Skip to main content
. 2024 May 5;10:100284. doi: 10.1016/j.bjao.2024.100284

Table 1.

Summary extracted data from studies examining amino amide local anaesthetics which meet systematic review selection criteria. 5-FU, 5-fluorouracil; 8-OHdG, 8-hydroxy-2' -deoxyguanosine; ABCG2, ATP-binding cassette G2; AKT, protein kinase B; Bax, BCL2-associated X; Bcl-2, B-cell lymphoma 2; c-Met, c-mesenchymal-epithelial transition factor; c-Src, Proto-oncogene tyrosine-protein kinase Src; DDP, diamminedichloroplatinum; EMT, epithelial-to-mesenchymal transition; ERK1/2, extracellular signal-related kinase 1/2; GSK3B, Glycogen synthase kinase-3 beta; IL-6, interleukin-6; mTOR, mammalian target of rapamycin; miR, micro RNA; MLC, myosin light chain; MMP, matrix-metalloproteinase; MRP, multidrug resistance-associated protein; NLC-DTX, nanostructured lipid carrier-docetaxel; PI3K, phosphoinositide 3-kinase; Rac1, Ras-related C3 botulinum toxin substrate 1; RARβ2, retinoic acid receptor beta 2; RASSF1A, Ras association domain-containing protein 1; ROCK, Rho-associated, coiled-coil containing protein kinase 1; ROS, reactive oxygen species; SCC, squamous cell carcinoma; SIRT, sirtuin 1; SOX4, SRY-related HMG-box 4; TGF, transforming growth factor.

1st author and year Study type Cancer type (cell line) Local anaesthetic(s) studied Local anaesthetic concentration Chemotherapy agent(s) studied Interaction observed (e.g. no effect, synergistic effect, additive effect, etc) Mechanism(s) studied (if any)
Li 201451 In vitro Breast (MCF-7, MDA-MB-231) Lidocaine 10 μM–1 mM Cisplatin Lidocaine enhanced the cytotoxic effects of cisplatin Upregulation of RARβ2 and RASSF1A (promoters of tumour suppressor genes)
Xing 201746 Both Hepatocellular (HepG2) Lidocaine 100 μM–10 mM in vitro, 30 mg kg−1 twice weekly in vivo Cisplatin Lidocaine–cisplatin treatment was more cytotoxic in vitro and suppressed tumour growth more effective in vivo than either agent used alone Bcl-2, Bax, and cleaved caspase-3 activation, activation of ERK1/2, p-38 cascade
Yang 201949 In vitro Lung cancer (A549/DDP) Lidocaine 1–100 μM Cisplatin Lidocaine reduced cisplatin resistance miR-21 expression
Liu 202247 In vitro Skin squamous cell carcinoma (A431) Lidocaine 0–10 mM Cisplatin Lidocaine reduces cisplatin resistance miR-30c/SIRT1 pathway activation
Freeman 201844 In vivo Breast (4T1 murine) Lidocaine 1.5 mg kg−1 bolus then 2 mg kg−1 h−1 infusion Cisplatin Enhanced effect in terms of reduced pulmonary metastases, no effect on liver metastases No significant difference in serum IL-6 noted
Zhang 202048 In vitro Gastric (MGC-803, MGC-803/DDP) Lidocaine 25 μM–200 μM Cisplatin Lidocaine reduced cisplatin resistance Inhibition of miR-10b, AKT/mTOR and β-catenin pathway repression
Gao 201845 Both Breast (MDA-MB-231, MCF-7) Lidocaine In vitro 12 mg kg−1 (murine model) Cisplatin Nanogel loaded lidocaine has a synergistic anticancer effect with co-loaded cisplatin both in vitro and in vivo N/A
Lazo 198552 In vitro Leukaemia (L1210 murine) Lidocaine 0–10 mM Cisplatin, bleomycin, mitomycin C, etoposide Lidocaine potentiates bleomycin, cisplatin and etoposide cytotoxicity N/A
Zeng 202143 In vitro Gastric (MKN45) Lidocaine 10 mM Cisplatin, 5-FU Lidocaine enhanced sensitivity of cells to chemotherapeutic agents Phosphorylation levels of c-Met and c-Src were reduced by lidocaine treatment
Zhang 201940 In vitro Choriocarcinoma (JEG-3, JAR) Lidocaine 10–1000 μM 5-FU Lidocaine potentiated 5-FU cytotoxicity ATP-binding cassette (ABC) transport protein expression—expression of ABCG2, P-glycoprotein, MRP1, MRP2, PI3K/AKT pathway inhibition
Wang 201741 In vitro Melanoma (SK-MEL-2) Lidocaine 10–1000 μM 5-FU Lidocaine enhances sensitivity of melanoma cells to 5-FU Lidocaine induced expression of miR-493 and downregulated expression of SOX4 perhaps by inactivation of PI3K/AKT and TGF-TGF-β pathways
Polekova 199258 In vitro Leukaemia (L1210, murine) Lidocaine 0–2 mM Vincristine Lidocaine reversed cancer cell resistance to vincristine P-glycoprotein and MDR1 (multidrug resistance) gene expression
Kim 201929 In vitro Oral SCC (KBV20C, MDR cells) Lidocaine 5 μM Vincristine Lidocaine had no additional effect on cell viability when combined with vincristine Inhibition of the P-glycoprotein cell efflux protein
Wall 201931 In vivo Breast (4T1 murine) Lidocaine 1.5 mg kg−1 bolus + 2 mg kg−1 h−1 infusion Bosutinib Bosutinib reversed the antimetastatic effect of lidocaine, lidocaine reduced MMP-2 expression Src, MMP-2/9 inhibition
Wall 202130 In vitro Breast (4T1 murine) Lidocaine 5 μM–3 mM Bosutinib No effect of combination therapy at therapeutic concentrations N/A
Han 202262 Both Breast cancer (MDA-MB231 and 453) Lidocaine 0–3 mM Palbociclib Palbociclib effects enhanced by local anaesthetic (in vivo/in vitro) Inhibition of PI3K/AKT/GSK3B and EMT signalling
Yang 201855 Both Bladder (BIU-87) Lidocaine 1.25–5 mg ml−1in vitro, 2.5–5 mg ml−1in vivo per week Mitomycin C, pirarubicin In vitro lidocaine enhances cytotoxicity of both chemotherapeutic agents, in vivo lidocaine/MMC prolonged survival and reduced mean bladder wet weight compared with solo therapy N/A
De Moura 202161 Both Melanoma (B16–F10 murine, SK-MEL-103) Lidocaine 30 μM–10 mM Docetaxel (DTX) Addition of lidocaine to NLC-DTX and HGel-NLC-DTX systems increased their cytotoxicity in vitro; addition of lidocaine decreased tumour growth in vivo Nanostructured lipid carriers (NLC) combined with the antineoplastic docetaxel, formed a hybrid gel (NLC-in-hydrogel) for topical application
Zheng 202056 In vitro Melanoma (A375, A431) Lidocaine, ropivacaine, bupivacaine 250 μM–2 mM Dacarbazine, vemurafenib Ropivacaine and lidocaine (but not bupivacaine) enhanced the antimigratory, antiproliferative and pro-apoptotic effects of vemurafenib and dacarbazine Ropivacaine and lidocaine decreased RhoA, Rac1, and Ras activity; bupivacaine did not affect RhoA, Rac1, and Ras activity
Brummelhuis 202159 In vitro Ovarian (OVCAR3, OVCAR5, T47D, KURAMOCHI, JHOS4) Lidocaine, bupivacaine, benzocaine, procaine Lidocaine (0.2–125 mM), bupivacaine (6 μM–3.75 mM), benzocaine (8 μM–5 mM), procaine (0.02–12.5 mM) Carboplatin, paclitaxel Additive effect of local anaesthetics to chemotherapeutic agent effect Voltage-gated sodium channel (VGSC) inhibition
Lirk 201457 In vitro Breast (BT-20, MCF-7) Lidocaine, bupivacaine, ropivacaine 10–309.2 μM Decitabine (DAC) No effect of local anaesthetic/DAC combination on cell viability, lidocaine and ropivacaine cause DNA demethylation—this effect is additive (but not supra-additive) when lidocaine is combined with DAC DNA demethylation
Dorr 199028 In vitro Leukaemia (L-1210, RL-1210) Lidocaine, procaine 250–350 μM Mitomycin C Local anaesthetics did not reverse resistance to mitomycin-C P-glycoprotein expression
Mizuno 198253 In vitro Breast (FM3A murine) Lidocaine, procaine, dibucaine, butacaine, tetracaine 0.2 mM–12 mM Bleomycin All local anaesthetics enhanced bleomycin cytotoxicity N/A
Mizuno 198254 In vitro Breast (FM3A, HeLa) Lidocaine, procaine, dibucaine, butacaine, tetracaine 0–10 mM Peplomycin All local anaesthetics enhanced the cytotoxicity of peplomycin, this was enhanced further by hyperthermia N/A
Chen 202050 In vitro Hepatoma (HepG2, BEL-7402) Lidocaine, ropivacaine, bupivacaine 0.05, 0.5, 5 mM Cisplatin Chemotherapeutic effect enhanced by local anaesthetics Unregulated RASSF1A expression
Zhu 202042 In vitro Oesophageal (OE19, SK-GT-4) Lidocaine, ropivacaine, bupivacaine, mepivacaine 10–100 μM 5-FU, paclitaxel Local anaesthetics augmented the effects of chemotherapeutic agent drugs in inhibiting growth and inducing apoptosis Mitochondrial dysfunction and oxidative damage (decreased oxygen consumption rate, increased intercellular ROS and 8-OHdG levels), decreased Rac1 activity, no effect on RhoA
Meireles 201860 In vitro Prostate (PC3) Lidocaine, ropivacaine, levobupivacaine Lidocaine (426.7–853.4 nM), ropivacaine (36.4–273.3 nM), levobupivacaine (43.3–173.4 nM) Docetaxel Local anaesthetics enhanced chemo-induced inhibition of cell proliferation N/A
Zheng 201866 In vitro Leukaemia (CD34, K562, LAMA84) Ropivacaine 100–1000 μM Dasatinib, imatinib Local anaesthetic/chemotherapeutic agent combination causes greater growth inhibition and apoptosis induction than either agent used alone PI3K/Akt/mTOR pathway inhibition, increased caspase-3 activation
Gong 201865 In vitro Breast (MDA-MB-468, SkBr) Ropivacaine 0.1–1 mM 5-FU Enhanced effects of 5-FU on inhibiting cell growth, survival, and colony formation Inhibition of mitochondrial respiration (inhibition of phosphorylation of Akt, mTOR, rS6, and EBP1)
Dan 201867 In vitro Gastric cancer (SNU1, AGS) Bupivacaine 10 μM–5 mM 5-FU Inhibitory chemotherapeutic effects augmented by bupivacaine Inhibition of RhoA/ROCK/MLC