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Abstract

Microbial consortia exhibit complex functional properties in contexts ranging from soils to 

bioreactors to human hosts. Understanding how community composition determines function 

is a major goal of microbial ecology. Here we address this challenge using the concept of 

community-function landscapes – analogs to fitness landscapes – that capture how changes in 

community composition alter collective function. Using datasets that represent a broad set of 

community functions, from production/degradation of specific compounds to biomass generation, 

we show that statistically-inferred landscapes quantitatively predict community functions from 

knowledge of species presence or absence. Crucially, community-function landscapes allow 

prediction without explicit knowledge of abundance dynamics or interactions between species, 

and can be accurately trained using measurements from a small subset of all possible community 

compositions. The success of our approach arises from the fact that empirical community-

function landscapes appear to be not rugged, meaning that they largely lack high-order epistatic 

contributions that would be difficult to fit with limited data. Finally, we show that this observation 
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holds across a wide class of ecological models, suggesting community-function landscapes can be 

efficiently inferred across a broad range of ecological regimes. Our results open the door to the 

rational design of consortia without detailed knowledge of abundance dynamics or interactions.

Introduction

Biology is a science of connecting scales of organization. From proteins to ecosystems, we 

are faced with the question of how variation at a lower scale of organization gives rise to 

changes at a higher scale. For example, understanding protein evolution requires learning 

how variation in the primary amino acid sequence determines fold and function. Similarly, at 

the level of the organism, genetic variation drives changes in phenotype and fitness. In both 

cases, interactions between constituent parts give rise to functional system properties.

One of the most powerful conceptual frameworks for thinking about how these functional 

properties emerge from components and their interactions is the notion of a landscape [1], 

where the height of the landscape encodes a scalar-valued function or fitness, and position 

on the landscape corresponds to a particular configuration of components. Landscape 

thinking permits us to articulate key properties of the mapping from genotypes to fitness, 

including the relative fitness of related genotypes [2], the extent and nature of interactions 

between genes [3, 4], and the dynamics of evolutionary trajectories [5–7].

Communities of microbes also exhibit functional properties, from degrading complex 

substrates [8, 9] to resisting invasions [10–12], that arise from the constituent parts and their 

interactions (Fig. 1A). It is natural to ask whether the landscape concept can also be useful 

in these scenarios. Here we take inspiration from methods for understanding landscapes for 

proteins and organisms to characterize the functional landscapes of microbial communities 

[13].

Over the last century, it has become routine to infer landscapes in the protein and organismal 

context statistically [14–17]. Given that directly assaying all possible mutation combinations 

is typically infeasible, the statistical approach aims to approximate the landscape from 

a smaller number of measurements via regression [18], with the interactions between 

mutations quantified via nonlinear epistatic terms. It is important to note that this approach 

explicitly neglects the details of the complex and often dynamical underlying processes that 

cause the fitness change. For example, a statistical approach does not explicitly account for 

the complex physical interactions between residues that alter the function of an enzyme. 

Similarly, at the organismal level, this approach neglects the details of how mutations impact 

gene expression or life history traits. Despite this dramatic simplification, regression-based 

statistical approaches have been highly successful in both these contexts [2, 19, 20].

Inspired by these successes, here we take a landscape approach to quantitatively predict 

functions of interest in microbial communities. From this perspective, the presence and 

absence of species are analogous to mutations in a protein or genome, and a regression can 

be formulated to predict community function from species presence and absence alone. This 

is in contrast to most existing approaches to predicting community function, which almost 

exclusively seek to understand how species presence impacts abundance dynamics, and 
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consequently function [21–24]. Here, we consider the possibility that community function 

can be understood without the intermediate step of predicting dynamics (Fig. 1B). We note 

that this approach explicitly ignores priority effects [25], multistability [26], or any other 

scenario when presence/absence information does not uniquely specify the community state. 

Nevertheless, as we will show, community-function landscapes prove remarkably predictive 

across a range of ecological contexts. This does not mean that priority effects are absent; 

merely that, for the examples considered here, their impact on community function is, on 

average, weak enough that the predictive power remains high.

Implementing this approach requires measurements of community function for sets of 

synthetic communities constructed from libraries of taxa. Here, we utilize six existing 

datasets of this type, representing a diverse set of functional properties [21, 22, 27–29]. 

For all the datasets we study, we find that the functional landscape is well described by 

models including only additive and pairwise epistatic terms. Moreover, we find that the 

ruggedness of these landscapes is surprisingly low, such that the effects of species presence/

absence on function are, in fact, dominated by additive terms. We support these observations 

computationally, showing that a regression approach succeeds in learning the community 

function landscape across a large class of ecological models, despite using only additive and 

pairwise terms, and only species presence/absence as input.

Taken together, our results show that, at least in the six examples presented here, learning 

the properties of communities can be accomplished without a detailed understanding of the 

interactions between taxa or their abundance dynamics. Our findings enable a powerful 

conceptual framework for predicting community functional properties, from invasion 

resistance to biotechnological applications.

Results

Learning community-function landscapes via regression

We first formulated a statistical approach to fitting community-function landscapes using 

datasets that comprise measured values of microbial community functions for a set of 

defined species combinations. In each of these experiments, a defined pool of species 

was used to construct communities combinatorially. Each community was then incubated, 

typically for a defined period of time, and then a functional property of interest was assayed. 

For a pool of N total species, there are 2N − 1 possible species combinations, and measuring 

all possible combinations is frequently intractable. The first goal of our investigation was 

to ask whether we can predict the function of all 2N − 1 communities by fitting a statistical 

model to a small subset ≪ 2N − 1  of all possible consortia. The resulting model would 

provide a global picture of the community-function landscape.

We formulated this problem as a linear regression of the following form:

y = β0 +
i

βixi +
i < j

βijxixj + …,

(1)
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where y is the scalar-valued function, and xi represents the presence or absence of species 

i in that community. The coefficient βi is the additive effect of including species i in 

the community, and βij is analogous to the effect of pairwise epistasis in genetic fitness 

landscapes, which measures the impact beyond individual additive effects of adding both 

species i and j. The ellipses denote higher-order epistasis terms, e.g., three-way epistatic 

terms captured by third-order polynomials, and so on.

We took the convention that xi = 1 if species i is present in a community, and xi = − 1
if that species is absent. We denoted absence using −1 instead of 0 in order to simplify 

the interpretation of the regression coefficients (see discussion in Ref. 30). In brief, using 

xi = ± 1 allows us to interpret βi as the average effect of adding species i to community 

function, where the average is taken over all community compositions. Similarly, the 

pairwise coefficient βij captures the average epistatic effect of species i and j together across 

many consortia. Moreover, this convention (corresponding to the Fourier expansion of the 

landscape) has some convenient mathematical properties that make it easier to quantify how 

much variation in the measured function is captured by additive, pairwise, and higher-order 

terms [30, 31].

We considered regressions truncated at first, second, and third orders. Many of the datasets 

we utilized sampled a number of community configurations that is comparable to the total 

number of coefficients to be inferred. To mitigate the risk of overfitting, we employed 

L1-regularized regression (LASSO) [32], using a cross-validation procedure to estimate the 

regularization hyperparameter (Methods). To assess out-of-sample generalization error, we 

applied an additional leave-one-out cross-validation scheme, in which each data point was 

iteratively left out-of-sample, and the model was fit to all remaining data points, allowing an 

out-of-sample prediction for each distinct experimental community (Methods).

Community function is predictable from species composition

We compiled six datasets in which synthetic bacterial communities were assembled from 

a pool of species. These datasets represent a broad spectrum of community functions: 

Clark et al. [22] measured the production of the short-chain fatty acid butyrate (Fig. 2A); 

Langenheder et al. [27] measured a combination of biomass and redox activity on the 

monosaccharide xylose (see comment in Methods); Sanchez-Gorostiaga et al. [21] measured 

the breakdown of the polysaccharide starch (Fig. 2B,C); Diaz-Colunga et al. [28] measured 

the total production of iron-scavenging siderophores (Fig. 2D). In addition, we considered 

biomass-related community functions: work by the Sanchez lab (Methods) measured total 

community biomass (Fig. 2E), and Kehe et al. [29] measured the abundance of a single 

target species (Fig. 2F). Details about the size and species pools for each dataset are given in 

Supplementary Table S1.

In each dataset, community function can be defined as a measurable scalar quantity, e.g., 

the concentration of a compound or a measurement of biomass at a given point in time. 

Therefore we fit models of the form shown in Eqn. (1). We investigated truncating the model 

at successively higher orders of epistatic terms in order to determine what degree of model 

complexity is needed to accurately predict community function. The quality of the fits are 
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shown in Fig. 2 (bar plots) for increasingly complex models, with shaded bars showing 

in-sample R2 and white bars showing out-of-sample R2 (Methods); scatter plots visualize the 

quality of second-order out-of-sample model predictions.

Remarkably, across all six datasets studied here, models of first or second order provide 

high-quality predictions (R2 0.8 for second-order models). In most cases, additive models 

alone (e.g., y = β0 + ∑i βixi) already have strong predictive power R2 > 0.5 , although the 

addition of second-order terms yielded an increased quality of fit for all datasets. We 

note that residuals of observed versus predicted values demonstrate similar patterns of 

heteroskedasticity across datasets, where communities with higher values of the function 

relative to the mean tend to be underestimated, and those with lower values of the function 

tend to be overestimated (Fig. 2, Extended Data Fig. 1). It is possible that these patterns are 

a consequence of bias induced by regularization [18]. We note that errors in our predictions 

do not correlate with community richness (Extended Data Fig. 2) indicating that our models 

generalize well to diverse communities.

For the dataset by Clark et al. (Fig. 2A), the authors of the original study predicted butyrate 

production using a complex model that parameterized interactions and abundance dynamics. 

The quality of our statistical predictions using species presence/absence are similar to those 

obtained using a complex dynamical model [22], suggesting that detailed dissections of 

community dynamics are not always necessary to make reasonably good predictions of 

community function.

Empirical community-function landscapes are not rugged

We demonstrated that statistical models based on species presence/absence can predict 

microbial community functions with surprising accuracy. In particular, simple models, 

containing only additive and/or pairwise epistatic terms, explained the vast majority of the 

variation in the data (Fig. 2). Our statistical approach represents a strategy for approximating 

the empirical community-function landscapes for these datasets. We wanted to gain intuition 

for why these regressions appeared to be so successful. To do this, we sought to quantify the 

ruggedness of community-function landscapes.

In an evolutionary context, the ruggedness of a fitness landscape dictates the number of local 

fitness optima and has important implications for the predictability of evolution [5]. In a 

community context, very rugged landscapes are expected to be much harder to approximate 

globally using regression methods such as those used here, simply because ruggedness 

arises from a substantial number of strong high-order epistatic terms. High-order terms are 

challenging to learn statistically due to the explosive combinatorial increase in the number 

of terms as model order increases. Thus, we expect that rugged landscapes will be difficult 

to learn statistically, while non-rugged ones will be straightforward to approximate using 

low-order models.

We quantified ruggedness using two complementary approaches: first, by explicitly 

quantifying the relative contribution of terms of different orders to the total variance, as 

explained below; and second, by using an established metric of ruggedness denoted r/s

Skwara et al. Page 5

Nat Ecol Evol. Author manuscript; available in PMC 2024 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(“roughness-over-slope”). To pursue the first approach, we started with the combinatorially 

complete dataset from Langenheder et al. [27], in which growth on xylose was measured 

for all 26 – 1 = 63 species combinations that can be formed from a 6-species pool. This 

combinatorially complete dataset allowed us to compute the coefficients of the exact full-

order empirical landscape, which is a model of the form Eqn. (1) that includes epistatic 

terms of all possible orders (i.e., up to sixth order). Using this exactly-inferred landscape, we 

generated a Fourier amplitude spectrum (Methods), which is a decomposition that reflects 

the total variance of the landscape that is captured by terms of each order [30, 31]. This 

spectrum, shown in Fig. 3A (red line), indicates that ~78% and ~16% of the variance in the 

landscape is explained by first and second-order terms, respectively, leaving ~6% of variance 

remaining for higher-order terms. In other words, this exact community-function landscape 

displays a low degree of ruggedness, as it is dominated by low-order terms, and is largely 

free of consequential higher-order terms.

To assess the statistical significance of this result, we performed a randomization test by 

computationally shuffling the assignments between function measurements and community 

compositions. For 100 such randomizations, we inferred the new landscape and computed 

the Fourier amplitude spectra. The results are plotted in Fig. 3A (black line). For the 

randomized landscapes, we found that terms of third-order were most important, and 

additive terms alone captured only 10% of the variance; the peak at third order arises from 

the fact that there are combinatorially more terms possible at this order than any other. 

We concluded that a lack of ruggedness in the true landscape is not spurious but rather a 

distinctly non-random structural feature of this landscape.

We performed similar analyses for the remaining five datasets to estimate the 

relative importance of coefficients of different orders. Although these datasets are not 

combinatorially complete, and therefore do not permit the inference of the exact amplitude 

spectra, we inferred a truncated amplitude spectra via third-order regression. We found that 

in each case, the dominant coefficients are additive, with pairwise coefficients typically the 

next most-important (Fig. 3B). The large fraction of variance explained by additive and 

pairwise coefficients across these cases again indicates a low degree of ruggedness.

As a second approach to quantify ruggedness, we computed the roughness/slope ratio r/s
[33, 34], a commonly used ruggedness metric that quantifies how well a landscape is fit by 

a purely additive model. Explicitly, roughness r is computed by fitting a model with additive 

terms only (e.g., y = β0 + ∑i βixi) and determining a residual to this fit. The roughness r
is the root-mean-square value of these residuals. Slope s is defined as the mean (absolute) 

value of the additive coefficients βi. The ratio r/s represents the typical magnitude of additive 

model error relative to the typical magnitude of an additive term. Large values of this ratio 

mean that the approximation afforded by an additive model is poor, indicating a high degree 

of ruggedness.

To make a well-defined comparison between all datasets, we computed normalized r/s
values, defined as the ratio between r/s on the original dataset and r/s for 100 randomized 

landscapes (Methods). Randomized landscapes served here as a natural high-ruggedness 
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comparison. We found that this ratio was consistently ≪ 1, indicating that true landscapes 

are much less rugged than comparable random landscapes (Fig. 3C).

We concluded that, across a diverse range of microbial community functions, empirical 

landscapes possess a low degree of ruggedness, corresponding to the dominance of low-

order (i.e., additive and pairwise epistatic) terms, and a notable absence of higher-order 

epistatic terms. This enables low-order statistical models to faithfully parameterize empirical 

landscapes and thereby accurately predict community functions.

Ecological models indicate when landscapes can be learned

We have demonstrated multiple empirical examples where the functional landscape of a 

microbial community proves to be non-rugged, allowing low-order statistical models to 

predict the function of interest. To understand the expected generality of this observation 

beyond the six datasets considered here, we turned to ecological models, generating large 

ensembles of random communities for which the functional landscapes can be evaluated in 
silico. Our goal was not to fit models to the empirical examples above, but to probe the 

conditions under which a lack of ruggedness is expected to be rare or common, and to 

identify the ecological scenarios under which low-order statistical inference is expected to 

fail.

We first sought to interrogate synthetically-generated community-function landscapes using 

the generalized Lotka-Volterra (gLV) model, with total abundance (biomass) serving as the 

function of interest. The gLV model has many variants that differ in assumptions regarding 

the structure of randomly-generated species interactions, but as recently argued by Barbier et 
al., a large class of such variants can be reduced to a four-parameter “reference model” [35]. 

We adopted this reference model for our analyses (Methods), focusing on a sweep of the 

two key parameters describing interaction strength μ  and interaction variability σ . Further 

analysis varying all four parameters is presented in Supplementary Fig. S1.

For each combination of μ and σ, we performed 10 trials of generating a random pool of 

N = 10 species (a pool small enough to evaluate the combinatorially complete set of all 

possible communities), and computed the exact community-function landscape (mimicking 

our procedure for the Langenheder et al. data in Fig. 3A). The fraction of variance explained 

by the first- and second-order terms, equivalent to the predictive power R2  of the second-

order approximation of the landscape, is shown in Fig. 4A. These values are averaged over 

the 10 trials at each point in the μ − σ plane. In the reference model, positive μ corresponds 

to interactions that are competitive on average, while larger values of σ correspond to 

a greater degree of variability in the strength of interactions. Note that as interaction 

variability σ becomes large, the Lotka-Volterra model becomes unstable, causing species 

abundances to diverge [36]. In our simulations, any points in μ − σ plane that encountered 

divergences in more than 5 trials are indicated in grey (Fig. 4A). Additional details about 

these simulations are described in the Methods section.

We found that across the entire range of parameters for which the dynamics of the model are 

stable, second-order regression provides excellent fits R2 ≳ 0.9  to gLV community-function 

Skwara et al. Page 7

Nat Ecol Evol. Author manuscript; available in PMC 2024 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



landscapes (Fig. 4A; the non-gray region is all yellow). Further analysis shows that R2

remains similarly high even as we change other model parameters, including interaction 

asymmetry and the variability of species’ carrying capacity (see Supplementary Fig. S1). 

These results indicate that non-rugged functional landscapes can be observed across a wide 

range of ecological scenarios.

It is important to stress that the lack of ruggedness is not a trivial property of all 

gLV models. Although the Lotka-Volterra model studied here contains only second-order 

interactions, these interactions couple species abundances, and therefore we do not expect 

the functional landscape to be well approximated by a low-order regression on species 

presence/absence alone. For example, rugged gLV landscapes can and do exist (see 

Supplementary Fig. S2). In the ensemble of models described by Barbier et al., such 

examples are curiously rare (Supplementary Fig. S2), at least for biomass as the property 

of interest. However, it is likely that for other ensembles (e.g., with a more complex 

correlation structure of interactions), rugged landscapes could be more common. Identifying 

the ecological mechanisms dictating whether the landscape of a given functional property 

will be rugged or smooth is an important question for future work.

As an illustration, we present one mechanism that will generically lead to increased 

ruggedness. Consider a nutrient X1 that is broken down through a chain of L reactions 

following a linear pathway X1

n1
X2

n2
…

nL
XL + 1, where each reaction is performed by a 

specialized community member ni. If X1 is the only nutrient supplied to the consortium, 

and the function of interest is the concentration of the end product XL + 1, then the 

concentration of XL + 1 will be non-zero if and only if all species n1, …nL are present. 

Mathematically, if presence or absence were denoted as si = 0 or 1, respectively, such 

a landscape would be described by a single Lth-order term: y = β1…Ls1s2…sL. Under the 

convention used here, where presence or absence is denoted by xi = ± 1, this corresponds 

to coefficients at all orders being equally important. (As a simple illustration, for three 

species s1s2s3 = x1 + x2 + x3 + x1x2 + x2x3 + x1x3 + x1x2x3 /8, which is easy to check by a direct 

substitution si ≡ xi + 1
2 .) In this scenario regressions exploiting only low-order models will 

provide poor predictive power and the landscape will be rugged (Fig. 4B).

To build on the intuition from this thought experiment, we used a consumer-resource model 

(CRM) to generate synthetic landscapes with N = 10 species competing for L = 8 nutrients. 

Only one resource was supplied externally (“source”, Fig. 4B, red dot), while the function of 

the community was defined to be the concentration of one of the other resources (“target”, 

Fig. 4B, blue dot). In each trial, we constructed a random cross-feeding network for a pool 

of N = 10 species, with each species capable of converting one randomly chosen resource 

into another. We then computed the complete functional landscape, as above for the gLV, by 

simulating all possible subsets of this 10-species pool. Simulation details are described in 

the Methods.

Based on the intuition from the thought experiment above, we expected the predictive power 

of low-order approximations to correlate with the length of the shortest path P  connecting 
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the source resource to the target (see schematic, Fig. 4B). The landscapes corresponding 

to cross-feeding networks with long paths from source to target (i.e., large P) are expected 

to be more rugged. To confirm this, Fig. 4B plots the fraction of variance R2  explained 

by low-order approximations of the exact synthetic CRM landscapes, shown as a function 

of the shortest chain length P . We observe that, while successful in cross-feeding networks 

with small P , low-order models were increasingly challenged as P  increases, with R2

dropping below 0.5 for second-order models beyond P = 4. Increasing model order from 

additive-only to third-order substantially improved predictive power, particularly at large P , 

consistent with the idea that increasing P increases the prevalence of higher-order terms. 

These results illustrate that low-order approximations of community-function landscapes 

may fail to make accurate predictions in ecological scenarios with long chains of trophic 

dependencies, or other situations when function is strongly contingent on the simultaneous 

presence of multiple species.

Discussion

The key result of our study is the demonstration that functional properties of microbial 

communities can be predicted by simple statistical models knowing only which species 

are present or absent. Remarkably, in analogy to fitness landscapes describing proteins and 

organisms, we showed that regressions can quantitatively describe empirical landscapes 

for a wide range of community functions. We found that the success of these regressions 

derives from the fact that the underlying landscapes are not rugged, allowing the majority 

of variation in function to be captured by additive and pairwise terms in the regression. The 

predictions did not require specialized knowledge or measurement of microscopic system 

properties, only a dataset comprising quantitative measurements of a function taken from a 

collection of defined communities drawn from a fixed pool of species.

Our simulations of generalized Lotka-Volterra and consumer-resource models demonstrated 

that we can expect low-order approximations of landscapes to work well across a range 

of ecological contexts. We identified a clear exception, however, in functions that are 

strongly contingent on the simultaneous presence of multiple highly specialized community 

members. One might therefore expect that the low-order landscape approximations might 

encounter challenges, for example, in systems with long linear chains of reactions, such as 

those present in anaerobic digesters [37] and Winogradsky columns [38]. A critical direction 

to be addressed in future work is a systematic analysis of the ecological mechanisms 

that either enable or impede the performance of approximations of community-function 

landscapes. A better understanding of these mechanisms would provide a more principled 

view of community functional properties amenable to our statistical approach.

Since our approach predicts community function from species presence/absence, it explicitly 

assumes that replicate communities with the same composition will have the same function. 

This assumption could fail if communities exhibit alternative stable states [39, 40] with 

distinct final abundances and functions despite identical presence/absence compositions. 

While alternative stable states have been documented in synthetic consortia [26], they do 

not appear to be widespread or have large impacts on function in the communities studied 
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here. Extended Data Fig. 3 shows predictions for replicate communities with identical 

compositions. We find that most replicates in all six datasets studied are well predicted by 

our model. We conclude that alternative stable states do not drive substantial functional 

variation across the consortia studied here. However, none of the datasets studied here 

systematically varied the initial relative abundances for communities of fixed composition, 

and this may result in communities not reaching alternative stable states despite their 

existence. In ecological contexts where alternative stable states are pervasive and drive large 

functional variation, our predictions would begin to degrade in quality.

Another question is how our results could be extended to contexts with extensive functional 

redundancy between taxa. Our regression approach would likely struggle in these scenarios. 

This is easiest to see in the extreme limit of taxa that are perfectly interchangeable: a high-

dimensional OR function has Fourier terms of all orders, and any low-order model would 

be a poor approximation. Thus, the excellent performance of our method on the available 

datasets is likely aided by the fact that the labor-intensive nature of the combinatorial 

experiments favors synthetic communities with relatively low redundancy. The experimental 

cost associated with increasing the number of species discourages the inclusion of taxa 

highly similar to those already in the pool. This is the opposite regime of the natural 

communities, which are often phylogenetically under-dispersed [41, 42].

While the method as presented would likely struggle in communities with extensive 

redundancy, the argument above indicates how this limitation could be remedied, namely 

by grouping redundant taxa prior to performing regressions. In fact, our results suggest that 

the high predictive power of a simple regression on the variables describing the presence 

or absence of any member in a group could be taken as the criterion indicating that the 

grouping was chosen appropriately. This offers a path towards quantitative prediction of 

complex community functions in the high-diversity regime, and echoes recently proposed 

ideas from multiple groups [43–45].

Our results complement previous studies demonstrating that community-function landscapes 

follow patterns of global epistasis [28]. These patterns were first discovered in the context 

of organismal fitness landscapes [46–48]. Global epistasis refers not to the impacts of 

individual epistatic terms, but rather to properties (e.g., diminishing returns) that emerge 

from the collective impact of many epistatic contributions. In the context of microbial 

communities, global epistasis arises as a linear relationship between the impact of adding a 

specific species on community function and the function of the “background” community to 

which the species was added [28]. It is worth noting that the regression and global epistasis 

approaches represent distinct strategies for predicting community function. The regression 

approach presented here attempts to predict the function of an arbitrary community via 

an ansatz assuming that only low-order epistatic contributions are important, whereas the 

global epistasis approach attempts to estimate the effect of adding a species to a given 

background community harnessing the predictability of patterns arising from combined 

epistatic contributions up to arbitrary order [47]. Connecting the concept of global epistasis 

with the regression approach to learning functional landscapes remains an important 

exercise, as the two approaches may provide complementary insights in different ecological 

scenarios.
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Perhaps the greatest downstream impact of our study is the possibility of using statistically-

inferred landscapes to rationally design communities with desired functional properties. 

Because community-function landscapes can be approximated by sampling only a subset 

of all possible species combinations, it is conceivable that even large synthetic consortia 

with predefined functions can be designed and optimized computationally given only a small 

number of measurements. Determining the optimal sampling strategy to accurately infer 

landscapes remains an important avenue for future work. For example, it is unclear whether 

the sampling should include a mix of simple communities of <3 taxa, or whether high-

diversity communities are more informative given a restricted number of measurements. 

However, even without extensive optimization, our models were able to identify the 

communities with the highest functional output, even when these communities were left 

out-of-sample. The simplicity of the approach makes it readily portable across contexts and 

functions, and its performance could offer an appealing advantage relative to alternative 

design strategies [22, 49].

METHODS

Collection and preprocessing of datasets

Datasets were compiled from six experimental efforts to measure various community 

functions in defined synthetic microbial consortia. Details about these datasets and 

references are listed in Supplementary Table S1.

The dataset by Langenheder et al. [27] was generated by measuring the activity of 

synthetic communities with xylose provided as the sole carbon source. Metabolic activity 

was measured via the absorbance of a redox dye (tetrazolium violet) at 600 nm over 

multiple time points. It should be noted that, because cell scattering at 600 nm likely also 

contributed to absorbance, the functional values collected in this study reflect a combination 

of both redox activity and biomass growth. While this detail complicates the mechanistic 

interpretation of the data, it does not present a problem for our analysis, as the data 

still represent a complex functional property for the regression approach to predict. Here, 

the community-function landscape we sought to approximate was constructed from the 

functional values collected at the endpoint of the experiment (48 h).

The dataset by Sanchez-Gorostiaga et al. [21] included 53 community configurations out 

of the possible 63. We note that, as we confirmed with the authors of the original study, 

the potentially ambiguous phrasing in the original manuscript (“every combination of six 

amylolytic soil bacteria”) referred to every pairwise combination being inlcuded in the list, 

not that the dataset was combinatorially complete.

Total community biomass data collected by Diaz-Colunga et al. were not included in 

the original manuscript [28]. Detailed experimental protocols for isolation, culturing, and 

community assembly are given in Refs. [28, 50], with the biomass dataset differing from 

these methodological details in the following ways: (1) the eight isolates used in the biomass 

dataset were distinct from the siderophore production isolates (though isolated using the 

same methodology), (2) the medium used in biomass growth experiments lacks a trace 

mineral supplement, (3) biomass was quantified by measuring the OD at 600 nm using 

Skwara et al. Page 11

Nat Ecol Evol. Author manuscript; available in PMC 2024 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



100 μL of endpoint cultures in an AccuSkan FC plate reader (Fisher Scientific), and (4) 

monoculture measurements for four strains were omitted, resulting in a dataset of 160 

unique configurations (instead of 164, as should otherwise result from the methodology in 

Ref. 28). Though isolates used in the biomass dataset were not sequenced or taxonomically 

identified, colonies either possessed distinct morphologies, possessed distinct color profiles 

when grown on chromogenic agar plates (CHROMagar Mastitis GN), and/or were isolated 

from separate environmental samples, and were therefore likely to be genomically distinct.

Data from Kehe et al. [29] were generated using a microwell array approach, in which 

each community was assembled by randomly grouping nanoliter droplets of defined 

species composition into 2–19 droplet combinations. Due to this stochastic assembly, initial 

species abundances varied beyond binary presence/absence: for example, a three-droplet 

combination containing two droplets of species A and one droplet of species B will have 

different initial abundances than the combination of one droplet of species A and two 

droplets of species B. Since the formulation of community-function landscapes in Eqn. 

(1) operates on binary species presence/absence, this variation in initial abundances was 

ignored, and a species was considered to be present in a community if it had positive initial 

abundance.

In cases where datasets contained experimental replicates, the mean over replicates was 

taken in order to obtain a single community function value for each unique species 

combination.

Statistical inference of landscapes via regression

Community-function landscapes were approximated for empirical datasets by fitting 

equations of the form Eqn. (1) truncated at first, second, and third order via LASSO 

regularization [32]. 10-fold cross-validation was used to estimate the regularization 

hyperparameter. All models were fit using the package glmnet in R version 4.1.2. For all 

datasets considered here, the computational demands of fitting our models were modest, and 

all model fitting and analysis was performed using a personal computer.

To fit the data, two strategies were employed. First, all available data points were used to 

fit landscape models. The coefficients of determination R2  for these fits are shown in gray 

bars in Fig. 2 and predicted versus observed values are shown in Extended Data Figs. 3 and 

4. Second, to obtain an estimate of out-of-sample model accuracy, a leave-one-out (LOO) 

procedure was employed. Individual data points corresponding to each distinct experimental 

community were systematically left out of sample, and models were then fit to all remaining 

data points using 10-fold cross-validation. The observed versus predicted values of left-out 

points estimated via this approach for a second-order model are shown in the scatter plots of 

Fig. 2. The prediction quality R2  for left-out points are shown in white bars in Fig. 2.

Calculation of Fourier amplitude spectrum

Because Eqn. (1) with xi ∈ − 1, 1  corresponds to the Fourier expansion of a fitness 

landscape [30], the Fourier amplitude equation [31] at order p can be written simply as
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Ap = ∑
i ∈ p

βi
2 .

(2)

It can be shown that sum of amplitudes across all orders is equal to the total variance of the 

landscape. This permits the calculation of the fraction of total variance explained by terms at 

order p as Ap/∑p′ Ap′.

Calculation of r/s ruggedness metric

The roughness-slope ratio, r/s, is a measure of landscape ruggedness that quantifies how 

well a landscape is fit by a purely additive model. This quantity was computed by first fitting 

a linear model of the form:

y = β0 +
i

βixi,

(3)

where y is the measured community function, and the coefficients β0 and βi are obtained 

ordinary least-squares regression.

The roughness, r, is defined as the root-mean-squared-error of the resulting fit, or

r = 1
L ∑

i
yi − yi

2,

(4)

where L is the number of datapoints in the landscape and ŷ is the value of y fitted by linear 

regression. The slope, s, is defined as the mean of the absolute value of coefficients βi,

y = 1
n ∑

i
βi .

(5)

Larger values of r/s indicate a greater deviation from linearity, therefore a more rugged 

landscape. In contrast, an r/s value of 0 would correspond to a perfectly additive landscape.

The values of r/s depend on landscape size, and sensible comparisons of this quantity 

between datasets require an appropriate normalization. Because randomized landscapes 

represent a natural high-ruggedness comparison, r/s values computed on randomized 

landscapes were used as scaling factors, i.e,

r/snormalized = r/soriginal
r/srandomized

,

Skwara et al. Page 13

Nat Ecol Evol. Author manuscript; available in PMC 2024 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(6)

was computed. Normalized r/s values close to 1 indicate that the empirical landscape is as 

rugged as the randomized landscape, while values close to zero indicate a low degree of 

ruggedness in the empirical landscape. 100 randomizations were performed for each dataset, 

and values of r/snormalized were computed for each; the distributions of these values are shown 

in Fig. 3C.

Simulations of the generalized Lotka-Volterra model

Community-function landscapes were synthetically generated using the generalized Lotka-

Volterra (gLV) model, with total abundance serving as the community function of interest. 

A four-parameter “reference model” formulated by Barbier et al. [35] was used to explore 

important dimensions of the gLV parameter space. The model can be written as follows:

Ṅi = ri
Ki

Ni Ki − Ni − ∑j αijNj ,

(7)

where, for species i in a pool of N total species, Ni is the abundance, ri is the intrinsic growth 

rate, and Ki is the carrying capacity. The parameters αij are interaction coefficients between 

species i and j.

The equilibria of Eqn. (7) are determined by the values of Ki and αij. For each synthetic 

landscape, these parameters were randomly generated. The carrying capacities Ki were 

independently drawn from a gamma distribution with mean 1 and variance ζ2, while 

the interaction coefficients were drawn from a normal distribution with mean μ/N and 

variance σ2/N. These definitions ensure that the full range of distinct qualitative behaviors 

is spanned by parameter values of order 1 (see Ref. [51] for details). A broad, ecologically-

relevant regime of the interaction parameter space was explored in Fig. 4A μ ∈ − 1, 4
and σ ∈ 0, 1.5 . The standard deviation of carrying capacities was fixed at ζ = 0.3. The 

fourth and final parameter is interaction asymmetry, defined as γ = corr αij, αji . In Fig. 4A, 

interactions were set to be symmetric by taking γ = 1. These parameter values and ranges are 

identical to those used in Fig. S2 of Ref. [35], allowing direct comparison with Fig. 4A. For 

a more thorough parameter sweep varying both γ and ζ, see Supplementary Fig. S1.

Landscapes were generated over a grid of points in μ − σ space. Each landscape was 

generated through the following steps:

1. A set of carrying capacity parameters Ki and interaction parameters αij were 

drawn for a pool of N = 10 species as described above. All ri were fixed to 1.

2. Eqn. 7 was simulated to equilibrium for all species combinations.

3. Total endpoint “biomass” (sum of abundances ∑i Ni ∞ ) was computed for each 

simulation.
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4. Exact, full-order landscapes (Eqn. 1) were computed, using biomass as the 

community function.

Initial species abundances were drawn from an exponential distribution with mean 0.1. 

Numerical integration was performed using ode15s (MATLAB). At each point μ − σ space, 

10 trials of landscapes were generated. Note that for larger values of σ, species abundances 

in Eqn. (7) are more likely to diverge. Parameter combinations for which divergences were 

encountered in more than half of trials are indicated by grey values in Fig. 4A.

Simulations of the consumer-resource model with random cross-feeding networks

Community-function landscapes were synthetically generated using a consumer-resource 

model (CRM), taking the equilibrium concentration of a terminal waste product as the 

function of interest. The CRM is given as follows:

Ṅi = Ni ri − mi ,
ri = ∑

α
CiαRα,

Ṙβ = Kβ − Rβ
τβ

− ∑
i

CiβRβNi + ∑
i

γriNiDiβ .

(8)

Here, Ni, ri, and mi are the abundance, total resource uptake, and maintenance costs, 

respectively, of species i in a pool of N total species. Rα is the concentration of resource 

α. The matrices Ciα and Diβ describe which resources a species consumes and secretes, 

respectively, with secretions assumed proportional to the metabolic uptake ri. An efficiency 

factor γ < 1 ensures that energy cannot be gained, but only lost. Here γ was set to 0.5. The 

decay rates τβ and species maintenance costs mi are all set to 1 for simplicity. The resource 

carrying capacity for the single externally supplied resource, K1, was set to 105, and all 

remaining resource carrying capacities, Kβ, were set to 0. The total number of resources was 

fixed to L + 1, with resource L + 1 representing a terminal waste product that no species can 

consume.

Random cross-feeding networks were generated in order to explore how chains of trophic 

dependencies impact the ruggedness of community-function landscapes. To do this, it was 

assumed that each species i can consume and secrete exactly one resource, denoted ini and 

outi, respectively. These were selected through the following steps, performed independently 

for each species:

1. The identity of the consumed resource ini was chosen randomly between 1 and L
with equal probability.

2. The secreted resource outi can range from 1 to L + 1, where resource L + 1 is the 

terminal waste product; however it must be distinct from ini, leaving L possible 

choices. With probability p, we set outi = ini + 1; otherwise outi was drawn from 

any of the remaining values at random.
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The parameter p thus allows the exploration of a range of network topologies, from long 

linear pathways with a high degree of trophic dependency (at p ≈ 1) to random graphs (at 

p ≈ 1/L).

After selecting ini and outi for all species, we verified that resource L + 1 was “reachable” 

through the network from resource 1, i.e., whether there existed at least one path from 

resource 1 to resource L + 1. If this was not the case, the functional landscape (the 

concentration of resource L + 1 for a given set of species) would be identically zero; such 

networks were discarded as invalid and the steps above were repeated until a valid circuit 

was obtained.

For Fig. 4B, random cross-feeding networks were generated by carrying out the steps 

above across a range of values of p, fixing N = 10 total species and L = 8 total resources. 

20 valid random trials over 15 values of p ∈ 1/L, 1  were generated in order to create 

300 total random cross-feeding networks. The community-function landscapes for these 

networks were then computed by setting initial species abundances to 0.1, simulating Eqn. 

(8) to equilibrium for all species combinations (ode15s, MATLAB), taking the equilibrium 

concentration of resource L + 1 as the function of interest, and using this complete 

combinatorial landscape to determine the exact coefficients of its Fourier decomposition 

(Eqn. 1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Statistically learning community-function landscapes.
(A) Examples of microbial community functions including (left to right): production of 

biomass, conversion of substrate to product, and suppression of a pathogen. (B) Contrasting 

the statistical landscape view (top) of predicting community function with the dynamical 

view (bottom). In the dynamical view, species abundance dynamics are predicted via an 

ecological model, which integrates knowledge or measurements of interactions between 

populations. In contrast, the statistical landscape approach neglects dynamics and measures 

community function for a set of consortia, allowing functions for all possible community 

combinations to be inferred statistically.
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FIG. 2. Community function is predictable from species presence/absence in empirical datasets.
For each dataset, regularized linear regressions were performed using models truncated at 

the first, second, and third order (Eqn. 1). Bar plots show the quality of fit R2  for each 

of these models, either using all experimental data or using a systematic leave-one-out 

cross validation approach (labeled “LOO-CV”). Scatter plots show out-of-sample prediction 

values for the second-order regression fits obtained via the leave-one-out cross validation 

procedure. Analyses are shown for datasets by (A) Clark et al. [22], (B) Langenheder et al. 
[27], (C) Sanchez-Gorostiaga et al. [21], (D) Diaz-Colunga et al. [28], (E) data from the 

Sanchez lab, and (F) Kehe et al. [29]. See also Figs. 4–2.
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FIG. 3. Empirical community-function landscapes are not rugged.
(A) Normalized Fourier amplitude spectrum obtained from the combinatorially complete 

landscape from Langenheder et al. [27]. Normalized amplitude values correspond to the 

fraction of total landscape variance that is captured by terms at each order. The empirical 

amplitude spectrum (red) demonstrates that landscape variance is primarily explained by 

first-order terms, with higher-order terms explaining decreasing fractions of the variance. 

This denotes a low degree of ruggedness in the empirical landscape. Black traces show 

spectra obtained from randomized landscapes (points and error bars indicate the mean 

and standard deviation, respectively, across 100 randomizations). Unlike the empirical 

landscapes, the randomized versions are rugged: first-order terms explain a relatively 

small fraction of total variance. (B) For each additional dataset that is not combinatorially 

complete, the fitted coefficients of the regularized third-order linear regression are used 

to infer the normalized amplitude spectrum at first through third order. As in panel A, 

first-order terms explain more variance in the landscape than terms at second and third 

orders, indicating a lack of ruggedness. (C) For each dataset, normalized r/s values (a 

measure of ruggedness; see text) are computed by calculating the ratio of empirical r/s
values on original landscapes to the r/s value of 100 randomized landscapes. The normalized 

r/s values for all datasets are notably smaller than 1, again indicating a low degree 

of ruggedness in empirical landscapes compared to their randomized counterparts. The 

boxplots show the median as the centre line, with the boxes corresponding to the upper and 

lower quartiles, whiskers corresponding to values that lie within 1.5× the interquartile range 

and individual points indicating outliers.
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FIG. 4. Ecological models indicate both optimism and caution for inferring community-function 
landscapes.
(A) The generalized Lotka-Volterra (gLV) model was used to generate combinatorially-

complete synthetic community-function landscapes, taking total abundance as the function 

of interest. Landscapes were generated using an N = 10 species pool, and two parameters 

controlling the structure of randomly-drawn interactions were varied: an interaction-strength 

parameter μ, and an interaction variability parameter σ, with 10 landscape trials for each 

point in the μ − σ plane. Heatmap shows the (trial-averaged) R2 of the second-order 

approximation of the exact landscape, i.e., the variance explained by first- and second-order 

terms combined. This value is computed from the exact landscape coefficients inferred as in 

Fig. 3A (no fitting required). Note that as interaction variability σ becomes large, the model 

becomes unstable, causing species abundances to diverge. In our simulations, any points in 

μ − σ plane that encountered divergences in more than 5 landscape trials are indicated in 

grey. The black curve shows an analytical prediction (computed in the N ∞ limit [36]) 

for the stability boundary of the gLV model, beyond which species abundances will typically 

diverge. See also Supplementary Figs. S1, S2. (B) A consumer-resource model (CRM) 

was used to generate synthetic community-function landscapes with randomly-generated 

cross-feeding networks (schematic). One resource was supplied externally (“source”), while 

the function of the community was defined to be the concentration of a different resource 

(“target”). Networks comprising N = 10 species and L = 8 resources were generated so as 

to vary the length of the shortest path P  connecting the source resource to the target. 

Plot shows the variance explained R2  by models truncated at first, second, and third-order, 

computed using the exact landscape coefficients and shown as a function of P . The R2 value 

declines with P , as expected. Solid lines correspond to mean values obtained across trials, 

with error bands indicating ±1 standard deviation.
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