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Abstract
Purpose To investigate the value of a computed tomography (CT)-based deep learning (DL) model to predict the presence 
of micropapillary or solid (M/S) growth pattern in invasive lung adenocarcinoma (ILADC).
Materials and Methods From June 2019 to October 2022, 617 patients with ILADC who underwent preoperative chest CT 
scans in our institution were randomly placed into training and internal validation sets in a 4:1 ratio, and 353 patients with 
ILADC from another institution were included as an external validation set. Then, a self-paced learning (SPL) 3D Net was 
used to establish two DL models: model 1 was used to predict the M/S growth pattern in ILADC, and model 2 was used to 
predict that pattern in ≤ 2-cm-diameter ILADC.
Results For model 1, the training cohort’s area under the curve (AUC), accuracy, recall, precision, and F1-score were 0.924, 
0.845, 0.851, 0.842, and 0.843; the internal validation cohort’s were 0.807, 0.744, 0.756, 0.750, and 0.743; and the external 
validation cohort’s were 0.857, 0.805, 0.804, 0.806, and 0.804, respectively. For model 2, the training cohort’s AUC, accuracy, 
recall, precision, and F1-score were 0.946, 0.858, 0.881,0.844, and 0.851; the internal validation cohort’s were 0.869, 0.809, 
0.786, 0.794, and 0.790; and the external validation cohort’s were 0.831, 0.792, 0.789, 0.790, and 0.790, respectively. The 
SPL 3D Net model performed better than the ResNet34, ResNet50, ResNeXt50, and DenseNet121 models.
Conclusion The CT-based DL model performed well as a noninvasive screening tool capable of reliably detecting and dis-
tinguishing the subtypes of ILADC, even in small-sized tumors.
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Abbreviations
LADC  Lung adenocarcinoma
WHO  World Health Organization
ILADC  Invasive lung adenocarcinoma
M/S  Micropapillary or solid

DL  Deep learning
CT  Computed tomography
CNN  Convolutional neural network
NSCLC  Non-small-cell lung cancer
SPL  Self-paced learning (SPL)
pTNM  Pathological tumor–node–metastasis pathology

Introduction

Lung cancer is one of the most common cancers and the major 
cause of cancer-related deaths worldwide, with lung adenocar-
cinoma (LADC) being the most prevalent histological type 
[1]. According to the Classification of Lung Tumors, 5th 
edition, by the World Health Organization (WHO) in 2021, 
LADC can be classified into the invasive type and microin-
vasive type [2]. The most common type is invasive adenocar-
cinoma (ILADC), which mainly manifests as lepidic, acinar, 
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papillary, micropapillary, and solid growth patterns [3]. Cur-
rently, the clinical treatment of ILADC is mainly based on 
9th edition of TNM staging system [4], assessing tumor size, 
lymph nodes, and metastasis, with treatments ranging from 
surgery in early stages (I–II) to chemotherapy and radiotherapy 
for advanced cases (III–IV). Extensive research has demon-
strated that ILADC has a significantly higher recurrence and 
metastasis hazard with a micropapillary or solid-predominant 
growth pattern than without [5–7]. Notably, some research has 
indicated that a micropapillary or solid growth pattern (M/S 
pattern) > 5% is also associated with poor outcome of patients 
with ILADC [6–10], and further aggressive adjuvant treat-
ment and dissection or sampling of lymph nodes during sur-
gery are usually recommended [7, 11, 12]. In addition, some 
recent studies have recommended that segmentectomy become 
the standard surgical procedure for patients with small-sized 
(diameter ≤ 2 cm) non-small-cell lung cancer (NSCLC), but 
limited resection was not the optimal surgical approach for 
patients with M/S-pattern tumors [5, 13, 14]. Therefore, pre-
operative confirmation of an M/S pattern within ILADC is 
significantly important to determine the resection range and 
guide surgical planning. Generally, surgery is the most effec-
tive technique to evaluate the histological subtypes of ILADC. 
However, to date, few operative methods can recognize the 
M/S pattern before or during surgical resection. A new nonin-
vasive method to identify the histological subtypes of ILADC 
before surgery could be a valid tool to reduce the occurrence 
of inappropriate surgical plan choices.

Deep learning (DL) is a general term for a class of pat-
tern analysis methods that typically include convolutional 
neural network (CNN), deep belief network, and stacked 
auto-encoder network [15]. With the development of artificial 
intelligence, DL has been widely used in the early diagnosis 
of lung cancer, evaluation of tumors’ pathological-molecular 
characteristics, and prediction of patients’ outcomes [16, 17]. 
Regarding estimating the histological subtypes of ILADC by 
artificial intelligence, previous studies were either limited in 
their ability to discriminate between the predominant growth 
patterns of ILADC or concentrated on patients in advanced 
stages [18, 19]. To our knowledge, the capacity of DL to pre-
dict the presence of an M/S growth pattern of ILADC, par-
ticularly in small-sized tumors, has still not been investigated.

This study aimed to develop two CT-based DL models: one 
for predicting the M/S growth pattern in ILADC, and the other 
for predicting that pattern in ≤ 2-cm-diameter ILADC.

Materials and methods

Patients

This retrospective study was approved by the institutional 
ethics committee of our institution (approval number: 

2019-062), and informed consent for research participation 
was waived due to the retrospective nature. From June 2019 
to October 2022, 1416 patients from two centers (center 
1 = 907, center 2 = 509) were initially included according 
to the following inclusion criteria: (1) ILADC was surgi-
cally confirmed; (2) patients had undergone chest CT scans 
before operation; and (3) patients had not undergone any 
anti-tumor therapy before CT examination. Additionally, 446 
patients were excluded according to the following exclu-
sion criteria: (1) tumor confirmed with invasive mucinous 
adenocarcinoma, colloid adenocarcinoma, fetal adenocar-
cinoma, enteric type adenocarcinoma, or not otherwise 
specified (n = 41); (2) tumor manifested as synchronous 
multiple primary lung cancer (n = 327); (3) poor imaging 
quality due to obvious respiratory motion artifacts (n = 35); 
(4) ≥ 1-month interval between CT imaging and subsequent 
surgery (n = 43). Finally, the CT data of 970 patients (center 
1 = 617, center 2 = 353) were used to build a DL model 
(model 1). Additionally, the CT data of 501 patients (center 
1 = 208, center 2 = 293) with tumor diameters ≤ 2 cm were 
used to establish another DL model (model 2). Patients from 
center 1 were divided into the training and internal valida-
tion datasets in a ratio of 4:1, and those from center 2 were 
included as the external validation dataset. The patient inclu-
sion flowchart is shown in Fig. 1.

CT protocols

All patients underwent chest CT scans using one of the fol-
lowing CT systems: Discovery 750 HD CT (GE Healthcare, 
Milwaukee, WI, USA), Somatom Perspective (GE Health-
care, Erlangen, Germany), or Somatom Definition FLASH 
(Siemens Healthcare, Forchheim, Germany). During a sin-
gle breath-hold period, the CT scan was performed at the 
end of inspiration. The scan range was from the entrance of 
the thorax to the costophrenic angle. The scanning param-
eters were as follows: tube voltage, 100–130 kVp; auto-
matic tube current, 50–250 mAs, scanning slice thickness/
interval, 5 mm/5 mm, and reconstructed thickness/interval, 
0.625–1 mm/0.625–1 mm. Then, all images were trans-
ferred to the picture archiving and communication system 
workstation.

Histochemical examination

Histological samples were obtained from surgical resection. 
All selected specimens stained with hematoxylin and eosin 
were analyzed by an experienced pathologist. According to 
the current LADC classification system, the percentage of 
some growth patterns (lepidic, acinar, papillary, micropapil-
lary, solid) in the tumor with > 5% increments were consid-
ered to be indicative of this pattern.
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Data preprocessing

All CT images in Digital Imaging and Communications in 
Medicine (DICOM) format were imported into the Infer 
Scholar Center platform (https:// www. infer vision. com/, 
Infer Scholar). Lesion region of interest (ROI) was initially 
manually denoted with bounding boxes slice by slice on 
axial CT images by a radiologist with 5 years of chest imag-
ing experience, then that was reviewed and corrected by a 
radiologist with more than 10 years of chest imaging expe-
rience for accuracy. All the CT images were evaluated in a 
standard lung window setting {window width: 1500–2000 
HU, window level: − 500 to (− 700) HU}to ensure optimal 
image quality and detail for accurate analysis. Thereaf-
ter, CT images were processed as follows: first, every 2D 
DICOM slice was concatenated to a 3D pixel matrix. Given 
that different image spacing will affect the recognition accu-
racy of 3D CNNs, the 3D pixel matrixes were resampled to 
obtain a 0.5 mm × 0.5 mm × 0.5 mm (height × width × depth) 
resolution with linear interpolation, and the pixel values 
were clipped to obtain lung windows (1400 HU, 200 HU). 
Second, all input images were normalized and padded to 
the same size. After acquiring these images, we randomly 
cropped them to 128 × 128 × 128 pixels and then performed 
random Gaussian noise, rotation, scaling, and flipping to 
reduce overfitting. Third, the augmented image patches 

were fed into the classification model for training. In the 
training process, to distinguish hard samples in the training 
set, we used self-paced learning (SPL), which can gradually 
incorporate hard samples into training. The initial threshold, 
threshold growth rate, and start epoch of SPL were 0.7, 1.05, 
and 20, respectively.

DL models establishment and optimization

Two DL models were established in this study. Model 1 
was used to predict the presence of M/S pattern in ILADC, 
and model 2 was used to predict the presence of M/S pat-
tern in small-sized ILADC, which was defined as a tumor 
with a maximum diameter ≤ 2 cm in the lung window set-
ting. Thereafter, 3D ResNet18 was adapted to build mod-
els, which included four-feature extraction stages and one 
classification stage. The number of output channels in the 
four-feature extraction stages were 64, 128, 256, and 512, 
respectively. The feature maps generated in the last feature-
extraction stage were fed into the fully-connected layer to 
predict the probability of presence of M/S pattern. Adam 
W and cross entropy loss were used to optimize the clas-
sification models. The training batch size, learning rate, and 
epochs were 16, 0.0005, and 200, respectively. The workflow 
for model establishment, is shown in Fig. 2. The area under 
the curve (AUC), accuracy, recall, precision, and F1-score 

Fig. 1  Patient inclusion flowchart

https://www.infervision.com/
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were used to evaluate the performance of both models. Addi-
tionally, another four DL networks, including ResNet34, 
ResNet50, ResNeXt50, and DenseNet121, were used to 
build models, and their performances were compared with 
those of 3D ResNet18.

Statistical analysis

Two GTX 3090 graphics-processing units were used. The 
operating system was Ubuntu 20.04 with CUDA, version 
11.3. Python 3.7 with PyTorch 1.11.0 were used to imple-
ment the models. Statistical analyses were performed with 
the SPSS 25.0 software package (version 25.0; IBM SPSS 
Statistics for Windows, IBM Corp., Armonk, NY, USA). 
The independent sample t-test was used to evaluate age, 
which was normally distributed, and P < 0.05 was consid-
ered to be indicative of a statistically significant difference.

Results

Demographic and clinical characteristics

The demographic and clinical characteristics of the 
patients included in the databases for building the DL 

models are summarized in Table 1. A total of 970 patients 
(454 men and 516 women) were classified into the data-
base for establishing model 1, including 492, 125, and 
353 patients in the training, internal validation, and exter-
nal validation cohorts, respectively, with a mean age of 
60.2 ± 9.7 years (range: 25–85 years). Among them, 510 
patients were in pathological tumor–node–metastasis 
(pTNM) stage I, 317 were in stage II, and 143 were in 
stage III. A total of 501 patients (235 men and 266 women) 
in the database were used to establish model 2, including 
161, 47, and 293 patients in the training, internal valida-
tion, and external validation cohorts, respectively, with a 
mean age of 58.9 ± 9.9 year (range: 25–83 years). Among 
them, 315 patients were in pTNM stage I, 155 were in 
stage II, and 31 were in stage III.

Performance of Model 1 and Model 2 built by SPL 3D 
Net

For model 1 established by SPL 3D Net, the AUC, accuracy, 
recall, precision, and F1-score in the training cohort were 
0.924, 0.845, 0.851,0.842, and 0.843 respectively; those 
in the internal validation cohort were 0.807, 0.744, 0.756, 
0.750, and 0.743, respectively; and those in the external vali-
dation cohort were 0.857, 0.805, 0.804, 0.806, and 0.804, 
respectively (Table 2). For model 2 established by SPL 3D 

Fig. 2  Workflow for model establishment
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Net, the AUC, accuracy, recall, precision, and F1-score in 
the training cohort were 0.946, 0.858, 0.881, 0.844, and 
0.851, respectively; those in the internal validation cohort 
were 0.869, 0.809, 0.786, 0.794, and 0.790, respectively; and 
those in the external validation cohort were 0.831, 0.792, 
0.789, 0.790, and 0.790, respectively (Table 3).

Comparison of the performance of models built 
by different DL networks

The performance of models built by ResNet34, ResNet50, 
ResNeXt50, and DenseNet121 with distinct network 

structures and depths was compared to that of the models 
built by SPL 3D Net in the internal and external validation 
cohorts. The ability to predict the presence of an M/S growth 
pattern of ILADC was better in the models using SPL 3D 
Net than in the models using the other four DL networks 
(Figs. 3 and 4).

Table 1  Demographic and clinical characteristics of the patients

M/S  micropapillary or solid growth pattern, pTNM  pathological tumor–node–metastasis

Characteristics Model 1 (n = 970) Model 2 (n = 501)

Train-
ing cohort 
(n = 492)

Internal validation 
cohort (n = 125)

External validation 
cohort (n = 353)

Train-
ing cohort 
(n = 161)

Internal validation 
cohort (n = 47)

External 
validation cohort 
(n = 293)

Mean age (years) 60.8 ± 9.8 60.8 ± 9.3 59.1 ± 9.6 59.5 ± 10.2 58.7 ± 10.4 58.6 ± 9.7
Sex
 Female 270 (54.9%) 65 (52.0%) 181 (51.3%) 92 (57.1%) 18 (38.3%) 156 (53.2%)
 Male 222 (45.1%) 60 (48.0%) 172 (48.7%) 69 (42.9%) 29 (61.7%) 137 (46.8%)

Histological subtypes
 Presence of M/S 205 (41.7%) 52 (41.6%) 174 (49.3%) 54 (33.5%) 16 (34.0%) 133 (45.4%)
 Absence of M/S 287 (58.3%) 73 (58.4%) 179 (50.7%) 107 (66.5%) 31 (66.0%) 160 (54.6%)

pTNM stage
 I 254 (51.6%) 64 (51.2%) 192 (54.4%) 108 (67.1%) 27 (57.4%) 180 (61.4%)
 II 163 (33.1%) 42 (33.6%) 112 (31.7%) 42 (26.1%) 16 (34.0%) 97 (33.1%)
 III A 75 (15.2%) 19 (15.2%) 49 (13.9%) 11 (6.8%) 4 (8.5%) 16 (5.5%)

Table 2  Predictive performance of model 1 established by different 
networks

AUC  Area under the curve

Model 1 AUC Accuracy Recall Precision F1-score

Training cohort 0.924 0.845 0.851 0.842 0.843
Internal validation 

cohort
 ResNet34 0.791 0.736 0.744 0.737 0.734
 ResNet50 0.784 0.744 0.726 0.740 0.729
 ResNeXt50 0.782 0.736 0.744 0.737 0.734
 DenseNet121 0.770 0.728 0.745 0.742 0.728
 SPL 3D Net 0.807 0.744 0.756 0.750 0.743

External validation 
cohort

 ResNet34 0.847 0.799 0.799 0.800 0.799
 ResNet50 0.794 0.717 0.716 0.717 0.716
 ResNeXt50 0.784 0.714 0.713 0.717 0.712
 DenseNet121 0.798 0.725 0.724 0.738 0.720
 SPL 3D Net 0.857 0.805 0.804 0.806 0.804

Table 3  Predictive performance of model 2 established by different 
networks

AUC  area under the curve

Model 2 AUC Accuracy Recall Precision F1-score

Training cohort 0.946 0.858 0.881 0.844 0.851
Internal validation 

cohort
 ResNet34 0.851 0.809 0.764 0.796 0.776
 ResNet50 0.802 0.787 0.763 0.763 0.763
 ResNeXt50 0.837 0.809 0.794 0.786 0.790
 DenseNet121 0.804 0.809 0.779 0.789 0.783
 SPL 3D Net 0.869 0.809 0.786 0.794 0.790

External validation 
cohort

 ResNet34 0.730 0.689 0.686 0.687 0.687
 ResNet50 0.756 0.717 0.701 0.734 0.700
 ResNeXt50 0.792 0.727 0.726 0.725 0.725
 DenseNet121 0.753 0.707 0.705 0.704 0.705
 SPL 3D Net 0.831 0.792 0.789 0.790 0.790
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Discussion

The histopathological LADC subtype is a critical deter-
minant for the postoperative recurrence and metastasis of 
tumors. Some studies have shown that the M/S-predominant 
subtype is an undesirable prognostic factor for patients with 
resected early-stage LADC, and postoperative adjuvant 
therapy is usually required [6–8, 10]. Furthermore, a few 
scholars have indicated that the presence of an M/S com-
ponent in LADC is also highly suggestive of poor survival 
[5, 9, 20]. Up to now, many scholars have used omics or DL 
based on CT images to attempt to noninvasively predict the 
predominant growth pattern of ILADC before operation [18, 
19]. However, little research has focused on identifying the 

existence of the M/S component within tumors by machine 
learning. Therefore, we developed and validated a 3D-CNN 
DL model based on CT images to investigate its potential to 
predict the presence of aggressive histological subtypes of 
ILADC and placed an emphasis on tumors with a diameter 
of ≤ 2 cm.

Recently, a few studies have reported the technical suc-
cess of artificial intelligence in evaluating the growth pat-
terns of ILADC. He B et al. [21] developed four radiomics-
based machine-learning models to preoperatively predict the 
presence of M/S growth patterns and obtained AUC values 
of 0.75, 0.73, 0.72, and 0.74 in the internal validation and 
those of 0.70, 0.72, 0.73, and 0.69 in external validation 
for Naïve Bayes, support vector machine, random forest, 
and a generalized linear model, respectively. Choi et al. 

Fig. 3  a The receiver operating characteristic curves of model 1 
established by different networks in the external validation cohort. b 
The confusion matrix of model 1 established by SPL 3D Net in the 

external validation cohort. c Classification performances of model 1 
established by different networks in the internal validation cohort

Fig. 4  a The receiver operating characteristic curves of model 2 
established by different networks in the external validation cohort. b 
The confusion matrix of model 2 established by SPL 3D Net in the 

external validation cohort. c Classification performances of model 2 
established by different networks in the internal validation cohort
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[19] revealed that a DL model was useful in estimating the 
presence of ≥ 5% M/S histological patterns of tumor and 
predicting the clinical outcomes of patients with advanced 
LADC who underwent neoadjuvant therapy. Chen et al. [22] 
proposed that radiomics combined with a DL model could 
be used to predict the presence of high-grade growth pat-
terns within LADC manifesting as subsolid lesions, with an 
accuracy of 0.966. Consistent with previous research, the 
current study established a DL model to predict the pres-
ence of the M/S component in ILADC, which showed good 
performance in the training, internal validation, and exter-
nal validation sets, with AUCs of 92.37, 80.65, and 85.65, 
respectively. Compared with previous studies, our research 
has the following advantages: first, our DL model estab-
lished by SPL 3D Net exhibited better performance in both 
the training and test sets; second, the sample size in this 
study was larger, and an external validation cohort was used 
to test the models’ generalization.

A phase 3 clinical trial (JCOG0802/WJOG4607L) at 
70 institutions in Japan reported better overall survival 
of patients with peripheral small-sized (diameter ≤ 2 cm) 
NSCLC in the segmentectomy group than in the lobectomy 
group [13], and this finding suggested that segmentectomy 
should be applicable for this population of patients. Addi-
tionally, a study by Kilic et al. [23] suggested that elderly 
patients (≥ 75 years old) with stage I NSCLC undergoing 
anatomical segmentectomy had a local recurrence rate and 
overall survival similar to those undergoing lobectomy, 
but their incidence of perioperative complications was 
much lower (29.5 vs. 50%). However, if the tumor contains 
the M/S component, indicating a high risk of recurrence 
and tumor metastasis, these elderly patients may benefit 
more from lobectomy and dissection of mediastinal lymph 
node. Therefore, preoperative noninvasive prediction of 
the existence of the M/S pattern in small-sized LADC 
is crucial to choose the best clinical treatment strategy 
[24]. At present, there is no effective method to accu-
rately determine the pathological growth patterns before 
surgery; thus, we established another DL model by SPL 
3D Net to identify the existence of the M/S growth pattern 
in ILADC with diameters ≤ 2 cm. This model obtained 
AUCs of 0.946, 0.869, and 0.831in the training, internal, 
and external validation sets, respectively, thereby showing 
great potential. Coincidentally, Li et al. [25] retrospec-
tively analyzed patients with pathologically-confirmed 
LADC of ≤ 2 cm who presented to three hospitals, and 
their findings showed that a radiomics model based on CT 
can be applied to predict the presence of a micropapillary 
pattern in patients with LADC of ≤ 2 cm, with an AUC of 
0.81 in the external validation set.

It is generally known that 3D CNN has excellent per-
formance in medical image diagnosis. In this study, we 

selected four other networks with different structures and 
depths of convolutional layers to build models: ResNet34, 
ResNet50, ResNeXt50, and DenseNet121. The effective-
ness of each of these models was compared with that of the 
SPL 3D Net model. Our results indicated that the ability 
to predict the presence of M/S growth pattern of ILADC 
in both the training and validation sets was better for the 
SPL 3D Net than for the other four DL models. SPL allows 
the model to determine its learning speed according to its 
own training state [26]. The number of samples used in 
training is determined by the loss value during the train-
ing process. This strategy involves dynamically dividing 
the sample sets into simple and difficult sets according to 
a threshold. Different weights are assigned to these sets, 
and difficult samples are filtered out in the early stages of 
training. By combining SPL with a 3D CNN, SPL 3D Net 
can determine the importance of samples during training, 
which dynamically changes with feedback from the clas-
sifier. As the classifier’s performance improves, samples 
initially considered difficult can be gradually recognized 
in later training stages. This helps remove the influence of 
abnormal samples on the model and enhances the model’s 
generalization and robustness, which may be a good expla-
nation for our results.

This study had several limitations. First, we did not 
incorporate clinical and CT morphological features, such 
as the sex of the patients and proportion of solid compo-
nents of LADC, into the model. Second, the inference pro-
cess of DL model is difficult to interpret and lacks a logical 
basis, which may hinder clinicians from using these mod-
els in practice. Consequently, additional research using 
our model is needed.

In conclusion, our findings demonstrated that the CT-
based 3D-CNN DL model can potentially serve as a non-
invasive screening tool capable of reliably detecting and 
distinguishing histological subtypes of ILADC, even for 
tumors with diameters of ≤ 2 cm.
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