.S.–China collaborations. Indications of scientist
migration and broader scientific progress implications also emerge. We also offer
insights into the underlying mechanisms via qualitative interviews.
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Science is becoming more collaborative, and scientific collaboration is increasingly
international (1–4). From 2008 to 2018, the percentage of science and engineering papers
with authors from institutions in different countries has increased from 17 to 23% (5).
International collaborations in science have resulted in great achievements, exemplified
by the International Space Station and the completion of the Human Genome Project.
A large literature has documented how international collaboration and talent flows can
facilitate progress in science (6–11).

However, science is never isolated from politics, and is often affected by national
and international policies (12–18). In recent years, due to political tensions between
the U.S. and China, scientific collaborations between U.S. and Chinese academic
institutions have come under increasing scrutiny by U.S. policymakers. The U.S.
Department of Justice started the China Initiative, which ran from 2018–2022, aimed
at countering national security threats from China, with a particular focus on intellectual
property and technology.* Also in 2018, the NIH began contacting institutions of
higher education about investigations of hundreds of scientists, largely for failure to
disclose receipt of foreign resources on federal research grants.† While the investigations
were not specific to China, the vast majority of investigated cases involved receipt of
resources from China. As of July 2021, according to disclosed cases, these investigations
involved at least 93 institutions of higher education and 214 scientists, 90% of which
involved receipt of resources or activities in China.‡ Some cases resulted in suspension
of funding, termination of employment, and in rare cases criminal investigations of
scientists.§

While the merits of the China Initiative and NIH investigations have been widely
discussed (19–22), much less is known about the impact of these policies on U.S.
production of science. In this paper, we study the impact of the NIH investigations on
U.S. production of science by examining the publications of U.S. scientists in the fields
of life sciences. Because the focus of the scrutiny has been on researchers with academic
collaborations in China, we closely examine scientists with a history of collaborating with
institutions in China. Using large-scale publication databases, we investigate whether life
scientists at U.S. institutions with a history of collaborating with scientists in China
have been less productive since the onset of the NIH investigations, relative to their

*See: https://www.justice.gov/nsd/information-about-department-justice-s-china-initiative-and-compilation-china-related
†See Dear Colleague Letter from NIH Director Francis Collins: https://www.insidehighered.com/sites/default/files/media/
NIH%20Foreign%20Influence%20Letter%20to%20Grantees%2008-20-18.pdf. We summarize more information on the
background of NIH investigations in SI Appendix, section 1A.
‡Lauer, Michael. “Foreign Interference in National Institutes of Health Funding and Grant Making Processes: A Summary
of Findings From 2016 to 2021.” July 30, 2021. https://grants.nih.gov/grants/files/NIH-Foreign-Interference-Findings-2016-
2018.pdf.
§There were a few cases where the Department of Justice investigated scientists with ties to China before the China Initiative
began, for example Sherry Chen in 2014 and Xiaoxing Xi in 2015. However, the China Initiative and NIH Investigations in
2018 instituted a categorical shift in the number and breadth of the investigations.
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colleagues in the United States who have a history of collaborating
with scientists from other countries.¶

We focus on life sciences for both conceptual and empirical
reasons. Conceptually, the NIH’s focus is on funding scientists in
life sciences. While other federal research agencies also conducted
investigations about foreign influence in research, the NIH was
the first and to our knowledge most frequent federal agency
to conduct them. Empirically, there exist multiple data sources
on publications in these fields, making quantitative analysis of
publication trends tractable. Specifically, we employ two data
sources: the PubMed database (https://pubmed.ncbi.nlm.nih.
gov/) that covers publications on life sciences and biomedical
topics and is maintained by institutions located at the NIH
and the Dimensions database (https://www.dimensions.ai/) that
covers publications from all scientific fields. As shown in Fig. 1,
China has been the most important collaborator of the United
States in life sciences since 2013. However, compared with U.S.
collaborations with other countries, U.S.–China collaborations
appear to slow down in 2019, which coincides with the NIH
investigations, and have turned downward since then. We observe
a similar pattern when examining publications by Chinese
scientists, suggesting that U.S.–China tensions can affect both
countries (SI Appendix, Fig. S1).

To estimate the causal effect of the investigations on scientists
with previous collaborations with institutions in China, we
employ a difference-in-differences approach. Specifically, we
define the treated and control groups of Principal Investigators
(PI) based on the publication records during 2010–2014.# We
assume that those who had collaborations with scholars in China
during this period are “treated,” in that they are particularly
affected by the investigations, and use those who collaborated
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Fig. 1. Collaboration as Share of Total U.S. PubMed Publications Note: The
data are based on publications indexed by PubMed from Dimensions. Each
line represents U.S. collaboration with a given country in PubMed publications
as its share of total U.S. PubMed publications. Note that the data include all
scientists in the Dimensions database, not just those included in the data we
describe below.

¶We should note that Chinese science policy also experienced changes over time. Since
the national leadership change in 2012, the Chinese science policy has been increasingly
emphasizing “indigenous innovation,” whose influence on international collaborations
remains to be understood (23). Since these changes do not take the form of a sharp shock
in 2018 and are not as field-specific as the NIH investigations, it seems difficult to assume
that our study reflects the influence of Chinese policies.
#Using 2014 as a cutoff allows us to examine pretrends (i.e., 2015–2018) for our
differences-in-differences analysis. Our findings are robust to alternative cutoffs around
2014.

with scholars from other non-U.S. countries as the control
group. In our data, 35,140 PIs belong to the treated group and
78,086 PIs to the control group. Then, using publication data
during 2015–2021, we examine how the quantity and citations
of publications differ between treated and control groups before
and after the NIH investigations in 2018. To consider possible
differences in individual characteristics and career paths, our
analyses control for individual fixed effects, year fixed effects,
and consider year-specific impacts of ethnicity and pretreatment
productivity. We complement our analyses with reweighting
and matching strategies in which we ensure the covariates are
comparable between the treated and control groups.

We find that the PubMed publications of scientists with a
history of collaborating with scientists in China experienced a
decline after 2018, compared with their counterparts without
collaborators in China. While the magnitude of the decline in
quantity is small (2.1%), the effect becomes sizable (10.1%) once
we consider the impact of publications and employ citations
of publications as the outcome. This finding suggests that the
treated scientists were affected not only in terms of quantity but
also the influence of their research output. For non-PubMed
publications, we find a minimal increase in quantity but a
sizable decline in citations (5.7%). Together, in terms of total
publications, the treated scientists experienced a decline of 10.5%
in publication citations.

Our main finding is robust to using alternative measures
of productivity (e.g., studying the number of hit papers and
considering journal rankings) and examining the intensity of
treatment. When examining the pretrends, we find that the
productivity of the treated scientists was not on a different trend
but declined after the investigations. When looking at different
collaborations, we find that it seems difficult to substitute U.S.–
China collaborations with other international collaborations, at
least in the period we are studying. While considering migration
of scientists does not affect our main finding, we document
suggestive evidence that the treated PIs are more likely to migrate
out of the United States after 2018.

An important challenge for our studied period is the influence
of COVID-19 on scientific productivity. Although all scientists
in our sample have international collaborations that can be af-
fected by COVID-19, we are still concerned whether COVID-19
policies in China could be a confounding factor. We should
note that we observe effects from the treatment even before the
pandemic.|| To partially address this challenge, we take a closer
look at publications by institutions, scientist characteristics, and
research fields. We document three patterns. First, motivated by
the discussion on racial profiling in the China Initiative (20), we
examine whether Asian scientists are more adversely affected. We
find that among the treated, Asian scientists are more affected
for both NIH-funded and China-funded publications. Second,
the adverse effects appear to apply to most of the institutions and
scientists of different productivity and career stages, suggesting
that this is a broad phenomenon and is not limited to a narrow
group of scientists. Third, to investigate which fields are more
affected, we calculate the importance of NIH funding and U.S.–
China collaboration by fields and estimate the impact in each
field. We find that the fields where NIH funding is more
important and had more U.S.–China collaborations experienced
a larger decline. These patterns further support that our findings
are driven by U.S.–China tensions rather than other shocks

||Based on our interviews, we think the effect materialized so quickly because many
scientists knew soon after the NIH letter to universities in August 2018 that collaborations
with China would be under particular scrutiny, and therefore some of their existing
projects were impacted.
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(including COVID-19) during this period that are orthogonal
to NIH funding or U.S.–China collaboration.**

Further, we provide suggestive evidence that our findings
are relevant for science at the aggregate level for both the
United States and China. Specifically, we correlate the changes in
scientific output by field in China and the United States (relative
to 48 other countries) with our estimated impact of the NIH
investigations by field. We find that the fields that we identify to
be more adversely affected by the NIH investigations experienced
slower growth in scientific output than fields that are less affected.
This association holds both for China and the United States,
suggesting that both countries have been negatively affected.

Finally, to shed light on the underlying mechanisms, we com-
plement our quantitative analyses with interviews of scientists.
The interviews of 12 scientists suggest that the short-run impacts
we document stem from three channels: a direct effect of NIH
funding reduction, a decline in access to human capital, including
students and collaborators, from China, and a chilling effect
on collaborating with institutions in China. Multiple scientists
emphasize that they are less willing to start new projects with
scientists in China, which has forced them to reorient their
work toward other topics, and has been costly in terms of
productivity. These channels suggest that our findings above may
underestimate the impacts in the long run, since it takes time for
the reduction of new joint projects to appear in our data.

The NIH investigations have attracted much attention from
scientists and the public. Yet, the consequences of these inves-
tigations have been little understood. Recent studies on U.S.–
China tensions investigate the return migration of Chinese-
origin scientists from the United States back to China and the
productivity of Chinese scientists (24, 25). Our study provides
a step toward depicting how scientific production is affected.
Admittedly, our characterization focuses on the outcomes in the
short run and additional impacts are likely to unfold in the long
run.

Our research is related to an extensive literature in eco-
nomics, science and technology studies, and political science
that investigates how constraints on information, collaboration,
and talent mobility impact scientific progress and innovation.
Besides the literature mentioned above, researchers have also
characterized the rapid growth of collaborations among scientists
located in different countries, especially those between the United
States and China (26–28). With political tensions between the
United States and China increasing, it is not clear how scientific
collaboration between the two countries will evolve. Our study
provides evidence that scientific production and collaboration
can be very sensitive to political pressure.

1. Descriptive Evidence and Research Design
We focus on publications in the biomedical fields and life
sciences in the period 2010–2021. We start with publications
indexed by PubMed, an online resource from the National
Library of Medicine that archives literature in the biomedical
and life sciences. To obtain the metadata associated with these
publications, we make use of another database, Dimensions, that
provides metadata such as author affiliations, citation counts,
and fields of study. As each author in the Dimensions database is
indexed by a unique author identifier, we are able to track each
author’s publication record.

**In addition, to rule out an effect of COVID-19 research, we provide a robustness check in
SI Appendix, section 2 where we remove all papers with titles containing the word “COVID.”
We find that our results are unchanged.

1.1. Defining Treatment and Control Groups. We define the
treated group as individuals in our sample of U.S. medical and
life scientists who had at least one paper collaborated with some
scholar from an institution in China in the period between 2010
and 2014 (See Materials and Methods for sample construction
details). In our data, 35,140 PIs belong to the treated group.
In our analyses, we also consider the intensity of treatment by
measuring the number of China-collaborations during the period
of 2010–2014.

The control group consists of those who both 1) had at least
one paper collaborated with some scholar from a foreign country
other than China from 2010 to 2014 and 2) had no collaboration
with scholars in China in the pretreatment period from 2010
to 2018. We define the control group in this way to make it
more comparable to the treated group because scientists who
have international collaborators in our data tend to be more
productive than those who do not.†† In our data, 78,086 PIs
belong to the control group.

We consider 2019 as the first year under treatment. On August
20, 2018, the Director of the NIH, Francis Collins, sent out an
open letter to U.S. universities, calling for investigations into
foreign influence in research and undisclosed foreign funding.
This date marks the beginning of the treatment we are interested
in and was also frequently cited in our interviews as the year
that scientists began to feel pressure on their collaborations with
scientists in China. Nevertheless, there is a time gap between
research and publication, meaning that the impacts of the
investigations may not be reflected immediately, which is why
we select 2019 as the first year under treatment.

1.2. Summary Statistics. We present summary statistics by
treated and control groups in Table 1. Our main analyses focus on
two measures of productivity: quantity of publications in a given
year and total citations for publications in that year,‡‡ the latter
of which can be considered as a impact-weighted productivity
measure because it is the number of publications weighted by
citations. In addition, we employ additional metrics such as
average citations and the number of hit papers for robustness.

As shown in Panels A and B, treated scientists are on average
more productive than control scientists and are better cited.
This partly reflects the prominence of collaborations with China
among the more productive U.S. scientists. These data also reveal
that citations from publications indexed by PubMed account for
the majority of total citations and citations from NIH-supported
publications account for about half of the PubMed citations
among the scientists in our sample.

Panel C presents the change in citations and publications for
the treated and control groups. As more recent publications have
fewer citations, there exists a general decline in citations of pub-
lications over time. However, the decline appears systematically
larger for the treated scientists than their control counterparts.
For instance, for the treated scientists, the relative decline is
9% more in terms of total citations, 9% more in terms of
PubMed citations, and 18% more in terms of NIH citations.
The difference in PubMed publications exhibits a similar pattern
but the magnitude is smaller.

††In our data, 130,072 U.S. scientists with international collaboration during 2010–2014
publish on average 6.39 papers per year, compared to 62,421 U.S. scientists without
international collaboration during the same period, who publish on average 2.09 papers
per year.
‡‡This paper was written using data obtained on October 23, 2022, from the API for Digital
Science’s Dimensions platform, available at https://app.dimensions.ai. Total citations are
measured by citations as of October 23, 2022. when we downloaded the data from
Dimensions.
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Table 1. Summary statistics
Control group Treated group

Mean SD Mean SD

A. Pretreatment (2015–2018)
Total citations 114.0 292.5 383.8 970.2
PubMed citations 105.8 287.0 341.9 926.5
NIH citations 51.4 195.8 194.5 721.4
PubMed publications 3.0 4.0 5.9 7.6

B. Posttreatment (2019–2021)
Total citations 47.9 175.9 147.4 439.4
PubMed citations 44.1 172.2 127.5 408.7
NIH citations 22.4 131.6 71.1 306.2
PubMed publications 3.0 4.8 5.8 8.5

C. 4 ln(post)− ln(pre)
Total citations −0.87 −0.96
PubMed citations −0.88 −0.97
NIH citations −0.83 −1.01
PubMed publications 0.00 −0.02

Asian researchers 9,014 10,015
No. of obs. 78,086 35,140

In addition, using the prediction method in ref. 29, we estimate
whether a scientist is of Asian heritage by using his or her
family name (see more details about the prediction method
in SI Appendix, section 2). In our sample, the shares of Asian
scientists in the treatment and control groups are 28.5% and
11.5% respectively, reflecting that Asian scientists are more likely
to collaborate with scientists in China.

To check the trends in the productivity of scientists in the
treatment and control groups, we present the differences in
the logged number of publications and the logged number of
citations between the treatment and control groups by year
in Fig. 2. As shown, the treated group is consistently more
productive throughout the studied period. In other words, those
with a collaboration history with scientists in China are among

the more productive group of U.S. scientists. However, the
productivity gap between the treated and the control appears
to shrink after 2018, suggesting possible influence of political
tensions. Note that the decline begins in 2019, before the
pandemic in 2020.

Motivated by this evidence, we use a difference-in-differences
(DID) design to investigate the causal impacts generated by the
NIH investigations. Our specification is as follows:

Yi,t = �1{TiesToChinai} ∗ 1{Postt}+ �i + �t + Xi ∗ �t + "i,t ,
[1]

where Yi,t is the outcome of interest, such as the logged numbers
of PubMed publications, total publications, and corresponding
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Fig. 2. Differences in productivity between the treatment and control groups. Note: The figures present the differences in the logged number of PubMed
publications and the logged number of PubMed citations between the treatment and control groups. We use log(1 + number of publications) and log(1 + number
of citations) to facilitate interpretation.
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citations. (We present the distributions of these variables in
SI Appendix, Fig. S3.) 1{TiesToChinai} is a dummy indicating
whether individual i belongs to the treated group; 1{Postt}
is a dummy that equals to 1 in the posttreatment periods
and 0 otherwise. We also present the results when replacing
1{TiesToChinai} with the share of China-collaborations in
scientist i’s publications during 2010–2014 in SI Appendix.
�i and �t stand for individual and year fixed effects, respec-

tively. The individual fixed effects control for all time-invariant
characteristics of a scientist such as gender and education
background. The year fixed effects control for the factors that
influence all scientists similarly such as the pandemic. Moreover,
to further control for potentially different trends in productivity
and personal background, we include four preinvestigation
measures in Xi—one’s number of publications, citations, and
NIH-supported publications during 2010–2014 and an indicator
for being an Asian researcher—and allow for their impacts to vary
over time by controlling for the interactions between scientist
characteristics and year fixed effects(Xi ∗ �t ). We cluster the SE
at the individual level to account for intertemporal correlation
within each individual.

In addition to our main specification, we employ a reweighting
approach, entropy balancing (30), to balance all covariates before
running the regression and compare the estimates from our
standard DID analysis. We further employ matching methods
including propensity score matching and nearest neighbor match-

ing (based on covariates) as a comparison. To check whether the
treated group was in a different trend before the investigations,
we complement our DID design with an event-study design and
examine the impacts of the investigations year by year.

2. Results
2.1. Main Results: Quantity and Citations of Publications.
2.1.1. Baseline estimates. We present the DID estimates for
our main outcomes in Table 2. Panel A shows the results for
PubMed publications and citations. Column (1) uses the logged
number and the vanilla two-way fixed effects model, without
the controls. In Column (2), we control for the influences
of each scientist’s preinvestigation productivity measures and
their ethnicity. In Column (3), we report the estimate after
conducting entropy balancing so that the baseline covariates
are comparable between treated and control groups.§§ Column
(4) transforms the outcome using inverse hyperbolic sine and
Column (5) estimates the model using a Poisson likelihood.
Columns (6)–(10) present the results for citations which capture
both quantity and impact of the publications. All our results
are similar if we use hyperbolic sine transformation to deal with
observations of zeros (SI Appendix, Table S3) or if we estimate
using a Poisson method (SI Appendix, Table S4).

As shown in Columns (2)–(5) of Panel A, the number of
PubMed publications of the treated scientists declined around

Table 2. The impacts on productivity: main results
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A PubMed publications PubMed citations

Ties to China × Post −0.027 −0.020 −0.021 −0.024 −0.038 −0.192 −0.099 −0.101 −0.095 −0.095
(0.003) (0.003) (0.005) (0.004) (0.005) (0.007) (0.008) (0.012) (0.009) (0.015)

Pretreatment avg. 1.502 1.502 1.502 1.899 5.929 4.163 4.163 4.163 4.730 341.941
R2 0.732 0.732 0.783 0.723 0.549 0.660 0.662 0.706 0.652 0.777

Panel B Non-PubMed publications Non-PubMed citations

Ties to China × Post 0.025 0.015 0.014 0.020 0.001 −0.079 −0.071 −0.057 −0.068 −0.023
(0.003) (0.004) (0.008) (0.004) (0.010) (0.005) (0.006) (0.014) (0.007) (0.022)

Pretreatment avg. 0.981 0.981 0.981 1.247 3.454 1.401 1.401 1.401 1.665 41.819
R2 0.641 0.645 0.690 0.637 0.524 0.620 0.627 0.650 0.614 0.817

Panel C Total publications Total citations

Ties to China × Post −0.011 −0.008 −0.011 −0.010 −0.020 −0.180 −0.105 −0.105 −0.097 −0.082
(0.003) (0.004) (0.006) (0.004) (0.005) (0.007) (0.008) (0.012) (0.009) (0.014)

Pretreatment avg. 1.878 1.878 1.878 2.346 9.383 4.470 4.470 4.470 5.070 383.760
R2 0.757 0.758 0.798 0.748 0.605 0.685 0.687 0.727 0.678 0.787

No. of obs. 792582 792582 792582 792582 792582 792582 792582 792582 792582 792582
Scholar FE Y Y Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y Y Y
Baseline covariates*Year FE Y Y Y Y Y Y
Entropy balancing Y Y
Inverse hyperbolic sine Y Y
Poisson Y Y

Note: For Columns (1)–(10), the models always control for scholar and year fixed effects. In Columns (2), (4), (5), (7), (9), and (10), we include the interactions between year dummies and
four baseline covariates: 1) total number of publications in 2010–2014, 2) total citations in 2010–2014, 3) number of NIH-funded publications in 2010–2014, and 4) indicator for Asian
researcher. Outcomes in columns (1)–(3) and (6)–(8) are log-transformed. Outcomes in columns (4) and (9) are transformed using inverse hyperbolic sine. Columns (3) and (6) use entropy
balancing to balance all four covariates before running the regression. Columns (5) and (10) use Poisson regression. SE are clustered at the scholar level.

§§By design, the covariates are balanced using entropy balancing. We present estimates from propensity score matching and nearest neighbor matching (based on covariates) and
related balance tests in SI Appendix, Tables S1 and S2. As shown, the estimates from different methods are similar.
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2.0–3.8%. However, the decline is more striking once the
citations of the publications are considered: The decline becomes
9.5–10.1% compared with the control. These results reveal that
the investigations may have affected not only the quantity but
also the impact of publications of those who had collaboration
histories with China.

Panel B presents the estimates for non-PubMed publications.
In terms of quantity, we observe a minimal increase using
our DID design and after balancing the covariates. However,
once the impact of publications is considered, non-PubMed
citations of the treated scientists declined by 2.3 to 7.1%. We
consider all publications in Panel C. Again, the impact on the
number of publications of the treated scientists is minimal but
that on impact-adjusted productivity is sizable, with a decline
of 10.5%.

Our identification assumption is that the productivity of
scientists in our treated and control groups would be comparable

without the NIH investigations. To check the validity of our
assumption, we plot the year-by-year estimates in Fig. 3. Because
our previous findings reveal that the citation of the publications
is the main margin that gets affected, we focus on citations
as the outcome. Panel A presents the estimates after only
controlling for scholar fixed effects and yearly fixed effects
whereas Panel B reports those after balancing the covariates.
In either method, we find that the decline in productivity
for the treated scientists occurred only after the investigations,
suggesting that the pretrends concern is not critical for our
findings.
2.1.2. Additional results. We employ alternative measures of
research impact and observe similar negative impacts when using
average citations or number of hit papers (defined based on
relative citations in a given subfield, see SI Appendix, Table
S5). However, we cannot distinguish of whether the decline in
citations comes from a disinclination to cite a paper authored

−0.3

−0.2

−0.1

0.0

0.1

2016 2018 2020
Year

Es
tim

at
es

 a
nd

 9
5%

 C
on

f. 
In

t.

Effect on PubMed Citations

−0.3

−0.2

−0.1

0.0

0.1

2016 2018 2020
Year

Es
tim

at
es

 a
nd

 9
5%

 C
on

f. 
In

t.

Effect on Total Citations

Pa
ne

l A

−0.3

−0.2

−0.1

0.0

0.1

2016 2018 2020
Year

Es
tim

at
es

 a
nd

 9
5%

 C
on

f. 
In

t.

Effect on PubMed Citations

−0.3

−0.2

−0.1

0.0

0.1

2016 2018 2020
Year

Es
tim

at
es

 a
nd

 9
5%

 C
on

f. 
In

t.

Effect on Total Citations

Pa
ne

l B

Fig. 3. The impacts on productivity: results from event study. Note: Plots in this figure present the effect estimates of “leads and lags” of the treatment.
Panel A presents the results controlling for scholar fixed effects and year fixed effects; Panel B presents the estimates using entropy balancing. Each segment
represents the 95% CI of the estimate. The outcome in the left column is the logged number of citations for PubMed publications. In the right column, it is the
logged number of citations for all publications.
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by the treated group or a decrease in quality, or both. Either
way, our findings indicate a decline in research impact of treated
scientists. In addition, we use journal ranking to proxy quality.
We find that the negative impacts are similar when we focus on
the publications on top-100 journals or those on other journals
(SI Appendix, Table S6). Finally, we examine the share of COVID
papers and find that excluding them does not affect our finding
(SI Appendix, Tables S7 and S8).

Our baseline analysis uses a dummy variable to measure
collaboration with China, which facilitates our comparison
between the treated and the control. An extension is to measure
the intensity of collaborations with scientists in China. Here,
we measure the intensity by the logged number of publications
collaborated with scientists in China during 2010–2014 (while
controlling for logged total number of publications). As presented
in SI Appendix, Table S9, our main finding holds when using this
alternative measure of treatment except for one specification re-
garding non-PubMed publications. According to these estimates,
scientists with a one-SD (0.68) more collaboration intensity with
China experienced a 3.5% decline in terms of total citations
after 2018.

We also examine the publications by funding sources and
by collaboration types (SI Appendix, Table S10). The main
takeaway is that the impacts are multidimensional. More
specifically, we separate publications based on their funding
sources. We find that the citation decline applies to both
NIH-funded publications and non-NIH-funded publications
and the former appears larger. Similarly, the citation decline
applies to both China-funded publications and non-China-
funded publications and the former is larger.¶¶ These results
show that the adverse impacts on treated scientists are not
limited to the publications funded by NIH or China. In-
stead, the productivity effect is reflected by different types
of publications.

In SI Appendix, Table S11, we examine the publications by
collaboration types—collaborations within the United States,
collaborations with non-China countries, and collaborations
with China. We note that the decline in China-collaborated
publications in the treated group is not offset by an increase
in collaborations with other countries. In terms of citations, we
find all three types of collaborations were negatively affected for
the treated group in comparison to the control group. These
patterns suggest that the treated scientists may not have been
able to use other types of collaborations to compensate for their
loss in productivity.

In SI Appendix, Tables S12 and S13, we consider the potential
influence of the investigations on migration. Although we cannot
observe migration directly, we can proxy migration based on
the country of affiliations in the scientists’ publications. Using
this proxy, we find suggestive evidence that treated PIs are
relatively more likely to move from the United States after
2018 compared to the control group. While this finding on
migration outcomes aligns with ref. 24 and has important policy
implications, we also confirm that our conclusions regarding
publications and citations remain unaffected by migration. We
find that the share of migrated scientists is small, and therefore
the impact of migrated scientists is minimal for our finding on
productivity.

¶¶We identify NIH funding using the funding information provided in Dimensions.
China-funded publications are also estimated by Dimensions, which geolocates funders
mentioned in academic papers. As described in SI Appendix, section 1A, mentions of
funding from China in academic papers may have been a source of scrutiny by the NIH.
This might be the reason that acknowledgment of funding from China in academic papers
is more negatively affected.

2.2. Results by Institutions and Scientist Characteristics. To
better understand how prevalent our baseline finding is, we
examine heterogeneous effects across institutions, scientist’s
ethnicity, productivity, and career stage.
2.2.1. By institutions. We subset our sample by institution and
estimate institution-specific treatment effects. For scientists with
multiple institutions, we use their modal institution as their
affiliation, which is defined as the institution in which a scientist
published most of their work within the given period. In Fig.
4, we plot the heterogeneity of treatment effects for institutions
in the sample that have more than 100 scholars in both the
treated group and the control group. We find that the adverse
effect applies to most of the institutions. In addition, we mark
the institutions whose investigations were reported by the media
in red. We identify institutions with public investigations using
data from APA Justice and the MIT Technology Review (31). We
do not find that the impacts on scholars in these institutions are
different from those in other institutions. These results suggest
that the impact is general and not institution-specific.
2.2.2. By ethnicity. Existing media reports on these investigations
often highlight the role of ethnicity and focus on investigations
at particular universities (32). Motivated by these discussions, we
take a closer look at the ethnicity of scientists. Based on surnames,
we predict the ethnicity of a scientist using the algorithm
developed by Imai and Khanna (29) (see more details on the
implementation of this algorithm in SI Appendix, section 1D).

With predicted ethnicity, we split the sample into Asian and
non-Asian scientists and estimate a triple-difference design, as
specified in the following equation:

Yi,t = �11{TiesToChinai} ∗ 1{Postt} ∗ 1{Asiani}

+ �21{TiesToChinai} ∗ 1{Postt}+ �31{Postt}

∗ 1{Asiani}+ �i + �t + Xi ∗ �t + "i,t . [2]

On average, we find that both Asian and non-Asian scientists
are adversely affected and the difference is small, as shown
in Column (1) of Table 3. However, once we separate the
publications to be those funded by NIH or not, we find that
Asian scientists were more adversely affected in terms of NIH-
funded publications, whereas the difference between Asian and
non-Asian scientists is small but positive for non-NIH-funded
publications [Columns (2) and (3)]. Moreover, we find that
Asian scientists were also more adversely affected in terms of
China-funded publications [Columns (4) and (5)].
2.2.3. By productivity and career stage. We further examine
heterogeneity across pretreatment productivity and career stage.
As reported in SI Appendix, Table S14, we find that negative
impact is higher (and lower) for those with below-median
productivity in relative (and absolute) terms. Moreover, the
estimates are not significantly different for scientists by career
stage (SI Appendix, Table S15), partly because scientists in our
sample have already all established a record of international
collaborations.

In sum, while there exists some heterogeneity across scientist
characteristics, our takeaway is that the negative impact appears to
be prevalent rather than restricted to a narrow group of scientists.

2.3 Results by Fields and Aggregate Implications. We then
decompose the effect by field of research. Given that the
investigations were primarily at the NIH and focused mainly
on U.S.–China collaborations, we expect that the findings
are particularly relevant for the fields with more U.S.–China
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Fig. 4. Heterogeneous treatment effects over institutions. Note: The figure presents the heterogeneity of treatment effects within the treated group across
institutions in the sample that contain more than 100 scholars in both the treated group and the control group. Each point and error bar represent the estimated
effect at a given institution and the corresponding 95% CI. Those in red represent institutions that are known to have scientist(s) investigated by the NIH.

collaborations and the fields that receive a lot of funding from
the NIH.##

2.3.1. Estimates by fields. We define research field using Dimen-
sions metadata, which puts each publication into a “field of re-
search” using the Australian and New Zealand Standard Research
Classification. For each field, we create two measures using our
publication data from 2010 to 2021. The first is the share of
publications with NIH funding support in each field, the second
the share of U.S.–China collaborations among total publications
in each field. The top fields in terms of NIH funding in our data
are biochemistry and cell biology, medical microbiology, and
medical physiology, whereas the top fields in terms of U.S.–China
collaborations are materials engineering, macromolecular and
materials chemistry, and nanotechnology. We present these two
measures by fields in SI Appendix, Table S16.

We estimate the impacts of NIH investigations on citations by
field (i.e., impact-adjusted productivity). Specifically, we subset
our sample by field and estimate field-specific treatment effect on
citations. We then correlate these estimates with the two measures
above. As shown in Fig. 5, scientists with collaborations with

##Field-specific effects were reflected in our interviews with scientists. Scientists who
were in fields with high NIH-funding but low overall levels of U.S.–China collaboration, for
example, public health and clinical sciences, felt much less pressure to stop their U.S.–
China collaborations than those in fields with higher levels of U.S.–China collaboration,
such as in chemistry and the biological sciences.

institutions in China in the fields where NIH funding is more
important experienced a larger decline relative to those in fields
with less NIH funding. Specifically, a one-SD increase in the NIH
funding (0.14) is associated with a 2.66 percentage point decline
in the treatment effect. Similarly, scientists with collaborations
with institutions in China in the fields where U.S.–China
collaboration is more important experienced a larger decline
relative to those in fields with less U.S.–China collaboration.
The magnitude is even larger and more precisely estimated: a
one-SD increase in the share of U.S.–China collaboration (0.04)
is associated with a 6.0 percentage point decline in the treatment
effect.
2.3.2. Aggregate implications by fields. Last, we provide a pre-
liminary analysis of the effect of these investigations on the
development of science in the United States and China more
broadly. Did the NIH investigations matter for the development
of science in the United States or China? It is challenging to
provide a definite answer to this broad question. Nevertheless,
the fact that we find that some fields were more affected by these
investigations than others allows us to get some leverage on this
question.

Conceptually, we would like to know how the progress of
science by field in China and the United States in the last
several years correlates with our findings by fields. Have fields
that were most affected by the investigations according to our
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Table 3. Heterogeneous treatment effects by ethnicity
Citations by nature of publication

(1) (2) (3) (4) (5)
All NIH-funded Non-NIH-funded China-funded Non-China-funded

Ties to China × Post × Asian −0.008 −0.068 0.032 −0.222 0.001
(0.018) (0.018) (0.018) (0.012) (0.018)

Ties to China × Post −0.103 −0.078 −0.071 −0.127 −0.089
(0.008) (0.009) (0.009) (0.005) (0.009)

Post × Asian 0.092 0.040 0.101 0.008 0.089
(0.013) (0.012) (0.013) (0.003) (0.013)

R2 0.687 0.662 0.642 0.570 0.680
No. of obs. 792582 792582 792582 792582 792582
Scholar FE Y Y Y Y Y
Year FE Y Y Y Y Y
Baseline covariates*Year FE Y Y Y Y Y

Note: In all columns, outcomes are log-transformed and we control for scholar and year fixed effects, as well as the interactions of year dummies with the baseline covariates: 1) total
number of publications in 2010–2014, 2) total citations in 2010–2014, and 3) number of NIH-funded publications in 2010–2014. SE are clustered at the scholar level.

analysis slowed their progress in the United States and China in
comparison to the rest of the world? Empirically, we measure
the progress by fields in China and the United States relative
to other countries using a difference-in-differences design. We
first use Dimensions to collect data on the yearly number of
publications by field for the top 50 countries (including China
and the United States) in natural sciences research. We use
the 2021 Nature Index (https://www.natureindex.com/annual-
tables/2021/country/all) to select these 50 countries.

Mirroring our main design, we consider the research output
during 2015–2018 as the pretreatment progress and the output
during 2019–2021 as the posttreatment progress. Using the
difference-in-differences design, for each field, we measure the

increase or decrease in research output by field (f ) for China
and the United States, relative to the other 48 countries and the
pretreatment period, estimated as follows:

Yc,t = �f,CN1{CN } ∗ 1{Postt}+ �c + �t + "c,t [3]

Yc,t = �f,US1{US} ∗ 1{Postt}+ �c + �t + "c,t , [4]

where Yc,t is the logged total number of publications in the field
for country c in year t. To calculate the number of publications
by field, country, and year, we queried Dimensions for total
publications by country, year, and field. These totals thus reflect
overall publications in the field, not just publication numbers by
the scientists in our data described above. CN is an indicator for
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of publications in the data. The Y -axis is the estimated treatment effect on citations. The sample is restricted to fields with greater than 50,000 publications in
our dataset.

PNAS 2024 Vol. 121 No. 19 e2301436121 https://doi.org/10.1073/pnas.2301436121 9 of 12

https://www.natureindex.com/annual-tables/2021/country/all
https://www.natureindex.com/annual-tables/2021/country/all


China and US is an indicator for the United States. We include
country-level fixed effects (�c) and year fixed effects (�t ). For each
field f , we then extract the estimate �f,CN and �f,US as an estimate
of how China and the United States, respectively have fared in
terms of productivity during 2019–2021 in comparison to the
rest of the world.

Fig. 6 shows the correlation between the estimates of the
impact of NIH investigations on citations (x-axis) and the
estimates on research progress based on the difference-in-
differences design. This correlation can be interpreted as the
elasticity of the scientific progress of the United States (and
China) in response to the impacts of the investigations. As shown,
there exists a positive correlation between our estimates and the
increases in publications by field, indicating that the fields that are
more affected by the U.S.–China political tensions have produced
fewer new publications during 2019–2021 relative to the rest of
the world. Notably, this positive relationship holds for both the
United States and China. The slopes are 0.34 for the United
States and 0.53 for China, suggesting that both countries appear
to lose from these political tensions.

3. Discussion Based on Interviews
As a design complementary to our quantitative analyses, we have
interviewed 12 scientists about their experience and perspectives.
These interviews were approved by the UC San Diego Institu-
tional Review Board. The majority of the scientists we talked
to had previous, existing, or planned research collaborations
with scientists in China. About half were of Chinese heritage,
most were male, and all but two were senior rather than junior
scholars. They covered five institutions and eight different fields
of study, mostly in the life sciences and medicine, with a couple
from the physical sciences. These interviews help us better
understand underlying mechanisms for our finding that scholars

with previous collaborations with China have seen a decrease
in publications related to the life sciences and overall impact of
publications following the NIH investigations.

Overwhelmingly, the scientists we interviewed felt affected
by the investigations and recent U.S.–China tensions, and
were reluctant to start new or continue existing projects with
institutions in China. Most of the scientists reported that their
research had been negatively affected by the investigations. For
some scientists, the investigations had a direct effect on their
research productivity. Two scientists we interviewed had had
their NIH funding suspended for several years as a direct result
of the investigations. This direct effect had a clear negative impact
on their research, and in one case forced them to all but close
their lab.

Even for those who were not directly affected by the in-
vestigations, some scientists saw a tradeoff between applying
for U.S. government funding and continuing their interna-
tional collaborations with institutions in China. These scientists
reported that although they could technically continue their
collaborations with U.S. government funding, doing so was risky
as any mistake in reporting might be subject to intense scrutiny.
Continuing collaborations with institutions in China, they
reported, also had a new costly administrative overhead, including
frequently consulting with their university’s administration to
navigate constantly changing regulations about collaboration.
They, therefore, felt they had to choose between access to U.S.
research dollars and their collaborations with scientists in China.

This new reticence to continue collaborations with research
groups in China was costly to productivity in several ways.
Several scientists mentioned that the loss of collaboration with
institutions in China meant loss of access to human capital, labs,
and machines that were essential for their current work. Several
scientists who we interviewed directly relied on equipment and
labs in China as an input to their work. Many of the scientists

Agricultural, Veterinary&

Food Sci.

Biological Sci.

Biomedical&

Clinical Sci.

Chemical Sci.

Earth Sci.

Eng.

Environmental Sci.

Health Sci.

Human Society

Information&

Computing Sci.

Mathematical Sci.

Physical Sci.

Psychology

Biochemistry&

Cell Biology

Bioinformatics&

Computational Biology

Ecology

Genetics

Microbiology

Cardiovascular Medicine&

Haematology

Clinical Sci.

Dentistry

Immunology

Medical Biotechnology

Medical Microbiology

Medical Physiology

Neurosciences

Nutrition&

Dietetics

Oncology&

Carcinogenesis

Ophthalmology&

Optometry

Paediatrics

Pharmacology&

Pharmaceutical Sci.

Reproductive Medicine

Inorganic Chemistry

Macromolecular&

Materials Chemistry

Medicinal&

Biomolecular ChemistryOrganic Chemistry

Physical Chemistry

Biomedical Eng.

Materials Eng.

Nanotechnology

Allied Health&

Rehabilitation Science

Epidemiology
Health Services&

Systems

Nursing

Public Health

Sports Science&

Exercise

Condensed Matter Physics

Applied&

Developmental Psychology

Biological Psychology

Clinical&

Health Psychology

Social&

Personality Psychology

Total Publication DiD Estimates fitted: coef = 0.53, s.e. = 0.18

0.25

0.50

0.75

−0.2 −0.1 0.0 0.1
In−sample DiD Estimates

To
ta

l P
ub

lic
at

io
n 

D
iD

 E
st

im
at

es

China

Biological Sci.

Biomedical&

Clinical Sci.

Chemical Sci.
Earth Sci.

Eng.

Environmental Sci.

Health Sci.

Human Society

Mathematical Sci.

Physical Sci.

Psychology

Biochemistry&

Cell Biology

Ecology
Genetics

Microbiology

Cardiovascular Medicine&

Haematology

Clinical Sci.

Dentistry

Immunology

Medical Biotechnology

Medical Microbiology

Medical Physiology

Neurosciences

Nutrition&

Dietetics

Oncology&

Carcinogenesis

Paediatrics

Reproductive Medicine

Inorganic Chemistry

Macromolecular&

Materials Chemistry

Medicinal&

Biomolecular Chemistry

Organic Chemistry

Physical Chemistry

Biomedical Eng.

Materials Eng.

Nanotechnology

Allied Health&

Rehabilitation Science

Epidemiology

Health Services&

Systems

Nursing

Public Health

Sports Science&

Exercise

Condensed Matter Physics

Biological Psychology

Clinical&

Health Psychology

Social&

Personality Psychology

Total Publication DiD Estimates fitted: coef = 0.34, s.e. = 0.11

−0.5

−0.4

−0.3

−0.2

−0.1

−0.2 −0.1 0.0 0.1
In−sample DiD Estimates

To
ta

l P
ub

lic
at

io
n 

D
iD

 E
st

im
at

es

U.S.

Fig. 6. Citation estimates vs. progress by field in the United States and China. Note: Each dot represents a field. The X -axis is the estimated treatment effects
on citations and the Y -axis is the estimated posttreatment research progress for China and the United States, relative to the other 48 countries and the
pretreatment period. The figure shows the relationship between how much treated scientists’ publication citations in a field are impacted by the investigations
(x-axis) and how much U.S. and China’s overall publications in that field are impacted. The sample is restricted to fields with greater than 50,000 publications
in the data.
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reported using their collaborations as a way to recruit talented
graduate students and postdocs.

Ceasing to collaborate with researchers in China often required
U.S. researchers to change their research direction. Several
mentioned that they were pursuing new research directions as
a result of the policies. Two mentioned that they had felt that
their best research had been conducted with their colleagues in
China and they worried that their future work in the absence of
these collaborations would be less impactful.

We found that scientists with Chinese heritage experienced this
chilling effect more acutely than those without. The few scientists
we interviewed who felt that their research had not been affected
much by recent tensions were not of Chinese heritage. Several
scientists we interviewed who were of Chinese heritage reported
feeling under increased scrutiny because of their ethnicity.

Our quantitative and qualitative findings reveal that the
scientists are affected in multiple dimensions. They also suggest
that these investigations may have consequences unexpected by
policy makers. For instance, we find a broad adverse effect on
scientific productivity across institutions and fields, not just
those related to national security. Moreover, as suggested by
the comparison of scientific progress by fields, the investigations
have aggregate implications that are important to be considered.
Importantly, most of our interviewed scientists reported that
they believe U.S.–China tensions are likely to last and thus have
consequences in the long run. While the China Initiative has
officially ended, funding agencies’ investigations of researchers are
ongoing and universities’ policies with respect to collaborations
with scientists in China are still in flux. We hope that our
study serves as a step to understanding the consequences of the
ongoing political tensions and opening up avenues for future
research.

4. Materials and Methods
4.1. Data Construction. In order to assess the impact of NIH investigations on
the scientific output of U.S. scientists, we construct a dataset of U.S. scientists
whose primary fields are in the medical and life sciences. To do so, we first
query Dimensions to get the list of 1,440,402 PubMed publications in 2010–
2014, for which at least one of the authors is based in the United States. We
impose two restrictions on the scientists in our dataset: 1) each scientist has to
have at least two PubMed publications in 2010–2014 for which they are the
Principal Investigator (PI); and 2) at least one of their publications needs to have
a U.S. affiliation. To determine the PI of each paper, we treat the last author of
each paper as the PI for that paper, as per the convention in the life sciences.
When information about corresponding authors is available in the data, we
also include the corresponding authors as the PIs of the paper. The criterion (1)
selects authors whose primary fields are more likely to be in the medical and life
sciences and (2) focuses our attention on scientists who are based in the United
States. Applying the restrictions results in a list of 208,647 scientists.

Based on the initial list of scientists, we query Dimensions to get all of
the selected scientists’ publications (including non-PubMed publications) from
2015 to 2021. To ensure the scientists we study were still in the United
States immediately before treatment, we further restrict that each scientist’s

last publication prior to the beginning of the NIH investigations (August 20,
2018) shows they have a U.S. affiliation. This reduces the number of scientists to
192,493. Using affiliation data from Dimensions, we determine whether each
paper included a U.S.–China collaboration, a U.S. collaboration with any country
other than China, or included only authors from the United States. We also use
Dimensions-provided data to keep track of other metadata such as the funding
information, citation count, and research field of each paper for our analysis.

4.2. Validating Data Quality. Because of the scale of the PubMed and
Dimensions data and the algorithmic approach to coding authors, papers, and
institutions that these databases use to produce them, the data inevitably have
errors. To check the extent to which Dimensions data aligns with other existing
datasets, we validate our data from Dimensions with data from Google Scholar,
which is thought to be the most complete in terms of counting publication
citations, but does not have an API for researcher access (33). In particular,
we check whether our main outcomes of interest we use in this paper—authors’
publication record and citation counts—are comparable between the two sources.

To do so, we draw a random sample of 100 authors from our data. For
these 100 authors, we are able to identify 54 authors who have Google Scholar
profiles. For each matched author, we compare their number of publications
in 2010–2020 based on Dimensions with that based on Google Scholar. We
also compare citation counts for each author-year from the two data sources. We
should note that Google Scholar includes information on working papers that
have not been published.

Both measures are highly correlated between Dimensions and Google
Scholar, with correlations around 0.82 (SI Appendix, Fig. S2). This gives us
confidence that Dimensions data captures similar dynamics to other comparable
data sources.

Data, Materials, and Software Availability. Some study data available. All
code used to produce the results are available. Due to copyright restrictions from
Dimensions, raw data cannot be made available; however, aggregated data are
made available to replicate the results in the paper at https://doi.org/10.7910/
DVN/XUHAE1 (34).
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Jolla, CA 92093; cHalıcıoğlu Data Science Institute, University of California San Diego, La
Jolla, CA 92093; and dDepartment of Political Science, University of North Carolina, Chapel
Hill, NC 17599

1. S. Wuchty, B. F. Jones, B. Uzzi, The increasing dominance of teams in production of knowledge.
Science 316, 1036–1039 (2007).

2. D. Hsiehchen, M. Espinoza, A. Hsieh, Multinational teams and diseconomies of scale in
collaborative research. Sci. Adv. 1, e1500211 (2015).

3. C. S. Wagner, L. Leydesdorff, Network structure, self-organization, and the growth of international
collaboration in science. Res. Policy 34, 1608–1618 (2005).

4. J. Hoekman, K. Frenken, R. J. Tijssen, Research collaboration at a distance: Changing
spatial patterns of scientific collaboration within Europe. Res. Policy 39, 662–673
(2010).

5. K. White, “Publications output: US trends and international comparisons” in Science & Engineering
Indicators 2020 (NSB-2020-6) (Tech. Rep., National Science Foundation, 2019).

6. A. Van Raan, The influence of international collaboration on the impact of research results: Some
simple mathematical considerations concerning the role of self-citations. Scientometrics 42,
423–428 (1998).

7. F. Barjak, S. Robinson, International collaboration, mobility and team diversity in the life sciences:
Impact on research performance. Soc. Geogr. 3, 23–36 (2008).

8. F. Didegah, M. Thelwall, Which factors help authors produce the highest impact research?
Collaboration, journal and document properties. J. Inf. 7, 861–873 (2013).

9. C. S. Wagner, T. A. Whetsell, L. Leydesdorff, Growth of international collaboration in science:
Revisiting six specialties. Scientometrics 110, 1633–1652 (2017).

10. R. B. Freeman, W. Huang, Collaborating with people like me: Ethnic coauthorship within the
united states. J. Labor Econ. 33, S289–S318 (2015).

PNAS 2024 Vol. 121 No. 19 e2301436121 https://doi.org/10.1073/pnas.2301436121 11 of 12

https://www.pnas.org/lookup/doi/10.1073/pnas.2301436121#supplementary-materials
https://doi.org/10.7910/DVN/XUHAE1
https://doi.org/10.7910/DVN/XUHAE1
https://app.dimensions.ai


11. Ö. Nomaler, K. Frenken, G. Heimeriks, Do more distant collaborations have more citation impact?
J. Inf. 7, 966–971 (2013).

12. O. A. Doria Arrieta, F. Pammolli, A. M. Petersen, Quantifying the negative impact of brain drain on
the integration of European science. Sci. Adv. 3, e1602232 (2017).

13. G. J. Borjas, K. B. Doran, The collapse of the Soviet Union and the productivity of American
mathematicians. Q. J. Econ. 127, 1143–1203 (2012).

14. P. Moser, A. Voena, F. Waldinger, German Jewish émigrés and US invention. Am. Econ. Rev. 104,
3222–3255 (2014).

15. P. Moser, S. San, “Immigration, science, and invention: Lessons from the quota acts” in Lessons
from the Quota Acts. SSRN. https://ssrn.com/abstract=3558718. Accessed 21 January 2022.

16. F. Waldinger, Quality matters: The expulsion of professors and the consequences for PhD student
outcomes in Nazi Germany. J. Polit. Econ. 118, 787–831 (2010).

17. F. Waldinger, Peer effects in science: Evidence from the dismissal of scientists in Nazi Germany.
Rev. Econ. Stud. 79, 838–861 (2012).

18. T. M. Cheung, Fortifying China: The Struggle to Build a Modern Defense Economy (Cornell
University Press, Ithaca, NY/London, UK, 2009).

19. M. K. Lewis, Criminalizing China. J. Crim. Law Criminol. (1973-) 111, 145–225 (2021).
20. J. Mervis, U.S. scientists want Congress to look into complaints of racial profiling in China Initiative.

Science Insider. https://www.science.org/content/article/us-scientists-want-congress-look-
complaints-racial-profiling-china-initiative. Accessed 19 January 2022.

21. H. H. Thorp, The China initiative must end. Sci. Adv. 8, eabo6563 (2022).
22. A. Viswanatha, K. O’Keeffe, China’s Funding of U.S. Researchers Raises Red Flags. The Wall

Street Journal. https://www.wsj.com/articles/chinas-funding-of-u-s-researchers-raises-red-
flags-11580428915. Accessed 21 January 2022.
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