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A B S T R A C T   

Three previously unidentified dihydrostilbene glycosides, named oleiferaside A (1), oleiferaside B 
(2), and oleiferaside C (3), were discovered through a phytochemical exploration on Camellia 
oleifera Abel. leaves. Additionally, nine known secondary metabolites (4–12) were also identified. 
The undescribed secondary metabolites 1–3 were elucidated as 3,5-dimethoxydihydrostilbene 4′- 
O-α-L-arabinofuranosyl-(1 → 6)-β-D- glucopyranoside, 3,5-dimethoxydihydrostilbene 4′-O-α-L- 
arabinopyranosyl-(1 → 6)-β-D- glucopyranoside and 3,5-dimethoxydihydrostilbene 4′-O-β-D- 
apiofuranosyl-(1 → 6)-β-D- glucopyranoside, respectively. HR-MS and NMR spectroscopy were 
utilized for determining the structures of the isolates. The natural products were assessed for their 
anti-inflammatory effect using RAW264.7 macrophage stimulated by LPS. The findings demon
strated that compounds 1–4 exhibited inhibitory activities on NO and PGE2 production without 
causing cytotoxicity. These observations suggest that these compounds may have potential anti- 
inflammatory properties.   

1. Introduction 

Camellia oleifera Abel., a member of the Camellia genus (Theaceae family), has a wide distribution across several provinces in China, 
including Jiangxi, Hunan, Fujian, Guangdong, and Guangxi [1]. Recognized as a traditional Chinese herb-medicine, the dried leaves of 
C. oleifera are officially listed in the National Compilation of Chinese Herbal Medicine and Chinese Materia Medica. The plant leaves 
are known for their various therapeutic properties, including clearing heat and detoxifying, astringent hemostasis, refreshing the brain, 
promoting blood circulation and dispersing stasis, relieving pain. They have been traditionally employed as a remedy for conditions 
such as epistaxis, skin ulceration and itching, ulcerative gangrene, acute pharyngitis, stomachache, as well as sprain and contusion [2, 
3]. The identification of triterpenoids and their saponins, flavonoids and their glycosides, dihydrostilbenes and their glycosides, an
thraquinones, lignans, phenols, organic acids, steroids, and fatty acids have been significant outcomes of previous research conducted 
on this plant [4–10]. These compounds have exhibited diverse pharmacological actions, such as anti-tumor effects [4], 
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anti-inflammatory properties [5], anti-neuroinflammatory and neuroprotective effects [11,12], antioxidant activity [8,13,14], anti
bacterial effects [5], hypoglycemic effects [15,16], and anti-thrombotic effects [17]. In our current study, we focused on the methanol 
extracts of C. oleifera leaves and identified three new bioactive dihydrostilbene glycosides (1–3) and nine known secondary metab
olites (4–12) (Fig. 1). This article presents the isolation, structure determination, and assessment of the cytotoxicity and 
anti-inflammatory behaviour of these natural products. 

2. Materials and methods 

2.1. Instrument and reagent 

An AUTOPOL I automatic polarimeter from Rudolph Research Analytical (U.S.A) was used for optical rotation test. A SPECORD 50 
PLUS UV spectrophotometer purchased from Analytik Jena AG (Germany) was employed for UV spectra. A NICOLETIS50 FT-IR 
spectrometer from Thermo Fisher (Germany) was applied for IR spectra. An AVANCE III Bruker-400 spectrometer (Switzerland) 
was utilized for NMR spectra. Residual solvent peaks were used as references for the chemical shifts of NMR. A Xevo G2-XS TOF 
instrument (Waters) was operated for obtaining MS data. The instruments and reagents used below, including silica gel, TLC, C18 

Fig. 1. Chemical structures of compounds 1–12.  
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column, semi-preparative HPLC system, LPS, MTT, FBS, DMEM, and ELISA kits for NO and PGE2, are consistent with our previous 
literature reports [18]. 

2.2. Plant materials 

The leaves of Camellia oleifera Abel. were gathered from their natural habitat in Xingguo, Jiangxi Province, China, in May 2020. 
Then, the medicinal materials were verified by Xiao-Jun Li from the Department of Pharmacy at Gannan Medical University. The 
voucher specimens have been stored at the Key Laboratory of Natural Product Research and Development in Jiangxi Province Uni
versities, Gannan Medical University, under the reference number CO202005. 

2.3. Extraction and purification 

2.8 kg of dried leaves of C. oleifera were pulverized into powder and subjected to three extractions using 70 % methanol (3 × 10 L) 
at 60 ◦C with reflux for 2 h on each occasion. Afterwards, the solvent was evaporated, resulting in a MeOH extract that was subse
quently dispersed in distilled water. Sequential partitioning was carried out using organic solvents with different polarities for giving 
petroleum ether part (36.7 g), EtOAc part (201 g), and n-BuOH part (357.4 g), respectively. 

The 201 g of EtOAc part was first isolated by silica gel column chromatography (CC). The elution process involved a gradient of 
CH2Cl2–CH3OH with varying ratios of 100:1, 50:1, 30:1, 20:1, 10:1, 5:1, 3:1, 1:1, and 1:3 (v/v). Each fraction was collected, yielding 
seven major fractions (E1-E7) by TLC analysis. 84.55 g of E5 was performed on a silica gel CC applying a mobile phase of dichloro
methane/methanol/water (10:2:0.1–1:3:0.2, v/v/v). This process yielded six sub-fractions (E5.1-E5.6). A C18 semi-preparative HPLC 
was operated for the further purification of E5.4 (350 mg), using a gradient elution of methanol/water (flow rate: 3 mL/min, 
30:70–70:30, v/v). As a result, compounds 4 (132.2 mg), 9 (18.4 mg), 5 (7.1 mg), 1 (12.9 mg), 2 (8.3 mg), 3 (7.3 mg), and 10 (12.6 mg) 
were obtained consecutively. E5.6 (126 mg) was chromatographed by C18 semi-preparative HPLC using a mobile phase of methanol/ 
water (flow rate: 3 mL/min, 30:70–70:30, v/v). This process resulted in the isolation of compounds 6 (7.1 mg) and 7 (8.6 mg), along 
with sub-fractions E5.6.1-E5.6.3. Subsequently, in order to obtain compounds 11 (5.9 mg) and 12 (7.6 mg), a C18 semi-preparative 
HPLC method was established for the further purification of E5.6.1 (30.2 mg), with the gradient elution of methanol/water (flow 
rate: 3 mL/min, 20:70–50:50, v/v). Simultaneously, compounds 8 (6.8 mg) and 10 (8.7 mg) were yield from E5.6.2 (33.7 mg) via 

Table 1 
NMR data of undescribed compounds 1–3. 1H/400 MHz,13C/100 MHz, δ in ppm, J in Hz.  

Position 1a,b 2a,b 3a,b 

δH δC δH δC δH δC 

1 – 145.3 – 145.3 – 145.3 
2 6.30 (d, J = 2.2) 107.6 6.30 (d, J = 2.2) 107.6 6.30 (d, J = 2.2) 107.6 
3 – 162.2 – 162.2 – 162.2 
4 6.27 (d, J = 2.2) 98.9 6.27 (d, J = 2.2) 98.9 6.27 (d, J = 2.2) 98.9 
5 – 162.2 – 162.2 – 162.2 
6 6.30 (d, J = 2.2) 107.6 6.30 (d, J = 2.2) 107.6 6.30 (d, J = 2.2) 107.6 
α 2.80 (m) 39.5 2.80 (m) 39.5 2.80 (m) 39.5 
α′ 2.81 (m) 38.1 2.81 (m) 38.1 2.81 (m) 38.1 
1′ – 137.1 – 137.1 – 137.1 
2′ 7.10 (d, J = 8.6) 130.5 7.10 (d, J = 8.6) 130.5 7.10 (d, J = 8.6) 130.5 
3′ 7.00 (d, J = 8.6) 117.6 7.00 (d, J = 8.6) 117.6 7.00 (d, J = 8.6) 117.6 
4′ – 157.4 – 157.4 – 157.4 
5′ 7.00 (d, J = 8.6) 117.6 7.00 (d, J = 8.6) 117.6 7.00 (d, J = 8.6) 117.6 
6′ 7.10 (d, J = 8.6) 130.5 7.10 (d, J = 8.6) 130.5 7.10 (d, J = 8.6) 130.5 
3,5-OCH3 3.71 (s) 55.6 3.71 (s) 55.6 3.71 (s) 55.6 
Sugar moiety Glc  Glc  Glc  
1″ 4.83 (d, J = 7.3) 102.5 4.85 (d, J = 7.2) 102.3 4.81 (d, J = 7.5) 102.6 
2″ 3.43 (m) 74.9 3.43 (m) 74.9 3.43 (m) 74.9 
3″ 3.43 (overlapped) 77.9 3.43 (overlapped) 77.8 3.43 (overlapped) 77.9 
4″ 3.36 (m) 71.8 3.37 (m) 71.5 3.35 (m) 71.6 
5″ 3.59 (m) 76.8 3.62 (m) 77.3 3.59 (m) 77.0 
6a′′ 3.60 (m) 68.2 3.62 (overlapped) 69.3 3.61 (m) 68.8 
6b′′ 4.05 (dd, J = 5.4, 14.3) 4.10 (dd, J = 2.1, 11.5) 4.01 (dd, J = 1.5, 10.6) 
Sugar moiety Araf  Arap  Apif  
1‴ 4.93 (d, J = 1.5) 110.0 4.30 (d, J = 6.8) 104.9 4.98 (d, J = 2.4) 111.1 
2‴ 4.00 (dd, J = 3.4, 1.5) 83.3 3.57 (m) 72.5 3.91 (d, J = 2.4) 78.0 
3‴ 3.82 (dd, J = 6.0, 3.4) 78.9 3.49 (dd, J = 3.3, 8.9) 74.1 – 80.5 
4‴ 3.96 (m) 85.8 3.75 (m) 69.5 3.76 (d, J = 9.6) 75.0 

3.98 (d, J = 9.6) 
5‴ 3.62 (m) 63.0 3.42 (m) 66.7 3.58 (s) 65.5 

3.70 (m, overlapped) 3.82 (dd, J = 3.1, 12.4) 

a) Recorded in CD3OD. b) Multiplicities inferred from DEPT and HSQC experiments. Glc: glucopyranose; Araf: arabinofuranose; Arap: arabinopyr
anose; Apif: apiofuranose. 
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purification of C18 semi-preparative HPLC using a elution of methanol/water (flow rate: 3 mL/min, 50:50, v/v). 

2.4. Spectroscopic data 

Oleiferaside A (1): white amorphous powder; HR-ESI-MS m/z: 575.2092 [M + Na]+ (calcd. for C27H36O12Na, 575.2099); molecular 
formula: C27H36O12; UV (MeOH) λmax (log ε) 203 (0.94), 218 (0.41); [α]20 

D − 69.97 (c 0.23, MeOH); IR (microscope) νmax 3650, 1635, 
1540, 1507, 1150, 1074, 831, 685 cm− 1; NMR data, refer to Table 1. 

Oleiferaside B (2): white amorphous powder; HR-ESI-MS m/z 575.2091 [M + Na]+ (calcd. for C27H36O12Na, 575.2099); molecular 
formula: C27H36O12; UV (MeOH) λmax (log ε) 205 (2.25), 218 (1.04); [α]20 

D − 68.84 (c 0.05, MeOH); IR (microscope) νmax 3628, 1593, 
1540, 1508, 1455, 1204, 1066, 829, 683 cm− 1; NMR data, refer to Table 1. 

Oleiferaside C (3): white amorphous powder; HR-ESI-MS m/z 575.2091 [M + Na]+ (calcd. for C27H36O12Na, 575.2099); molecular 
formula: C27H36O12; UV (MeOH) λmax (log ε) 205 (2.33), 218 (1.24); [α]20 

D − 25.31 (c 0.13, MeOH); IR (microscope) νmax 3490, 1593, 
1508, 1457, 1226, 1203, 1149, 1056, 823, 691 cm− 1; NMR data, refer to Table 1. 

2.5. Acidic hydrolysis of 1–3 

Acid hydrolysis and derivatization methods referred to previous studies [19,20]. In short, each of compounds 1–3 (1.5 mg each) 
was added to 2 M HCl (500 μL) and subjected to heating for 2 h at 90 ◦C. After the hydrolysis process, the reaction mixture was 
neutralized with 500 μL of 2 M NH4OH and subsequently dried using an evaporator. Hydrolyzed samples 1–3, along with standard 
sugars (D-glucopyranose, L-arabinofuranose, L-arabinopyranose, and D-apiofuranose, 5 mg each), and 5 mg of L-cysteine methyl ester 
hydrochloride were dissolved in 1 mL of pyridine and reacted for 1 h at 60 ◦C. Subsequently, 5 μL of 2-methylphenyl isothiocyanate 
was introduced into the mixture, followed by an additional hour of heating. The resulting reaction mixture (20 μL) was then analyzed 
using RP-HPLC and detected at 250 nm to determine the types of sugars present. This was done by comparing with authentic samples, 
utilizing the elution system CH3CN–H2O in 0.1 % HCOOH (v/v, 15:85–35:65, flow rate: 0.8 mL/min). The tR values obtained were 
35.087 min for D-glucopyranose, 37.319 min for L-arabinofuranose, 37.011 min for L-arabinopyranose, and 44.219 min for D-apio
furanose (Table S1). 

2.6. Cell culture 

The mouse RAW264.7 macrophages (RRID: CVCL_0493) were purchased from the American Type Culture Collection (ATCC, 
Manassas, VA). The cell cultures employed in our investigation underwent examination and were validated to be free from myco
plasma contamination. Each RAW264.7 cell was cultured separately in DMEM culture medium with 100 U/mL of penicillin G, 100 mg/ 
L of streptomycin, and 10 % heat-inactivated FBS. Following that, the RAW264.7 macrophage was placed in a controlled environment 
with 5 % CO2 at a temperature of 37 ◦C for incubation. Every 2 days, the culture medium was refreshed. When the cell bottle reached 
80 % confluency, the previous medium was discarded, and the cells underwent 2–3 washes with PBS. Subsequently, the addition of 
0.25 % trypsin facilitated cell digestion, and repeated pipetting with a pipette ensured even dispersion of the cells. The resulting single- 
cell suspension was seeded at a 1:5 ratio in the cell culture medium. 

2.7. MTT assay for cell viability 

The step-by-step protocols for MTT assay were documented in our prior studies [21,22]. The analysis was performed in triplicate, 
independently. 

2.8. Nitrite assay 

As stated in our previous research, we employed the ELISA kit to accurately quantify the levels of NO [21,22]. 

2.9. Prostaglandin E2 assay 

The measurement of Prostaglandin E2 (PGE2) levels for selected compounds were conducted utilizing commercially obtainable kits. 
Three separate assays were carried out on the basis of operation instructions. Briefly, RAW264.7 macrophages were seeded in 24-well 
culture plates at a density of 5 × 104 cells/well. The test compounds were exposed to varying concentrations of treatment, and 
subsequently stimulated with 1 μg/mL of LPS for 24 h. Following the incubation, the supernatant was collected and utilized for PGE2 
concentration measurement via the application of a PGE2 ELISA kit. 

2.10. Statistical analysis 

One-way ANOVA was employed for statistical analysis of normally distributed data to assess variations among mean values. The 
findings are shown as the mean ± standard deviation (S.D.). The statistical significance was considered at p < 0.05. 
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3. Results and discussion 

Compound 1 was acquired in the form of a white amorphous powder. HR-ESI-MS data which revealed a m/z peak at 575.2092 
[M+Na]+ (calculated for C27H36O12Na, 575.2099) demonstrated that the molecular formula was C27H36O12. The 1H NMR spectrum of 
compound 1 (recorded in CD3OD) exhibited the following signals: seven aromatic protons at δ 7.10 (2H, d, J = 8.6 Hz), 7.00 (2H, d, J =
8.6 Hz), 6.30 (2H, d, J = 2.2 Hz) and 6.27 (1H, d, J = 2.2 Hz); two methoxy groups at δ 3.71 (6H, s); two methylenes at δ 2.80 (2H, m) 
and 2.81 (2H, m). In addition, the analysis of the spectra indicated the presence of two sugars, as evidenced by two anomeric protons at 
δ 4.83 (1H, d, J = 7.3 Hz) and 4.93 (1H, d, J = 1.5 Hz). Confirmation of the presence of 27 carbon signals was achieved through 
additional analysis of the 13C NMR and DEPT spectra. Among these, 16 signals were attributed to a dihydrostilbene aglycone moiety, 
while the remaining 11 signals were assigned to a disaccharide residue. The dihydrostilbene skeleton of compound 1 was identified 
through the analysis of its 1H and 13C NMR spectra (refer to Table 1), with the presence of characteristic aromatic carbons at δ 145.3 (C- 
1), 107.6 (C-2, C-6), 162.2 (C-3, C-5), 98.9 (C-4) and 137.1 (C-1′), 130.5 (C-2′, C-6′), 117.6 (C-3′, C-5′), 157.4 (C-4′), two methylene 
carbons at δ 39.5 (C-α) and 38.1 (C-α′), respectively. The NMR spectral data of compound 1 closely resembled those of compound 4, 
which had been previously documented from C. oleifera [7], except the presence of different sugar moiety (arabinofuranose) reso
nances [δH 4.93 (1H, d, J = 1.5 Hz, araf-H-1‴)/δC 110.0, 83.3, 78.9, 85.8, 63.0 (araf-C-1‴-5‴)] in 1, which was located at glc-C-6′′ (δ 
68.2), instead of rhamnopyranose in 4. The coupling constants of anomeric protons glc-H-1′′ (δ 4.83, 1H, d, J = 7.3 Hz) and araf-H-1‴ (δ 
4.93, 1H, d, J = 1.5 Hz) showed that the glucopyranose and arabinofuranose were β-positioned and α-positioned, respectively. 
Additionally, assignment of the sugar chain (6-O-α-L-arabinofuranosyl-β-D- glucopyranoside) was conducted through comparing its 
NMR spectral data with known compound 2-phenylethyl 6-O-α-L-arabinofuranosyl-β-D-glucopyranoside and literature values [23,24]. 
The HMBC correlations from protons H6 (2 × OMe) at δ 3.71 (6H, s) to carbons C-3 and C-5 (δ 162.2); proton H-1″ at δ 4.83 (1H, d, J =
7.3 Hz) correlated with C-4′ (δ 157.4); the correlations from H-1‴ at δ 4.93 (1H, d, J = 1.5 Hz) to C-6′′ (δ 68.2) and from H-6a′′ at δ 3.60 
(1H, m) and H-6b′′ at δ 4.05 (1H, m) to C-1‴ (δ 110.0) were further confirmed that the methoxyl moiety, β-D-glucopyranose and 
α-L-arabinofuranose were located at C-3/C-5, C-4′ and glc-C-6″, respectively (Fig. 2). In addition, the monosaccharides of 1 were further 
confirmed to be D-glucopyranose and L-arabinofuranose via the RP-HPLC analysis after acid hydrolysis and derivatization of 1, with the 
retention time (tR) were 35.087 min and 37.319 min for D-glucopyranose and L-arabinofuranose (Table S1). As a result, compound 1 
was conclusively identified as 3,5-dimethoxydihydrostilbene 4′-O-α-L-arabinofuranosyl-(1 → 6)-β-D-glucopyranoside, a previously 
unreported compound that has been designated as oleiferaside A. 

Fig. 2. Important 1H–1H COSY (highlighted) and HMBC (indicated by arrows) correlations of undescribed compounds 1–3.  
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Compound 2 was achieved in the form of a white amorphous powder. The analysis of HR-ESI-MS data revealed the molecular 
formula of C27H36O12 for compound 2, indicating the presence of ten degrees of unsaturation. Comparing the 1H and 13C NMR spectra 
of compounds 1 and 2, it was evident that they shared a high degree of similarity. The main difference observed was the presence of a 
α-L-arabinopyranose [δH 4.30 (1H, d, J = 6.8 Hz, arap-H-1‴)/δC 104.9, 72.5, 74.1, 69.5, 66.7 (arap-C-1‴-5‴)] in 2, instead of a α-L- 
arabinofuranose [δH 4.93 (1H, d, J = 1.5 Hz, araf-H-1‴)/δC 110.0, 83.3, 78.9, 85.8, 63.0 (araf-C-1‴-5‴)] in 1 (see Table 1). In addition, 
the assignment of the sugar chain (6-O-α-L-arabinopyranosyl-β-D-glucopyranoside) was accomplished by comparing its spectral data 
with those of the known compound 2-phenylethyl 6-O-α-L-arabinopyranosyl- β-D-glucopyranoside and relevant literature values [23]. 
These observations suggested that the relative configurations of glucopyranose and arabinopyranose in 2 were β-positioned and 
α-positioned. Also, the β-glucopyranose and α-arabinopyranose located at C-4′ and glc-C-6″ were further confirmed by HMBC spectrum 
(Fig. 2). Moreover, RP-HPLC analysis further confirmed that the monosaccharides of 2 are D-glucopyranose and L-arabinopyranose, 
which were obtained through acid hydrolysis of 2 with 2 M HCl, with the tR were 35.087 min and 37.011 min for D-glucopyranose and 
L-arabinopyranose (Table S1). As a result, compound 2 was conclusively identified as 3,5-dimethoxydihydrostilbene 
4′-O-α-L-arabinopyranosyl- (1 → 6)-β-D-glucopyranoside, a previously unreported compound that has been designated as oleifera
side B. 

Compound 3 was gained in the form of a white amorphous powder. The analysis of HR-ESI-MS data revealed the molecular formula 
of C27H36O12 for compound 3, indicating the presence of ten degrees of unsaturation. The 1H and 13C NMR spectra showed a high 
degree of similarity between compounds 1 (or 2) and 3, with the main distinguishing feature being the presence of a terminal con
nected sugar moiety β-D-apiofuranose [δH 4.98 (1H, d, J = 2.4 Hz, apif-H-1‴)/δC 111.1, 78.0, 80.5, 75.0, 65.5 (apif-C-1‴-5‴)] in 3, 
instead of a α-L-arabinofuranose or α-L-arabinopyranose in 1 or 2 (see Table 1). Furthermore, the sugar chain assignment (6-O-β-D- 
apiofuranosyl-β-D-glucopyranoside) was determined by comparing its NMR spectral data with a known compound, 2-phenylethyl 6-O- 
β-D- apiofuranosyl-β-D-glucopyranoside, using δ values for glc and apif, as well as references from literature [23,24]. Based on these 
observations, it can be inferred that the relative configurations of glucopyranose and apiofuranose in compound 3 are both located in 
the β position. Additionally, the HMBC spectrum further confirmed the presence of β-glucopyranose at C-4′ and β-apiofuranose at 
glc-C-6’’. (Fig. 2). Moreover, the monosaccharides in compound 3 were further identified as D-glucopyranose and D-apiofuranose 
through the RP-HPLC analysis following acid hydrolysis of 3 using 2 M HCl and derivatization of sugars, with the tR were 35.087 min 
and 44.219 min for D-glucopyranose and D-apiofuranose (Table S1). As a result, compound 3 was conclusively identified as 3, 

Fig. 3. Cell viability of compounds 1–12 on LPS-induced RAW264.7 cells. The values are expressed as mean of three experiments ±S.D. *p < 0.05, 
**p < 0.01 and ***p < 0.001 compared with Con group. 
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5-dimethoxydihydrostilbene 4′-O-β-D-apiofuranosyl-(1 → 6)-β-D- glucopyranoside, a previously unreported compound that has been 
designated as oleiferaside C. 

Nine previously described compounds 4–12 were determined to be 1-(3′,5′-dimethoxy) phenyl-2-[4″-O-β-D-glucopyranosyl(6 → 1)- 
O-α-L-rhamnopyranosyl]phenylethane (4) [7], sasastilboside A (5) [25], 3,5-dihydroxydihydrostilbene 4′-O-β-D-glucopyranoside (6) 
[7], 5,4′-dihydroxy-dihydrostilbene 3-O-β-D-glucopyranoside (7) [26], 3,5-dihydroxyl- dihydrostilbene 
4′-O-[6″-O-(4‴-methoxylgalloyl)]-β-D-glucopyranoside (8) [12], quercitrin (9) [27], phlorizin (10) [28], quercetin-3-O-β-D-galacto
pyranoside (11) [9], and quercetin-3-O-β-D-glucopyranoside (12) [9] via comparing the NMR and mass data of the compounds with the 
values reported in the literature. 

To assess the anti-inflammatory activities of the isolates, LPS-induced RAW264.7 cells were utilized. Prior to conducting the ex
periments, the cytotoxicity of all compounds was tested up to a concentration of 80 μM using the MTT assay. We found that 20 μM and 
40 μM of tested compounds 1–4 showed very weak impact on cell viability of RAW264.7 macrophages, while 80 μM of all compounds 
exhibited significant cytotoxicity (Fig. 3). As shown in Table 2, the results of nitrite and PGE2 assay demonstrated that the IC50 values 
of NO and PGE2 for compounds 1–4 were 28.56 ± 0.16 and 15.14 ± 0.11 (1), 42.21 ± 0.21 and 20.22 ± 0.18 (2), 37.88 ± 0.32 and 
12.25 ± 0.24 (3), 23.47 ± 0.15 and 13.31 ± 0.22 (4), respectively. These findings uncovered the potential anti-inflammatory activity 
of those secondary metabolites. Additional investigations are necessary to assess the mechanism of anti-inflammation for active 
phytochemical constituents. 

4. Conclusions 

To sum up, the research on the chemical constituents of C. oleifera leaves resulted in identifying twelve different compounds. 
Among them, three undescribed compounds named oleiferaside A (1), oleiferaside B (2), and oleiferaside C (3) were identified, along 
with nine previously reported natural products (4–12). Additionally, the toxicity of the separated substances was evaluated, along with 
their ability to inhibit the generation of NO and PGE2 caused by LPS in RAW264.7 macrophages. The tested dihydrostilbene glycosides 
(1–4) demonstrated moderate anti-inflammatory activities without causing any cytotoxic effects. 
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Table 2 
Effects of 4 selected natural products on production of LPS-stimulated NO and PGE2 in 
RAW264.7 cells.  

Compounds NO (IC50, μM) PGE2 (IC50, μM) 

1 28.56 ± 0.16 15.14 ± 0.11 
2 42.21 ± 0.21 20.22 ± 0.18 
3 37.88 ± 0.32 12.25 ± 0.24 
4 23.47 ± 0.15 13.31 ± 0.22 
Butein 5.56 ± 0.13 8.79 ± 0.17 

Butein: positive control. The data is presented as mean ± SD based on triple separate 
experiments. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e30507. 
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