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The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative dis-
eases. Recent years have seen much progress in our understanding of these misfolded
protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic
resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However,
multiple repeat-expansion-related disorders have presented special challenges to structural
elucidation. This review discusses the special role of ssNMR analysis in the study of protein
aggregates associated with CAG repeat expansion disorders. In these diseases, the misfold-
ing and aggregation affect mutant proteins with expanded polyglutamine segments. The
most common disorder, Huntington’s disease (HD), is connected to the mutation of the hun-
tingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady pro-
gress in our understanding of the role of protein aggregation has depended on the
integrative and interdisciplinary use of multiple types of structural techniques. The heteroge-
neous and dynamic features of polyQ protein fibrils, and in particular those formed by hun-
tingtin N-terminal fragments, have made these aggregates into challenging targets for
structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-
like aggregates. These include the atomic-level structure of the polyglutamine core, but also
measurements of dynamics and solvent accessibility of the non-core flanking domains of
these fibrils’ fuzzy coats. The obtained structural insights shed new light on pathogenic
mechanisms behind this and other protein misfolding diseases.

Introduction
Protein aggregation diseases are human disorders associated with, and hallmarked by, the formation
of protein aggregates in afflicted patients [1]. These aggregates often share a common structural classi-
fication: an amyloid or amyloid-like fibrillar structure, representing long filaments with a characteristic
‘cross-β’ type architecture. For many protein aggregation diseases we now have a detailed understand-
ing of the structures formed by aggregated proteins. The current article will review recent develop-
ments in the structural biology of polyglutamine (polyQ) protein aggregation, with a focus on the role
played by magic angle spinning (MAS) solid-state nuclear magnetic resonance (ssNMR) spectroscopy.

polyQ diseases
The polyQ protein diseases are CAG repeat expansion disorders: inherited neurodegenerative diseases
connected to the genetic expansion of CAG codon repeats in various human genes [2]. This family
includes several different ataxias and Huntington’s disease (HD). In each disorder, a particular gene
that harbors a CAG repeat element is mutated. Individuals in which the CAG repeat is expanded
beyond a certain threshold (often in the range of 35–50 CAG repeats) are at risk for disease. Notably,
the age of onset is inversely correlated to the repeat length, with juvenile cases stemming from long
expansion lengths. Naturally, the mutated genes yield mutant proteins featuring an expanded polyQ
segment somewhere in the mutant protein (Figure 1A–C). These mutant proteins, or fragments
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thereof, form inclusions or aggregates [3]. The aggregation propensity is correlated to the polyQ length [4].
Most knowledge of the molecular mechanisms, the mutant proteins, and the aggregates is available for the
most common polyQ disorder: HD [5]. This review will focus on HD, with readers referred to other literature
for more information on other polyQ disorders [2,6,7].
In HD, the mutated protein is huntingtin (Htt), with the CAG repeat in its first exon (HttEx1; Figure 1A,C).

Full-length Htt exceeds 3000 amino acids, and its structure in the non-aggregated state has been solved by
cryo-EM [8,9]. However, in patients and model animals, the aggregating species is not the full-length protein,
but rather N-terminal fragments containing the expanded polyQ [10]. Much research focuses on fragments
that coincide with HttEx1, as it appears to play an important pathogenic role [11,12], even though other types
of N-terminal fragments may be relevant as well. Until now the precise mechanism by which the HD mutation
(and mutant protein) can lead to disease, remains uncertain. That said, many studies of HD pathogenesis focus
on HttEx1 as a representative model for the suspected proteinaceous disease-causing agent, invoking a
gain-of-toxic-function mechanism associated with HttEx1 misfolding and aggregation.

Earlier structural studies of polyQ protein aggregates
Since the 1990s, there has been much interest in the structure of aggregated polyQ proteins. Electron micros-
copy (EM; Figure 1E) and atomic force microscopy (AFM) showed the aggregates to be elongated filaments
[3,13]. A noted feature of HttEx1 fibrils is their heterogeneous (or fuzzy) appearance, and propensity for
higher-order clustering. X-ray fibril diffraction showed that aggregated polyQ proteins display the characteristic
cross-β signature common for amyloid-forming polypeptides (Figure 1D) [14–16]. The cross-β pattern of
polyQ aggregates suggests a 4.8 Å strand-to-strand distance in the hydrogen bonding direction, and a 8.2 Å

Figure 1. Summary of HttEx1 polyQ protein structures.

(A,B) Domain architecture of protein (fragments) from the most common polyQ diseases: HttEx1 from Huntington’s disease (HD) and ataxin-3 from

spinocerebellar ataxia 3 (SCA3). The polyQ segment is shown in yellow, alongside neighboring flanking domains with and without folded domains.

HttEx1 is disordered in its monomeric state. (C) Sequence of HttEx1, with the location of prominent post-translational modifications indicated. The

three key parts of HttEx1 are marked: N17, polyQ, and PRD. (D,E) X-ray fiber diffraction and negative stain transmission EM of aggregated polyQ/

HttEx1. Adapted with permission from Hoop et al. [28]. (F) Structural model of aggregated HttEx1 from ssNMR and other techniques. (G) The polyQ

core showing the block-like architecture that buries most of the polyQ segments. (F,G) Adapted with permission from Boatz et al. [33], under its

CC-BY license.
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sheet-to-sheet distance between the sheets [14]. Thus, polyQ protein fibrils display the hallmarks of amyloid or
amyloid-like fibrils.

Cryo-EM
Recent years have seen dramatic improvements in cryo-EM, including in its application to amyloid fibrils [17].
In the HD field, the structure of the un-aggregated full-length Htt was determined by single-particle averaging
[8,9]. In it, HttEx1 and its polyQ segment are not visible due to inherent disorder and flexibility. Aggregates
formed by the HttEx1 fragment have been subjected to both cryo-EM and electron tomography (ET), in cells
and in vitro [18–20]. These studies provided a view of the supramolecular architecture of HttEx1 fibrils and
their polymorphism, and permitted a comparison between cellular aggregates and those prepared from pure
proteins. The cryo-ET studies provide a compelling perspective on the way the HttEx1 fibrils interact with each
other and with subcellular compartments and membranes. They also report a high degree of similarity between
HttEx1 fibrils aggregated in a cellular context and in vitro. Individual fibrils have a width of multiple nm, but
these fibrils cluster into larger assemblies, which become visible as puncta in fluorescence microscopy studies.
Similar conclusions were drawn by recent super-resolution studies, which visualized nm-sized filaments along-
side the larger clusters typically detected by (confocal) microscopy [21]. Unlike dramatic atomic-resolution
structures obtained for other amyloid fibrils [17], no such high-resolution EM structures are available for any
polyQ protein fibrils. A recent paper [20] provided the first results from cryo-EM analysis of HttEx1 fibrils,
yielding improved insights into their architecture and their polymorphism (more below; Figure 3D). However,
the obtained data did not permit an atomic-level structure to be determined, due to fibril heterogeneity and dis-
order. Another challenge for cryo-EM analysis is that the fibrils lack a clear and systematic twist, which is
helpful for cryo-EM image analysis and atomic structure reconstruction.

ssNMR of polyQ amyloid cores
Since more than 15 years, ssNMR has been used to determine the structures of various pathogenic and func-
tional amyloids [22–24]. Those structure determinations incorporated also constraints from EM (and other)
techniques to generate full atomic-resolution structures. At the current time, no (peer-reviewed) atomic struc-
ture for polyQ or HttEx1 fibrils has yet been published (although a preprinted report on their integrative struc-
ture determination was posted in 2023 [25], but I here focus on the peer-reviewed literature). Historically, the
literature on ssNMR of polyQ aggregates began in 2011, with two reports from different groups [26,27].
Combined, these early studies identified several key features of polyQ amyloid structure. Independent of the
polyQ length, or the presence or absence of Htt-derived flanking sequences, the glutamine residues in the
polyQ core gave a characteristic doubled set of ssNMR signals (illustrated in Figure 2A,B, from [28]). As dis-
cussed in a later study [29], these signals are atypical for normal glutamine conformations, and seem to repre-
sent a ssNMR signature for polyQ amyloid. Strikingly, two sets of signals make up this signature, being present
in equal intensities. When targeted residue-specific isotope labeling is applied, this peak doubling is not
removed, independent of the labeled site (Figure 2A, top) [26,28,30]. Thus, it is apparent that each of two sets
of peaks represents the summed signals of many individual glutamine residues at different sequence positions
in the protein. This contrasts with non-repetitive (amyloid) proteins, in which one aims to observe one peak
per sequence position (i.e. per residue). Yet, the ssNMR (13C) peak linewidth of fully labeled polyQ proteins
does not differ dramatically from aggregates in which isolated residues were labeled (Figure 2A top vs bottom;
and refs. [26,28–31]). This means that there is a high degree of structural order and homogeneity in the fibril
core, despite the morphological heterogeneity and disorder seen by cryo-EM (above). The recent literature con-
tains a series of papers from different ssNMR groups that continue to show the remarkable consistency of this
polyQ ssNMR signature in many polyQ and HttEx1 fibril polymorphs (Figures 2A and 3B) [28,30,32–37]. This
is notably different from ssNMR studies of e.g. Aβ or α-synuclein polymorphs, where ssNMR signals of the
amyloid core residues vary significantly between preparations and between research groups [38–40]. Thus,
ssNMR suggests that polyQ-driven aggregation typically yields a reproducible, highly ordered, and characteristic
amyloid core architecture [28,41].
The determination of protein structures by ssNMR typically depends on measurements of distances between

specific residues, using dipolar recoupling techniques [42]. However, the glutamine residues in the polyQ core
all behave the same — a particular glutamine has a 50:50 chance to adopt one of the two hallmark signals.
Even residue-specific labeling (achievable by solid-phase peptide synthesis [26,30] or using Amber-codon
approaches [43]) yields the same pattern (Figure 2A). Therefore, distance measurements as a means toward an
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atomic-resolution structure are at best highly challenging. Does this mean that ssNMR structure determination
is not feasible in polyQ amyloid? Previous structural studies of amyloidogenic polypeptides [44–46] deployed
measurements of another structural parameter: torsion angles [47]. Specialized ssNMR experiments allow the
determination of the relative orientations of neighboring chemical bonds (e.g. N–H, C–H or C–N bonds),
based on the recoupling of dipolar interactions or chemical shift anisotropy tensors. This allows one to con-
strain the backbone (Ramachandran angles) and side-chain torsion angles (rotamer states). For a more
in-depth discussion of these experiments, readers are referred to a recent review article [47]. In polyQ amyloids,
these experiments were applied to backbone and side-chain dihedral angles of glutamine residues within the
amyloid core (Figure 2E,F) [25,28]. These torsion angle measurements showed unambiguously that the two
signals of the polyQ signature stem from two different glutamine conformations. Both conformations reflect
β-sheet structure, but they differ in their Ramachandran angles (Figure 2E) and rotamer states (Figure 2F).
These findings were based on the application of so-called NCCN and HCCH dihedral angle measurements,
where dipolar interactions were recoupled between carbons, nitrogens and protons [28,47]. Antiparallel
β-sheets are inherently expected (and observed) to assemble by alternating β-strands with different backbone
conformations (Figure 2C; red/blue arrows) [48]. This alternating pattern offers an elegant explanation of the
observation that two signals are typically observed in equal intensities in polyQ amyloids, independent of the
sample type (Figure 2A). Moreover, 2D ssNMR and IR studies using mixtures of isotope-labeled proteins pro-
vided evidence that polyQ-based aggregates (with long polyQ segments) contain β-hairpin structures

Figure 2. Example ssNMR data on the structure of polyQ amyloid cores.

(A) Comparison of 2D 13C-15N ssNMR spectra (NCA and NCO spectra) for three different polyQ aggregates, showing identical chemical shifts for

the polyQ core. The ssNMR signature of the polyQ core features two sets of signals, coined forms a and b (marked in red and blue, respectively), in

equal intensities. Note that the bottom samples are fully labeled HttEx1 protein fibrils, whilst the top shows a sample in which only two glutamines

are selectively 13C,15N-labeled. (B) Part of a 2D 13C-13C CP-DARR ssNMR spectrum showing the same two glutamine conformers, in equal

intensities. A smaller third peak (form c) is attributed to residues outside the buried core. (C) Schematic showing the molecular origin of the red/blue

conformers (forms a/b) in the antiparallel β-sheets of polyQ amyloid. (D) Published schematic showing the glutamine side chain interdigitation in the

core, based on ssNMR structural analysis. (E) PolyQ torsion angle ssNMR restraints for the backbone dihedral angles, shown in a Ramachandran

plot. Horizontal red/blue areas mark permitted regions based on dipolar recoupling measurements of the Ψ angle (NCCN experiments), while the

diamonds mark chemical-shift-based estimates from the TALOS program. (F) ssNMR data curves that constrain the side chain torsion angles χ1 and

χ2 of polyQ amyloid, based on HCCH-type dihedral angle measurements. The red and blue datapoints represent the two Gln conformers, along

with lines showing the best-fit dihedral angles. (A,B–F) Adapted with permission from Hoop et al. [28].
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(Figure 2C) [28,49]. Such experiments exemplify the way that targeted isotope labeling can be deployed to dis-
tinguish intra- from intermolecular interactions. The β-hairpin motifs could be recognized by detecting the
presence of backbone-backbone interactions in samples where the 13C-labeled protein was diluted with
non-13C proteins. The detected interactions could only be explained by intramolecular hydrogen bonding as
found in β-hairpin structures.
ssNMR side-chain dihedral angle measurements identified differences in the χ1 torsion angles of the two

dominant glutamine conformers (Figure 2F) [28]. These were experiments where the relative orientations of
the C–H bonds in the side chain were measured, using dipolar recoupling experiments. These measurements
also showed that the χ2 angle was close to 180° for both conformers. Similar angular constraints were also
reported by Raman spectroscopy [50]. Combining these structural insights, one can build a picture of the
internal structure of the polyQ amyloid core, with glutamine side chains extended into an interdigitated ‘steric
zipper’ interface (Figure 2D) [25,28]. The steric zipper concept describes a hallmark feature of amyloids, which
is that they often feature a dehydrated, highly stable core structure in which amino acid sidechains interdigitate
into a tight zipper-like configuration [51]. A related concept is the idea of polyQ polar zippers, as originally
proposed by Perutz et al. [16]: ‘linking β-strands together into sheets or barrels by networks of hydrogen bonds
between their main-chain amides and between their polar side chains’. However, back in 1994, these authors
lacked the atomic-resolution data to build an experiment-based atomic-level structure for polyQ. Notably, other

Figure 3. Studies of the HttEx1 flanking domains and their interactions.

(A) 2D ssNMR spectrum obtained by scalar-recoupling-based ssNMR spectroscopy, showing the flexible flanking domains of HttEx1 fibrils.

(B) Comparison of 1D 13C traditional (top; CP) and scalar (bottom; INEPT) ssNMR spectra for different HttEx1 polymorphs, revealing primarily

differences in flanking domain motion in the bottom spectra. (C) Negative-stain TEM of the same Q44-HttEx1 fibril types, which differed in their fibril

widths. (D) Cryo-EM data on a sub-class of Q23-HttEx1 fibrils, showing an architecture mediated by flanking domain interactions. The two images

represent different views on the same fibril type. (E) Model of flanking domain entanglement in protofilament interactions in wider HttEx1 fibrils (e.g.

type 2 shown in B,C), deduced from combined analysis of negative stain TEM and ssNMR data. (A–C,E) Adapted with permission from Lin et al.

[32], under the CC license. Panel (D) Reprinted with permission from Nazarov et al. [20] Copyright 2022 American Chemical Society.
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glutamine-rich amyloids feature such steric or polar zippers [45,51–55], but it is important to stress that those
fibrils typically feature parallel β-sheets, whilst the antiparallel structure (Figure 2C) of the polyQ fibril core
makes it qualitatively different. The use of ssNMR now enables structural measurements that can elevate
general amyloid concepts to an atomic-level understanding of core of polyQ amyloids, shared by polyQ model
polypeptides and disease-relevant HttEx1 fibrils.
A strength and limitation of ssNMR is its sensitivity to sub-nm structural features. On the one hand, this

means that ssNMR can provide atomic-level details even in absence of high-order structural homogeneity
(unlike X-ray diffraction). However, it also means that (fibril) structures determined by ssNMR rely on the
integration of sub-nm information from ssNMR with longer-range information from techniques such as EM,
ET, or AFM. Thus, ssNMR fibril structures are nice examples of ‘integrative structural biology’ [56]. EM and
AFM studies showed the filaments of polyQ-expanded HttEx1 to be several nm in width, both in vitro and in
cells. Combining this with inter-sheet and inter-strand distances known from X-ray fiber diffraction (above)
and structural ssNMR details, one can start to build a representative architecture (Figures 1F,G and 3)
[25,32,33]. Zooming out beyond the ‘zippered’ side chains, and antiparallel β-sheets, the ssNMR data are only
explainable by a type of block-like architecture, with multiple β-sheets stacked side by side (Figure 1G)
[28,32,33]. Notably, this type of architecture was previously suggested for polyQ aggregates, based on lower-
resolution fiber diffraction and mutational studies [14,57]. More recently, cryo-EM analysis provided more cor-
roboration of this key aspect of the HttEx1 fibril architecture (Figure 3D) [20]. As noted above, this EM ana-
lysis did not achieve atomic resolution due to fibril heterogeneity, but it did support key features deduced
previously from ssNMR-based analyses. Thus, combining the insights from different techniques (with a key
role for ssNMR), we have obtained a good understanding of the internal architecture of polyQ amyloid.

Beyond structure alone: dynamics, surfaces and more
MAS ssNMR offers various other valuable types of information, beyond structural restraints alone. Like liquid-
state NMR, ssNMR is sensitive to molecular motions, allowing a variety of dynamics measurements and spec-
tral editing techniques [58,59]. Direct detection of molecular motion can be done by measuring ssNMR relax-
ation and (dipolar) order parameters, which probe different regimes of motion. Such dynamic measurements
reveal that the dominant signals seen for the polyQ amyloid core stem from residues that are highly rigid, akin
to a crystal-like order [26–28,30]. For instance, this was detected in so-called DIPSHIFT measurements of
dipolar order parameters, comparing the dipolar couplings of C–H or N–H bonds to those expected for com-
pletely rigid molecules [30,32]. Parts of the protein outside the (polyQ) core display lower order parameters
and different relaxation properties, hinting at solvent exposure. This is most apparent for the flanking domains,
which will be discussed below (Figure 3). Comparisons of domain motions were facilitated in part by the
straightforward recognition of characteristic amino acid signals (e.g. Pro) that are unique to specific protein
domains. A bigger challenge is generated by the polyQ core itself, as it is made up out of dozens of identical
residues with highly similar chemical shifts. As such, their signals are dominated by the rigid core, making the
detection of e.g. surface residues challenging. A recent study [34] deployed specialized ssNMR spectral editing
techniques to selectively detect glutamines on the fibril surface, even against a larger background of residues in
the fibril core. This was based on an approach designed to detect residues experiencing intermediate motion,
by suppressing signals from the most rigid (core) residues that normally dominate (cross-polarization) ssNMR
spectra. Another powerful approach, based on somewhat similar principles, achieves a type of water-edited
spectroscopy in which one can determine the solvent-proximity of residues within protein fibrils. Such solvent-
proximity measurements have been applied to polyQ peptide and HttEx1 fibrils in many studies [26,27].
Indeed, the insights into dynamics and surface exposure (enabled by ssNMR) were crucial to the development
of structural models in which the large majority of polyQ segment residues form a rigid dehydrated core
(Figure 1F,G), with few solvent-exposed glutamines on the surface. These models explain the formation of
multiple-nm-wide fibrils containing tightly-packed interdigitating β-sheets, which are impenetrable to the
stains used in negative stain TEM (Figures 1G and 2D).

Going beyond the (polyQ) core: HttEx1 flanking domains
The polypeptide chain beyond the polyQ segment cannot be ignored. In HD, the HttEx1 flanking segments
have dramatic effects on both aggregation propensity and kinetics [26,60,61], and they determine also the fate
and effects of HttEx1 aggregates in cells [62–64]. The N-terminal segment (known as N17 or HttNT) boosts
aggregation, whilst the C-terminal proline-rich domain (PRD) delays it (Figure 1A,C). The flanking domains
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(in particular N17) contain residues that are impacted by post-translational modification (PTM): phosphoryl-
ation, acetylation, and ubiquitination (Figure 1C). The interest in these PTMs is substantial, as they prevent
aggregation, reduce toxicity (in animal models) and facilitate degradation processes [65–67]. Also chaperone
proteins that are able to disaggregate pre-formed amyloid, seem to target non-core flanking segments as essen-
tial binding sites [63,68]. MAS ssNMR has been used to elucidate the structural fate of these flanking segments
in a variety of HttEx1 fibril types [26,32–35,37,69,70]. These studies showed the flanking domains to lack the
β-sheet structure and rigidity of the amyloid core. Other ssNMR experiments probed the solvent-exposure of
the flanking segments, showing them to be much more solvent-exposed than the polyQ amyloid core.
A key early finding was that the aggregation-enhancing N17 segment was partly α-helical in HttEx1-like

peptide fibrils [26,31]. Later studies of various HttEx1 fibril types showed that different fibril polymorphs differ
in their N17 structure and dynamics [32,33,35,37]. The flexibility or mobility was even more striking for the
C-terminal PRD. In ssNMR and electron spin resonance studies parts of the PRD were remarkably flexible,
behaving similar to an intrinsically disordered protein (Figure 3A,B) [69,71]. Notably, proximal to the polyQ
core, the PRD becomes more and more ordered, leading to a gradient of flexibility along the C-terminal end of
HttEx1, as can be detected via NMR relaxation measurements [69]. Such ssNMR studies were previously also
applied to other fibrils featuring a ‘fuzzy coat’ of flexible polypeptide segments outside the fibril core [38,72].
This includes MAS ssNMR experiments that are based on similar principles as common in liquid-state NMR:
the use of through-bond or scalar-interactions to transfer magnetization (signal) between nuclei (INEPT
experiments). In their normal implementation, rigid parts of the sample (e.g. the fibril core) are invisible in
such experiments, due to the short 1H T2 relaxation times (in absence of 1H decoupling). This suppresses all
signals, except those from highly flexible protein segments (Figure 3A,B) [58,73]. Such MAS ssNMR experi-
ments probed the secondary structure, dynamics and interactions of the flexible flanking domains of HttEx1
fibrils [32,35,69]. This revealed the rigid polyQ core to be decorated with flexible, exposed, flanking domains
(Figure 1F,G). This molecular architecture manifests in EM as a fuzzy coat, or a bottle-brush type architecture
[71], a feature also seen in other pathogenic amyloid fibrils [74,75].

ssNMR views of supramolecular HttEx1 polymorphism
One important aspect of the fuzzy coat of HttEx1 fibrils is that it plays a striking role in HttEx1 fibril poly-
morphism [32,37]. Amyloid polymorphism describes the observation that most amyloid-forming polypeptides
form an array of different kinds of fibrils depending on conditions. The interest in these ‘polymorphs’ stems
from the fact that their different structures translate into differences in biological properties such as fibril stabil-
ity and toxicity [40]. Moreover, once formed, certain fibril types are able to propagate themselves by recruiting
soluble protein monomers and catalyzing their transformation into the amyloid state. The existence of fibril
polymorphs can offer a rationale for conflicting findings regarding the cellular toxicity of protein aggregates.
Even if certain types of fibril assemblies are measured to have low cytotoxicity [76], other polymorphs may be
much more pathogenic, complicating direct comparisons unless one validates the polymorph structure between
measurements.
The sensitivity of ssNMR to atomic-level details has made it a valuable tool for detecting and dissecting

amyloid polymorphs. Commonly, amyloid polymorphs have distinct ssNMR spectra with peaks arising at dif-
ferent chemical shift values [38–40]. A striking feature of HttEx1 fibrils is that different preparations do not
differ in peak positions, even when they can look dramatically different by EM, have different polyQ lengths,
or are prepared by different research groups [26–29,32,33,35,37]. What does this mean? When HttEx1 is aggre-
gated under different conditions, EM measurements and antibody binding assays can show differences in the
fibrils [32,37,77]. Yet, ssNMR spectra on these samples yield very similar spectra in which peak positions do
not change, arguing that the local atomic-level structure is not different. Then how can these be distinct poly-
morphs? Clues are found in dynamics seen by ssNMR: different polymorphs differ in the dynamics and
solvent-accessibility of flanking domains. This pointed to a model in which the HttEx1 aggregates tend to
contain very similarly structured fibril cores (on the atomic level; Figure 2A) but supramolecular interactions
within and between protofilaments differ (Figure 3D,E). Here, the term protofilament refers to smaller fila-
ments that wrap around each other to form wider fibrils. The ssNMR data make sense if HttEx1 fibrils are
assembled from thinner protofilaments (∼4–6 nm wide), with varying interactions between the protofilaments
mediated by flanking domains (and in particular the PRD). This idea is reminiscent of the subsequently intro-
duced concept of ‘supramolecular’ or ‘ultrastructural’ polymorphism, in which tau fibrils were found to contain
similarly structured protofilaments engaged in a variety of supramolecular interactions [78]. Crucially, this
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model has found direct support from recent cryo-EM analysis of HttEx1 fibril structure (Figure 3D) [20]. Aside
from differences in the flanking segments (and their interactions), the polyQ literature (and ssNMR studies
therein) also suggest changes or variations in the supramolecular architecture of the polyQ segment itself. As
discussed above, ssNMR on expanded polyQ protein aggregates revealed β-hairpins within the fibril core [28].
Shorter polyQ peptides or proteins appear to lack the β-hairpin, even if they still form the same type of anti-
parallel β-sheet architecture [41]. Thus, it has been suggested that there is a polyQ-dependent switch in aggre-
gation mechanisms, which may explain the polyQ threshold phenomenon in the respective diseases [29,41,79].
Notably, as yet, ssNMR has been one of the few techniques that was able to structurally analyze these types of
hairpin structures in polyQ fibrils [28,29,49,80,81].

Placing polyQ protein structures in context
The above has summarized how the unique abilities of ssNMR reveal structural features of polyQ amyloid pro-
teins. But how do these structural insights enhance our understanding of disease mechanisms? There is much
debate about the role of HttEx1 aggregates in HD pathogenesis. One the one hand, studies show the toxic effect
of pre-formed aggregates on neuronal cells, arguing for their toxic properties [82,83]. Other studies suggest that
cellular inclusions (visible by confocal microscopy) are benign and may act as a rescue mechanism [76]. One way
to unify these findings is to argue that different types of aggregates (polymorphs) are formed in different studies,
with polymorph-dependent differences in toxicity. What would this mean considering the discussed structural
data that suggest a common core structure, but differences in flanking domain exposure? Postulated mechanisms
for aggregate toxicity have a common theme: the propensity for misfolded proteins to engage with cellular com-
ponents. These components could be essential proteins, cellular membranes, or components of the proteostasis
network. Notably, it is increasingly clear that many such interactions are mediated by HttEx1 flanking segments,
rather than the polyQ domain [63,64]. Thus, the disposition, flexibility and exposure of flanking domains (which
vary among HttEx1 polymorphs) are parameters likely to dictate the propensity for cellular interactions, the
aggregates’ interactome, and thus toxic mechanisms. The identification of the polymorph-dependence of flanking
domain exposure, by ssNMR, therefore is essential to understand this disease mechanism.
There is also much interest in PTMs that affect HttEx1, before and after aggregation. PTMs are implicated in

reducing aggregation, toxicity and degradation of misfolded proteins [31,65,67,84]. ssNMR-based structural models
of HttEx1 aggregates show that the PTM sites (in N17; Figure 1C) may be outside the core, but nonetheless are
sequestered due to being surrounded by longer PRD segments. This limits their accessibility to kinases [66,67], ubi-
quitinases [65] and other N17-targeting proteins (including chaperones [85]). Naturally, ssNMR can probe the
impact of PTMs and PTM-mimicking mutations directly. One exploratory study did so, showing no large change
in conformation, but again suggesting a stronger role for changes in dynamics and aggregate stability [31].
The focus above has been on our understanding the end-products of the misfolding and aggregation process.

This process is complex and multifaceted, with roles for the polyQ as well as flanking segments [86]. Aside
from mature fibrils, studies have reported soluble oligomers and other non-fibrillar species [87–89].
Understanding features of the end-products helps us understand the possible role of different HttEx1 segments
in the aggregation pathway, for instance by offering support for α-helical N17 stabilization [26]. Moreover,
ssNMR can be a combined with mutations or modifications that test hypotheses about the aggregation mechan-
ism. This is exemplified by ssNMR studies of polyQ peptides outfitted with β-hairpin stabilizing modifications,
which tested the possible role of this folding motif in the aggregation process [29,80,81]. Such
β-hairpin-stabilizing modifications boost aggregation, whilst ssNMR measurements showed that this occurred
without a fundamental change in the internal aggregate structure.

Challenges and future directions
Most ssNMR studies discussed above were performed using proteins or peptides with isotope enrichment (13C
and/or 15N). This enables multidimensional spectroscopy and speeds up NMR analysis. Until now, this has
limited the ssNMR to aggregates prepared from purified proteins, as the production of isotope-enriched materi-
als in neuronal cells or model animals remains challenging. An important future goal is to test directly whether
aggregates formed in cells, animals, or patients are different in structure. One way is to pursue ssNMR analysis
of unlabeled proteins. The literature includes many studies in which the signature peaks of polyQ amyloids
were detected in absence of isotope labeling [26,81,90,91]. One particularly promising novel approach is the
combination of ssNMR with dynamic nuclear polarization (DNP), which boosts the ssNMR sensitivity by
orders of magnitude, making 2D DNP-ssNMR experiments on unlabeled proteins practical [90,91]. An
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alternative approach has been deployed in other amyloid studies [92]: using unlabeled ex vivo aggregates as
seeds for the aggregation of isotope-labeled proteins. Such experiments could test whether the seeded aggregates
feature polyQ core signatures, or if this may open up different aggregation pathways [93]. Fortunately, the
study of polyQ proteins will also benefit from ongoing advances in ssNMR technology. These developments
include the increasing availability of higher-field ssNMR magnets, ever-faster MAS spinning rates, 1H-detected
MAS NMR, and cryogenically cooled MAS NMR probes. The application of these novel technologies will
enable the study of (much) smaller sample sizes and the detection of more subtle structural/dynamic effects.
Especially the former can be valuable to pursue ex vivo samples, in-cell studies and difficult-to-prepare samples
(e.g. based on segmental- or residue-specific labeling techniques[43,94]).
An obvious (and necessary) future direction is the ssNMR analysis of other polyQ disease proteins. Until

now, ssNMR data are limited to polyQ model peptides and derivatives of the HttEx1 protein. MAS ssNMR
analysis of polyQ-expanded ataxin-1 or ataxin-3 aggregates would be very interesting, even just to see if such
aggregates contain a common polyQ core structure. Naturally, the flanking segments would differ completely
from those in HttEx1. It is likely that those proteins also yield heterogeneous aggregates, with disordered
regions, leaving again an important role for ssNMR analysis. Even in the context of HD, there are many open
questions related to the impact of PTMs, different polyQ lengths, Htt fragments, interactions with membranes,
chaperones and other proteins.
In conclusion, this mini-review set out to provide a basic overview of key contributions of ssNMR to our

understanding of the polyQ protein aggregates. This research area illustrates how ssNMR can play an essential
role in the study of amyloid fibrils, illuminating aspects not easily determined by other structural techniques.
The ability to probe the fibrils’ dynamic fuzzy coat (flanking domains) was discussed in some detail, and how
this is connected to important biological questions relevant to disease. Many open questions remain to be
answered, with a continued role for ssNMR as a key technique in the integrative structural biology of polyQ
disease proteins, as well as other protein aggregates and biomolecular complexes.

Perspectives
• Protein aggregation into amyloid-like fibrils is a hallmark feature of the CAG repeat expansion,

or polyglutamine expansion, disorders — a whole family of incurable inherited neurodegenera-
tive diseases. The structural fate of the mutant proteins in their misfolded state is an essential
part of the pathogenic mechanism.

• ssNMR spectroscopy has been an essential technique for understanding the structure of
aggregated polyQ proteins, and in particular the mutant huntingtin exon 1 from HD. Surprising
structural features of the polymorphic huntingtin aggregates shed light on their biological
properties.

• Future applications of ssNMR promise to widen our understanding of other polyglutamine
disease proteins, further deepen our knowledge of the molecular disease mechanisms and
pave the way for better diagnostics and treatments.
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