
INTRODUCTION

Multiple sclerosis (MS) and neuromyelitis optica spectrum disor-
der (NMOSD), both immune-mediated demyelinating disorders 
of the central nervous system (CNS), have been acknowledged as 
being some of the most debilitating neurological conditions. MS is 
a chronic immune-mediated demyelinating disorder that primar-

ily affects Europeans, and is uncommon in Asians, Africans, and 
indigenous Americans [1]. It has been suggested that the etiology 
of MS is centrally demyelination induced as a consequence of 
inflammatory cells invading the CNS through blood vessels in the 
blood-brain barrier (BBB) [2]. These inflammatory cells, in ad-
dition to activated microglia and astrocytes, have been shown to 
contribute to oligodendrocyte injury [1, 3, 4]. The relapsing-remit-
ting phenotype of MS, which accounts for 85-90% of all MS cases, 
is caused by peripheral inflammation as a result of periodic inva-
sion [4, 5]. In the advanced progressive stage of MS, the repetitive 
destruction of oligodendrocytes causes persistent oxidative stress, 
mitochondrial dysfunction, brain iron accumulation, hypoxia, de-
fective remyelination, and glutamate hyperexcitability, eventually 
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leading to neurodegeneration [1, 6]. The clinical manifestations of 
MS vary based on the area affected, frequent locations being the 
optic nerve, the cerebral cortex, white matter, brainstem, and spinal 
cord [1]. Disease-modifying therapies (DMTs), which primarily 
target inflammatory cascades and have pleiotropic effects, have 
been the standard therapies for MS [3]. The exact pathophysiology 
of MS, however, remains unknown, and no specific antibody has 
been identified and investigated facilitating the detection of MS. 
As a result, the diagnosis of MS still utilizes the 2017 McDonald 
criteria which indicate space and time dissemination [7].

Until 2004 NMOSD was considered an MS variant but then a 
specific antibody was discovered [8]. That antibody is immuno-
globulin G (IgG) directed against aquaporin 4 (AQP4), in combi-
nation with complement system activation [8, 9]. That antibody 
causes invasion of the CNS by peripheral granulocytes through 
the CNS, resulting in astrocytic endfeet damage, severe inflamma-
tion, secondary oligodendrocytic injury, and demyelination [9, 10]. 
The six essential clinical characteristics that must be present in ad-
dition to the presence of AQP4 IgG for a diagnosis of NMOSD are 
longitudinally extensive transverse myelitis (LETM), optic neuritis 
(ON), area postrema syndrome (APS), brainstem encephalitis, 
diencephalitis, and telencephalitis [9]. Autoantibody elimination 
and inflammatory cascade suppression have been the main goals 
of NMOSD therapy [9, 11, 12].

Extracellular vesicles (EVs) are nano-sized, non-nucleated struc-
tures that are hypothesized to facilitate intercellular communica-
tion and contribute to autoimmune processes. EVs have been 
connected to the development and deterioration of a range of 
pathological conditions, including cancer, cerebrovascular disease, 
Alzheimer’s disease, and central demyelinating diseases (MS and 
NMOSD) [13-17]. Many studies have described the potential in-
volvement of EVs as possible biomarkers and as a novel diagnostic 
approach known as a liquid biopsy for a variety of disorders [18-
20]. Furthermore, one of the therapeutic uses of EVs which has 
the greatest potential is as carrier for the drug delivery system [21]. 
As a result of those previous studies, the aim of this review was 
to summarize and discuss the evidence available from in vitro, in 
vivo, and clinical studies on the role of EVs in central demyelinat-
ing diseases, primarily as regards MS and NMOSD, as well as EV 
therapy strategies for treatment of central demyelinating diseases. 
Any contradictory findings have been included and considered in 
this review.

SEARCH STRATEGY AND SELECTION CRITERIA

The PubMed database was searched using the keywords: “de-
myelinating”, “multiple sclerosis”, “neuromyelitis optica”, “exosome”, 

“extracellular vesicles”, “microvesicles” and “central nervous system” 
with a demarcation from 2011 to 2024. The search was limited to 
research articles published in the English language.

OVERVIEW OF EXTRACELLULAR VESICLES

EVs are double-layered and non-nucleated vesicles that contain a 
diversity of cytoplasmic biological substances. Different cell types, 
in both physiological and pathological stages, secrete distinctive 
EVs in order to maintain cellular homeostasis and communicate 
with adjacent cells [22]. Considered as a carrier for biochemical 
compounds, enzymes, signaling molecules, biogenesis factors, 
chaperones, cytoskeletal factors, and nucleic acids especially mi-
croRNA are contained within EVs. Based on their biogenesis, 
release mechanisms, size, composition, and function, the three 
primary subtypes of extracellular vesicles (EVs) are exosomes, 
microvesicles, and apoptotic bodies [13, 23-26]. Exosomes are 
the smallest EVs, ranging from 30~100 nm in diameter, and are 
formed by the inward budding of the endosomal compartment, 
subsequently being released to the periphery by the exocytotic 
process. Exosomes usually contain lipids and nucleic acids [24]. 
Microvesicles, however, are approximately 100~1,000 nm in di-
ameter and since they arise directly from the cell membrane, they 
typically express transmembrane molecules and glycoproteins de-
pending on their parental cells [25]. Apoptotic bodies are approxi-
mately 1,000 to 5,000 nm in diameter and mostly develop in the 
late stage of apoptotic cells. Phosphatidylserine is often transferred 
to the outer membrane of apoptotic bodies, which then stimulates 
phagocytes to remove the dead cells [26]. As previously stated, EVs 
are involved in cell-to-cell communication; hence, dysfunctional 
EVs lead to pathogenic processes and promote autoimmunity [27].

ISOLATION AND CHARACTERIZATION OF EXTRACELLULAR 
VESICLES

Extracted EVs from MS and NMOSD patients were investigated 
using various methods. However, the interpretation and compari-
son of the findings across studies must be considered carefully. 
Different isolation and characterization techniques used in the dif-
ferent studies caused different EV findings [28]. Focusing on the 
isolation technique, ultracentrifugation (UC) is the most widely 
used isolation method and is considered the gold standard for 
EV extraction and separation. UC does not need EV labeling and 
can avoid cross-contamination. However, this technique is time-
consuming and expensive [22]. Polymer precipitation is another 
approach that uses polyethylene glycol as a medium, the technique 
involves the incubation of EVs under centrifugation conditions 
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by decreasing the EV solubility. Contrarily, this approach has a 
high false-positive rate, and the polymer has an adhesive feature 
that makes it difficult to remove for future EV investigation. Size-
based isolation by means of size exclusion chromatography is an 
alternative technology with a high enrichment efficiency and low 
cost. The main disadvantage of this technique is its impurity [22, 
28]. The different characterization techniques also can have im-
pact on different EV characteristics. Characterization techniques 
are mainly divided into external characterization (primarily mor-
phology and particle size detection) and internal characterization 
(membrane protein and lipid raft). The electron microscope is 
used to detect EV morphology, but the technique is complicated 
and unsuitable for the rapid testing of many EV samples. Nanopar-
ticle tracking analysis (NTA) is a real-time detection method but 
carries a high risk of impurity [28]. Camera levels and detection 
thresholds affect the quality of NTA. Western blotting is a conven-
tional technique that can qualitatively and quantitatively analyze 
marker proteins. However, the detection of marker proteins varies 
depending on the type of parental cell, and it is not suitable for the 
detection of EV marker proteins in biological fluids [28].

Since the quantity of EVs in blood plasma or serum is believed 
to be between 107 and 1012 EV/ml, serum EVs have garnered a 
great deal of attention [29]. However, many investigators have 
demonstrated the EVs in various samples beyond serum. Differ-
ent sample types can result in different EV profiles. In contrast 
with serum, cerebrospinal fluid (CSF) is a type of biological fluid 
secreted from choroid plexus ependymal cells. CSF surrounds the 
brain and spinal cord in order to protect the CNS, support homeo-
stasis, and remove waste products. Approximately 80% of CSF EVs 
originate from the blood, whereas the remaining are produced by 
nerve cells [30]. However, due to the high integrity of the BBB, the 
protein level of CSF becomes 100 to 300 times lower than protein 
found in serum [30, 31]. Therefore, a high amount of CSF is re-
quired in order to obtain sufficient EVs for analysis. Albumin and 
immunoglobulin, the two most abundant proteins in the CSF, may 
hinder the identification of low-abundance proteins and result in a 
substantial loss of EV information. As a result, direct comparisons 
between methods may be difficult according to the advantages 
and disadvantages of individual techniques. Size, function, sample 
type, and parental source of EV make isolating and characteriza-
tion of EV problematic [28, 32].

EXTRACELLULAR VESICLES AND PATHOLOGICAL CORRELA-
TIONS IN CENTRAL DEMYELINATING DISEASES

Extracellular vesicles and pathological correlations in 

multiple sclerosis

The central paradigm of central demyelinating diseases, espe-
cially in the case of MS, is an increase in the inflammatory process 
and a downregulation of immune tolerance. EVs derived from 
various origins carry different characteristics and functions.

Extracellular vesicles classified by their cellular origins

Endothelial cell derived extracellular vesicles
The pathophysiology of MS is thought to involve endothelial 

dysfunction as a crucial factor. The expression of certain markers 
on the endothelial surface, such as CD31 (PECAM-1), CD51 (inte-
grin), CD54 (ICAM-1), CD62E (ELAM-1 or E-selectin), CD63E, 
and CD105 (endoglin), increases the adhesion of inflammatory 
leukocytes to endothelial cells and promotes their transendothelial 
migration into the CNS [33-37]. 

It is believed that radiological exacerbation, which refers to an 
increase in the severity of lesions seen on imaging without the pre-
sentation of any clinical symptoms, occurs prior to or simultane-
ously with clinical exacerbation. Notably, CD31 and CD54, which 
are localized at endothelial cell intercellular junctions, show high 
levels of expression during radiological relapse even in the absence 
of clinical symptoms [34, 36]. Once the exacerbation reaches the 
clinical exacerbation threshold, endothelial cell damage occurs, 
leading to the disruption of the BBB. CD31 and CD62E are among 
the earliest markers to be released, indicating endothelial injury. 
CD51, along with CD54, which acts as a transmembrane receptor, 
facilitates leukocyte recruitment and adhesion to endothelial cells 
via Th1 cell activation [34, 36, 38]. CD51 also plays a role in signal-
ing between the extracellular matrix and cells and has been found 
to indirectly contribute to nerve regeneration. Following an ex-
acerbation, demyelinated neurons attempt to repair and promote 
remyelination. The expression of CD51 increases after an attack 
but remains elevated even after treatment, suggesting that remye-
lination is a long-term process [39]. However, not all brain regions 
exhibit the same levels of these endothelial EV markers. Based on 
the process of neurovascular injury, the subcortical gray matter 
periventricular region, which is highly vascularized, is the most 
affected area of the brain [35]. The association between different 
brain regions may provide additional insights from imaging data 
for predicting the clinical course and early diagnosis of relapse.

Platelet-derived extracellular vesicles
Platelets have been classified as inflammatory cells due to their 
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multifaceted functions beyond hemostasis. Within platelet-alpha 
granules reside a wide range of EVs responsible for inflammatory 
process [40]. Following BBB disruption from impaired endothe-
lial cells and astrocyte foot processes, peripheral inflammatory 
cells are recruited into the CNS. Platelet-derived EVs have been 
proposed to play a significant role in leukocyte recruitment and 
to facilitate transendothelial migration into the CNS, leading to 
inflammation and demyelination. In patients with MS, CD31+ 
marker of platelet EV is observed only in the inflammation-pre-
dominant stage, RRMS [33, 35]. This phenomenon is not evident 
in the very early stage, CIS, nor in the advanced stage, SPMS. The 
postulated explanation is that there is limited degree of inflamma-
tion demonstrated in CIS, whereas in SPMS, neurodegeneration 
rather than neuroinflammation is the primary pathophysiology 
[41]. However, some level of inflammation persists across all stages 
of MS evidenced by the heightened expression of CD61 (integrin 
beta 3), CD62 (P-selectin), and surface IgM on platelets [33, 42, 
43]. The alteration of platelet-derived EVs could potentially serve 
as a marker for identifying MS stages and predicting MS prognosis 
[33, 35].

Leukocyte-derived extracellular vesicles
Inflammation arises from an imbalance between the increase 

in proinflammatory leukocytes and the decrease of regulatory 
T cells (Treg). A recent study has found that specific markers of 
T cells in CSF, such as CCR3 and CCR5, exhibit high expression 
during radiological relapse, but not during clinical relapse [44]. It 
is suggested that activated CD4+ and CD8+ T lymphocytes play 
a significant role in triggering inflammation. An in vitro study 
has demonstrated that co-culturing human endothelial cells with 
T cell EVs leads to a decrease in transendothelial electrical resis-
tance, indicating BBB disruption and astrocyte damage [45, 46]. 
Furthermore, both in vitro and clinical studies have shown that B 
cells impact the reduced function of oligodendrocytes [47, 48]. In 
conjunction with Treg dysfunction, the apoptotic rate of inflam-
matory leukocytes decreases, resulting in the proliferation of the 
inflammatory leukocyte population. The excessive accumulation 
of leukocytes subsequently leads to inflammatory damage within 
the CNS. However, both T cells and B cells predominantly con-
tribute to the inflammatory stage seen in RRMS. In SPMS, there is 
a significant decrease in CD14 and CD45 expression, suggesting 
that neurodegeneration can surpass the extent of neuroinflamma-
tion [49].

Microglia/macrophage-derived extracellular vesicles
Microglia, which are considered to be resident macrophages 

in the CNS, play a crucial role in maintaining self-tolerance and 

preventing autoimmunity. It has been hypothesized that once 
leukocytes enter the CNS compartment, microglia may contribute 
to the promotion of inflammation. In patients with MS, microg-
lial EVs have been found to be significantly upregulated, even in 
the CIS [50]. During exacerbations, markers associated with mi-
croglia/macrophages, such as IB4, showed a significant increase, 
indicating inflammation mediated by microglia [51]. In an in vitro 
model, EVs derived from activated microglia/macrophages were 
shown to impair synaptic function, as evidenced by reduced ex-
pression of markers like Syt1 and N1g1 [52]. Additionally, microg-
lia/macrophage EVs might hinder remyelination by inhibiting the 
accumulation of oligodendrocyte progenitor cells and reducing 
levels of myelin basic protein (MBP) [53].

Oligodendrocyte-derived extracellular vesicles
Following demyelination, oligodendrocytes play a role in pro-

moting remyelination. Myelin oligodendrocyte glycoprotein 
(MOG) is secreted by oligodendrocytes in response to demyelin-
ation. An elevated level of MOG expression is indicative of in-
creased inflammation. The available evidence suggests that MOG 
expression in the remitting stage of RRMS is similar to that in 
healthy individuals but becomes highly expressed during relapsing 
and progressive stages [54]. Another protein, MBP, also serves as a 
marker of demyelination. A significant increase in MBP levels in 
the serum is observed across all stages, whereas healthy individuals 
do not exhibit such elevation [55]. These findings suggest a poten-
tial association between EVs released by oligodendrocytes and the 
demyelinating response.

Astrocyte-derived extracellular vesicles
Although astrocytes are the primary target of AQP4-IgG in 

NMOSD, it has also been observed that EVs derived from astro-
cytes are present in the experimental autoimmune encephalo-
myelitis (EAE) model of MS. The EVs obtained from EAE mice 
showed a significantly higher level of glial fibrillary acidic protein 
(GFAP). Since GFAP is essential for maintaining the cytoskeleton 
of astrocytes, the increased expression of GFAP in CSF suggests 
the presence of astrocyte damage and inflammation [56]. How-
ever, it is important to note that astrocyte dysfunction may not be 
the primary mechanism underlying the pathogenesis of MS, even 
though it is widely accepted as a central process in NMOSD. The 
subsequent section will provide a more detailed of NMOSD.

Extracellular vesicles categorized by surface membrane 

expression

Extracellular vesicles with fibrinogen-laden membranes
Fibrinogen-laden EVs are recognized for their significant in-
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volvement in inflammation, extending beyond their traditional 
role in coagulation processes [57]. Within the CN, various neuro-
glial cells, including oligodendrocytes, astrocytes, and microglia, 
express receptors for fibrinogen, facilitating their interaction with 
fibrinogen-laden EVs and subsequently leading to the activation 
of encephalitogenic CD8+ T cell responses. In the EAE model, 
mice injected with fibrinogen-enriched EVs demonstrated the 
development of encephalitogenic T cell responses, while this 
phenomenon was not observed in the fibrinogen-deficient group. 
Laboratory confirmation of inflammatory markers such as 
CXCL10 and CCL2 provided evidence supporting the proposed 
involvement of the fibrinogen alpha chain in stimulating CD8+ 
T cells [58]. Furthermore, fibrinogen-laden EVs were observed 
to directly transfer antigens and pathogenic peptides to antigen-
presenting cells (APCs) via major histocompatibility complex 
(MHC) class I complexes on their surface membrane [59]. In sum-
mary, it is hypothesized that fibrinogen-laden EVs may contribute 
to human leukocyte antigen (HLA) class I disequilibrium and 
susceptibility to autoimmunity, ultimately playing a role in the de-
velopment of MS.

Extracellular vesicles with glycolipid membranes
Sulfatide belongs to the sulfoglycolipid group and is associated 

with myelin formation. Beginning in the endoplasmic reticulum 
and finishing up in the Golgi apparatus, ceramide is transformed 
to galactocerebroside which then is sulfated to produce sulfatide. 
In addition to being a membrane constituent, sulfatide is also 
associated with protein transportation, intercellular communica-
tion, and glial-axon interactions [60]. Recently, a study found that 
sulfatide mediated immunomodulatory mechanisms in certain 
conditions such as autoimmunity, infections, and cancers [61]. In 
MS, a specific sulfatide fraction known as C16:0 exhibited distinct 
differences compared to those without MS and showed inverse 
correlation with the expanded disability status scale (EDSS) [62]. 
These pathways of immune regulation are primarily triggered by 
the activation of type II natural killer T (NKT) cells which identify 
sulfatides via CD1d molecules [63]. C16:0 sulfatide exerts an anti-
inflammatory role by inhibiting cytokine production. Addition-
ally, the over-functioning of the acid sphingomyelinase enzyme 
(ASMase), which is usually seen in MS patients, enhances the hy-
drolysis of other healthy sphingomyelin into ceramide, resulting in 
a reduction of sphingomyelin and subsequent inflammation [64]. 
Changes in the quantities, distribution, and metabolism of glyco-
lipids ultimately exacerbate MS. 

Extracellular vesicles as cargo of biological substances 

Protein, peptides, and enzymes
At least 50 CSF proteins showed significant increases compared 

to healthy individuals [65]. ASMase, responsible for sphingolipid 
metabolism, was highly expressed in CSF. ASMase is also associ-
ated with ASMase-dependent ceramide signaling, which coordi-
nates intracellular signal cascades and governs the activation and 
proliferation of CD4+ T-cells. ASMase can also induce neuronal 
mitochondrial dysfunction and axonal damage [64]. Another 
protein, Apolipoprotein E4 (ApoE4), was found to be enriched in 
the CSF of MS individuals [65]. ApoE4 is associated with neuro-
degeneration due to decreased clearance of pathogenic amyloid-β, 
as commonly seen in many neurological diseases, especially Al-
zheimer’s disease [66]. This finding may explain the subsequent 
neurodegeneration observed in SPMS. Other proteins such as 
KLKB1, DKK3, C6, and S100A9 were also analyzed and found to 
be responsible for scar healing, homeostasis, and clot formation, as 
commonly observed as sequelae of demyelination [65]. However, 
limited data were gathered due to the very small amount of EV 
extracted from the CSF. Additionally, CSF is not routinely taken in 
clinical practice.

MicroRNAs
MicroRNA consists of an 18 to 22-nucleotide single-stranded 

non-coding molecule. MicroRNA genes are generally transcribed 
by RNA polymerase II within the nucleus and are subsequently 
processed in the cytoplasm. The mature microRNA is finally 
transported into the extracellular space in order to control cell-to-
cell communication. Circulating microRNAs have been found to 
have a correlation with various conditions and diseases, even in 
the case of MS. Many studies have demonstrated the role of mi-
croRNA as an inflammatory trigger in serum, and it also confers a 
degree of immune protection. A study found suppressed function 
of anti-inflammatory T cells called Foxhead box P3 (FOXP3+) 
Treg is observed in MS patients. Let-7i is markedly increased in 
the serum of MS patients and suppresses the function of insulin-
like growth factor 1 receptor (IGF1R) and transforming growth 
factor beta receptor 1 (TGFβR1). IGF1 and TGFβR1 are important 
for Treg differentiation and clonal expansion, and impairment of 
both functions subsequently promotes inflammation. Increments 
of miR-15b-5p, miR-30b-5p, miR-342-3p, and miR-451a were ob-
served in RRMS patients [67]. MiR-15b and miR-23a were found 
to be targeted at fibroblast growth factor 2 (FGF-2), which is linked 
to inflammation, demyelination, and remyelination. MiR-23a was 
also found to be involved with the level of oligodendrocyte dif-
ferentiation. A higher level of miR-23a meant there was substantial 
oligodendrocyte damage. MiR-30b and miR-342 had previously 
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been recognized as potential biomarkers for Alzheimer’s disease 
and Parkinson’s disease [68-71]. The additional association with 
MS pathology of both miRNAs apparently supported their con-
tribution to neuro-axonal damage in CNS [72]. In contrast, miR-
122-5p, miR-196b-5p, miR-301a-3p, and miR-532-5p, which are 
considered immune protection EVs, are downregulated in MS 
patients [72]. MiR-122-5p inhibits inflammatory cell prolifera-
tion and migration. MiR-196b-5p is secreted from hematopoietic 
cells in both normal conditions and malignancy. MiR-301a-3p 
is a critical endogenous regulator of Th17 cell proliferation and 
maturation. MiR-532-5p can suppress the inflammatory pathways 
and has previously been reported as a tumor suppressor in ovarian 
cancer [72].

Not only serum EVs, but also CSF-derived EVs have been inves-
tigated in central demyelinating diseases. Upregulation of miR-
18a-5p, miR-21, miR-30a-5p, miR-145-5p, miR-150, miR-328, 
miR-342-3p, miR-374a-5p, miR-645, and Let-7g-5p, together with 
the down-regulation of miR-106a, miR-132-5p, miR-146a, miR-
191, miR-199a-3p, miR-320a-5p, and miR-365 were associated 
with oligoclonal band production in CSF and inflammation [73, 
74]. Increased miR-181c and miR-633 with a reduction in miR-
922, were all associated with inflammatory suppression and may 
be associated with the reactive response to inflammation [75]. 
Even though there are several studies on MS and miRNAs in the 
CSF, they do not directly claim the miRNAs found in these studies 
were EV-associated. Different extraction techniques, study design, 
and validation procedures contributed to the variability of results 
in EV studies [76-79].

Several studies have tried to demonstrate the differences of EVs 
in serum and CSF to explain the exact pathogenesis of MS [54, 80, 
81]. Major myelin proteins, including MPB, proteolipid protein, 
and MOG, were substantially elevated in the serum and CSF in MS 
patients. However, peripheral blood mononuclear cell (PBMC)-
derived EVs, considered as a potential peripheral EV source, failed 
to cause expression of MOG or any other myelin proteins. In ad-
dition, evidence showed that myelin-associated EVs could trans-
migrate from the CNS into the periphery through the BBB. This 
result suggested that MS pathology may originate in the CNS and 
then spread to the periphery [56]. Another study focusing on miR-
NAs in MS patients found that serum and CSF miRNAs differed 
from healthy controls and varied across different disease stages. 
At least twenty-one miRNAs were significantly expressed, mainly 
upregulated during an MS relapse, in comparison with the clinical 
remission stage. However, the level of some miRNAs, such as miR-
21-5p, miR-142-3p, miR-223-3p, miR-342-3p, miR-423-5p, and 
let-7f-5p, were also highly expressed in other CNS inflammatory 
and infectious diseases [82]. The expression of miRNA was associ-

ated with pleocytosis and the existence of oligoclonal bands, which 
were not only unique to MS but also associated with intrathecally 
immune-mediated processes such as CNS infection and inflam-
mation. However, due to a lack of specificity, using a single miRNA 
alteration as a surrogate marker for MS may not be applicable, and 
a combination of miRNA panels may be suitable for this purpose. 
All data from clinical studies are shown in Table 1 and 2. Table 3 
and Table 4 show the data from in vivo and in vitro studies, respec-
tively.

Extracellular vesicles and pathological correlations in 

neuromyelitis optica spectrum disorder (NMOSD)

Given the underlying issue of astrocyte dysfunction in NMOSD, 
individuals with this condition typically show increased ex-
pression of astrocyte-associated markers. A recent study has 
revealed that EVs obtained from CSF, such as GFAP, tetraspanin, 
haptoglobin-related protein, and C4b binding protein-alpha, were 
significantly upregulated in NMOSD but not in MS [81]. This 
discovery suggests that the mechanisms underlying BBB dysfunc-
tion differ between MS and NMOSD. Experimental models and 
human NMOSD lesions have demonstrated a transient disruption 
of the BBB caused by infiltration of immune cells including mac-
rophages and polymorphonuclear cells (PMNs) with only a few 
T and B cells, a phenomenon absent in MS [83]. The migration 
of PMNs into the brain could additionally exacerbate NMOSD 
lesion formation by allowing additional AQP-4 antibodies and 
complement to enter the brain. The activation of the complement 
cascade during astrocyte destruction, in turn, results in the release 
of the anaphylatoxin C5a, a potent PMN chemoattractant and ac-
tivator leading to a vicious inflammatory cycle [84]. 

Alteration of circulating miRNAs may serve as possible bio-
markers for NMOSD. A study demonstrated miRNA dysregula-
tion, as shown by an increase in miRNA-122-3p and miR-200a-
5p, which occurs in NMOSD, but not in MS [85]. The miR-122-3p 
targets the MAPK signaling pathway associated with both innate 
and adaptive autoimmunity [86]. The miR-200a-5p targets the Ras 
and Wnt signaling pathways, modulating cell proliferation and the 
inflammatory response. Additionally, the elevation of miR-122-3p 
is correlated with the increasing EDSS, indicating that miR-122-
3p might be a potential biomarker for the prediction of NMOSD 
relapse. Comparable to other well-defined autoimmune diseases, 
EV alteration in systemic lupus erythematosus (SLE) is associ-
ated with the inflammatory pathway and disease progression. 
Serum EV miR-21 and miR-155 of SLE patients were upregulated, 
whereas the expression of miR-146a was down-regulated. Even 
though the specific mechanism of EVs is unclear, these EVs might 
activate inflammatory cells via the TLR7 pathway, allowing them 
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Table 1. Extracellular vesicle marker in central demyelinating diseases related to inflammatory pathways from plasma or serum: reports from clinical 
studies

Methods of EV 
detection 

(specimen)

Major findings of each disorder

Interpretation Ref
Multiple sclerosis

Subtypes of multiple sclerosis
NMOSD

Relapsing disease activity

RRMS SPMS PPMS CIS Clinical Radiologic

EVs classified by origin
Endothelial cells

Flow cytometry 
(platelet-poor 
plasma)

↑ PMP
↑ CD31
↑ CD62E

↑ PMP
↑ CD31
↔ CD62E

↑ PMP
↑ CD31
↔ CD62E

↑ PMP
↑ CD31
↔ CD62E

↔ PMP
↑ CD31
↑ CD62E

NA NA NA An increase in EMPs-
CD31 involved in all 
courses of MS. However, 
PMP was associated with 
chronic MS but not with 
early stage, increased 
EMP-CD62E was found 
in the early stage of 
disease.

[33]

Flow cytometry and 
3T MRI (plasma)

NA ↑ CD31+/
CD51+ /
CD61+/CD54+ 
(EMPs)

↓CD31+/
CD51-/CD61-/
CD54- (PMPs)

NA NA NA NA NA An increase in EMPs was 
more common in RRMS 
than in SPMS. PMP levels 
rose in SPMS but not in 
SPMS.

[35]

Flow cytometry, 
scanning EM 
(platelet-poor 
plasma)

↑ CD105 NA NA NA NA NA NA NA Untreated MS had high 
endothelial microparticles 
detected from CD105.

[93]

Flow cytometry 
(platelet-poor 
plasma)

NA ↑ CD51+ NA NA NA NA ↑ CD31+
↑ CD51+

↑ CD31+ CD31+ associated with 
clinical and radiologic 
exacerbation of MS, while 
CD51+ was associated 
with natural course of 
MS.

[34]

Flow cytometry 
with fluorescent 
dye (plasma)

NA NA NA NA NA NA ↑ CD54+-
monocyte 
conjugate

↑ CD63E+

↑ CD54+-
monocyte 
conjugate

EMP triggered monocyte-
CD54+ binding and 
activation.

[36]

Flow cytometry 
(plasma)

NA NA NA NA NA NA ↑ CD31
↑ CD54
↑ CD62E

NA EMP associated with 
exacerbation of MS.

[90]

Tandem spectrom-
etry (plasma)

↑ Fibrinogen alpha-chain ↑ Fibrinogen 
alpha-chain

NA NA NA NA NA NA Fibrinogen EV associated 
with CD8+ activation and 
caused RRMS.

[58]

Platelet
Flow cytom-

etry  (platelet-rich 
plasma)

↑ CD62p
↑ PMP
↔ Platelet surface IgG
↑ Platelet surface IgM

NA NA NA NA NA NA NA MS patients had a high 
level of long-platelet EV 
activation.

[43]

Flow cytometry 
(plasma)

↑ CD61
↔ CD45
↔ CD14

↑ CD61
↑ CD45
↑ CD14

↔ CD61
↔ CD45
↔ CD14

NA NA NA NA NA Platelet EV, but not leuko-
cyte EV, played a role in 
early MS while

SPMS reduced all PMP and 
LMP due to stage changes 
in neurodegeneration.

[42]

Leukocytes and microglia
Flow cytometry 

(plasma)
↑ CD61
↔ CD45
↔ CD14

↑ CD61
↑ CD45
↑ CD14

↔ CD61
↔ CD45
↔ CD14

NA NA NA NA NA Platelet EV, but not leuko-
cyte EV, played a role in 
early MS while

SPMS reduced all PMP and 
LMP due to stage changes 
in neurodegeneration.

[42]

Immunoprecipita-
tion, NTA

↑ AMPB (T-cell EVs)
↑ FIBB (T-cell EVs)
↑ GELS (B-cell EVs)

NA NA NA NA NA ↑ GELS (B-cell 
EVs)

NA Both T and B cell-dervied 
EVs correlated with MS. 
Only B cell associated 
with active disease.

[48]

Oligodendrocytes
ExoQuick,NTA, 

Western blot, 
ELISA (serum)

NA ↔ MOG ↑ MOG NA NA NA ↑ MOG ↑ MOG Progressive disease activity 
correlated with MOG 
level.

[54]

Exo-check, 
immuno-gold 
TEM

NA ↑ Myelin basic 
protein

NA ↑ Myelin basic 
protein

↑ Myelin 
basic protein

NA NA NA Increased oligodencrocyte-
dervied EVs associated 
with MS in all stages.

[55]

EVs categorized by EV surface membrane expression
Fibrinogen

Tandem spectrom-
etry (plasma)

↑ Fibrinogen alpha-chain ↑ Fibrinogen 
alpha-chain

NA NA NA NA NA NA Fibrinogen EV associated 
with CD8+ activation and 
caused RRMS.

[58]

Glycolipids
UC, EM, NTA, 

Negative ion 
electrospray mass 
spectrometry 
(plasma)

↑ C16:0 sulfatide ↑ C16:0 sulfatide ↑ C16:0 sulfatide NA NA NA NA NA Sulfatide C16:0 triggered 
CD1d and activated T 
cell.

[62]
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to constantly release IFN-α and proinflammatory cytokines, which 
may contribute to the pathogenesis of SLE. Additionally, one study 
reported that the alteration of the Ras signaling pathway enhanced 
inflammatory T cell function and triggered autoimmunity [87]. 
Hence, the overlap of Ras signaling pathway dysfunction across 
two diseases suggests that EVs may promote self-intolerance and 
autoimmunity.

Contrarily, certain microRNAs probably play a protective effect 
on NMOSD patients. An in vitro study demonstrated that co-
culturing miR-129-2-3p with oligodendrocytes and rat optic nerve 
resulted in a reduction of demyelination [88]. These results affirm 
the dual role of microRNAs in NMOSD, where they can act both 
as anti-inflammatory and pro-inflammatory agents.

In the antibody-negative NMOSD group the majority had evi-
dence of myelin oligodendrocyte glycoprotein antibody-associ-
ated disorders (MOGAD). However, until now, there has been no 
published data that demonstrates any association between EVs 
and MOGAD. Further studies are still required. The roles of EVs 

in MS and NMOSD were summarized in Fig. 1.

CURRENT THERAPEUTIC STRATEGIES AND EXTRACELLULAR 
VESICLE ALTERATION

Since the launch of an investigation into the first disease-modi-
fying therapy (DMT) as a therapeutic target for central demyelin-
ating diseases. Recent studies have shown an association between 
DMTs and the alterations in EV profiles. Focusing on Interferon-β 
or IFNβ (including IFNβ-1a and IFNβ-1b), IFNβ could lessen the 
expression of endothelial surface EVs. The increases in platelet and 
leukocyte EVs confirmed the reduction of transendothelial mi-
gration from the periphery into the CNS [42, 89-91]. Fingolimod 
inhibited S1P receptor activity, causing lymphocyte sequestration 
in peripheral lymph nodes and the prevention of lymphocyte 
migration into the CNS. An increase in platelet EVs, leukocyte 
EVs, and monocyte EVs, was demonstrated in the plasma of 
fingolimod-treated individuals confirming that fingolimod can 

Table 1. Continued

Methods of EV 
detection 

(specimen)

Major findings of each disorder

Interpretation Ref
Multiple sclerosis

Subtypes of multiple sclerosis
NMOSD

Relapsing disease activity

RRMS SPMS PPMS CIS Clinical Radiologic

EVs classified by containing substances
microRNAs

High throughput 
NGS (serum)

NA ↑ miR-15b-5p
↑ miR-30b-5p
↑ miR-342-3p
↑ miR-451a

↑ miR-127-3p
↑ miR-370-3p
↑ miR-409-3p
↑ miR-432-5p
↑ miR-15b-5p
↑ miR-223-3p
↑ miR-23-3p

↑ miR-127-3p
↑ miR-370-3p
↑ miR-409-3p
↑ miR-432-5p
↑ miR-15b-5p
↑ miR-223-3p
↑ miR-23-3p

NA NA ↓ miR-30b-5p
↓ miR-342-3p
↓ miR-374a-5p
↑ miR-432-5p
↑ miR-433-3p
↑ miR-485-3p

NA Dysregulated miRNA asso-
ciated with MS subtypes.

[67]

NGS (serum) NA ↓ miR-122-5p
↓ miR-196b-5p
↓ miR-301a-3p
↓ miR-532-5p

NA NA NA NA ↓ miR-122-5p
↓ miR-196b-5p
↓ miR-301a-3p
↓ miR-532-5p

↓ miR-122-5p
↓ miR-196b-5p
↓ miR-301a-3p
↓ miR-532-5p

Decreased miRNA was 
associated with the 
exacerbation of disease

[72]

High throughput 
NGS (serum)

NA NA NA NA ↑ miR-126-5p
↑ let-7f-5p
↑ let-7a-5p
↑ miR-23a-3p
↑ miR-223-3p
↓ let-7b-5p
↓ miR-24-3p
↓ let-79-5p
↓ miR-25-3p 

NA NA NA CIS patients had different 
patterns of serum exo-
somes when compared 
with HC.

[77]

miScript miRNA 
techniques RT-
PCR (serum)

NA NA ↑ miR-376c-3p
↑ miR-191-5p
↑ miR-26a-5p

↑ miR-376c-3p
↑ miR-191-5p
↑ miR-26a-5p
↑ miR-128-3p
↑ miR-24-3p

NA NA NA NA miR-128-3p and miR-24-
3p were associated with 
PPMS.

[78]

NGS with RT-
qPCR. EV detec-
tion by CD63, 
CD81 (serum)

↔ miR-380-3p
↔ miR-216a-5p
↔ miR-548p
↔ miR-153-3p
↔ miR-448

↔ miR-380-3p
↔ miR-216a-5p
↔ miR-548p
↔ miR-153-3p
↔ miR-448

NA NA NA ↑ miR-122-3p
↓ miR-4424
↓ miR-6764-3p
↓ miR-412-3p
↓ miR-380-3p
↓ miR-216a-5p
↓ miR-548p
↓ miR-153-3p
↓ miR-448

↑ miR-200a-5p NA Mir-122-3p was unique in 
NMOSD and miR-200a-
5p correlated with clinical 
NMOSD relapse.

[85]

Microarray, Flow 
cytometry 
(peripheral blood)

↑ Let-7i NA NA NA NA NA NA NA Let-7i inhibited Treg dif-
ferentiation by inhibiting 
IGF1R and TGFBR1.

[79]

CIS, clinically isolated syndrome; EMP, endothelial microparticles; MS, multiple sclerosis; EM, electron microscope; EV, extracellular vesicles; HC, healthy controls; ICAM1, Intercellular Adhesion Molecule 1; IGF1R, insulin-like 
growth factor 1; LMP, leukocyte microparticles; MHC, major histocompatibility complex; miRNA, microribonucleic acid; MOG, myelin oligodendrocyte glycoprotein; NGS, next-generation sequencing; NMOSD, neuromyelitis 
optica spectrum disorder; NTA, nanoparticle tracking analysis; PECAM, Platelet endothelial cell adhesion molecule; PMP, platelet microparticles; PPMS; primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple 
sclerosis; RT-PCR, reverse transcription polymerase chain reaction; RT-qPCR, quantitative reverse transcription polymerase chain reaction; SPMS, secondary progressive multiple sclerosis; TEM, transmission electron micro-
scope; TGFBR1, Transforming Growth Factor Beta Receptor 1; UC, ultracentrifugation, WM, white matter.
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Table 2. Extracellular vesicle markers in central demyelinating diseases related to inflammatory pathways from csf: reports from clinical studies

Methods of EV  
detection

Major findings of each disorder

Interpretation RefMultiple 
sclerosis

Subtypes of multiple sclerosis
NMOSD

Relapsing disease activity

RRMS SPMS PPMS CIS Clinical Radiologic

EVs classified by origin
Astrocyte

Proteosome analysis, 
western blot

↔ GFAP
↔ Tetraspanin
↔ Haptoglobin 

related protein
↔ C4b binding 

protein alpha
↑ fibronectin

NA NA NA NA ↑ GFAP
↑ Tetraspanin
↑ Haptoglobin 

related protein
↑ C4b binding 

protein alpha
↔ Fibronectin

NA NA Exosomes in NMOSD differed from MS.
Exosomes played role in BBB dysfunc-

tion, inflammatory induction, and 
astrocyte damage.

Exosomes in MS only showed impaired 
myelination markers but not astrocyte 
damage.

[81]

Lymphocytes and microglia
Flow cytometry with 

Nanoparticle track-
ing Analysis

NA ↔ IB4 ↔ IB4 ↔ IB4 ↔ IB4 NA ↓ IB4
↓ CD19+/CD200+

↑ CCR3
↑ CCR5
↑ CD4/CCR3
↑ CD4/CCR5
↑ CCR3/CCR5

Clinical relapse was associated with a 
decrease in naive B cell and microglia 
EVs. In radiologic relapse, the markers 
CD4+ and CD8+ T cells were signifi-
cantly elevated.

[44]

Slow off-rate modi-
fied DNA aptamer 
assay with cluster 
grouping analysis

NA ↑ MMP7
↑ SERPINA3
↑ GZMA
↑ CLIC1
↑ DSG2
↑ TNFRSF25
↑ CXCL13

↑ MMP7
↑ SERPINA3
↑ GZMA
↑ CLIC1
↓ SPARC
↑ DSG2
↑ TNFRSF25

↑ MMP7
↑ SERPINA3
↑ GZMA
↑ CLIC1
↑ DSG2
↑ TNFRSF25
↑ CXCL13

NA NA NA NA Microglia and myeloid cell EVs were 
seen in all phases of MS. 

The expression of toxic astrocyte-
specific markers rises with the duration 
of MS.

[50]

Flow cytometry, RT-
PCR

NA ↔ IB4 NA ↔ IB4 ↑ IB4 NA ↑ IB4 NA Resident microglia EVs were abundant 
in CIS, also association with in clinical 
recurrence.

[51]

Oligodendrocytes
ExoQuick,NTA, 

Western blot, ELISA
NA ↑ MOG ↑ MOG NA NA NA ↑ MOG NA MOG correlated with MS. [54]

EVs classified by containing substances
Proteins and enzymes

Flow cytometry, 
Nanoparticle track-
ing, immunoblot-
ting

NA ↑ 50 types of 
CSF protein

NA NA NA NA NA NA At least 50 proteins increased in CSF of 
RRMS patients.

[65]

Liquid chromatog-
raphy, western blot, 
flow cytometry

↑ ASMase NA NA NA NA NA NA NA CSF exosomes of MS contained higher 
ASMase levels.

[64]

microRNA
TEM, western blot-

ting, RT-PCR
NA ↑ Let-7 g-5p

↑ miR-18a-5p
↑ miR-145-5p
↑ miR-374a-5p
↑ miR-150-5p
↑ miR-342-3p
↓ miR-132-5p
↓ miR-320a-5p

NA NA NA NA NA NA Higher anti-inflammatory EV and lower 
pro-inflammatory associated with MS 
in order to prevent further demyelin-
ation.

[74]

ASMase, acid sphingomyelinase; CCR3, C-C Motif Chemokine Receptor 3; CCR5, C-C Motif Chemokine Receptor 5; CIS, clinically isolated syndrome. CLIC1, Chloride Intracellular Channel 1; CSF, cerebrospinal fluid; cxcl13, 
C-X-C Motif Chemokine Ligand 13; DSG2, Desmoglein 2; ELISA, enzyme-linked immunosorbent assay; EV, extracellular vesicles; FITC, Fluorescein isothiocyanate; GFAP, Glial fibrillary acidic protein; GZMA, Granzyme A; HC, 
healthy controls; IB4, isolectin-B4; MMP7, matrix metalloproteinase 7; MOG, myelin oligodendrocyte glycoprotein; MP, microparticles; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; NTA, nanoparticle 
tracking analysis; PPMS, primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; RT-PCR, reverse transcription polymerase chain reaction; SERPINA3, Serpin Family A Member 3; SPMS, secondary 
progressive multiple sclerosis; TEM, transmission electron microscope; TNFRSF25, TNF Receptor Superfamily Member 25.

Table 3. Targeting extracellular vesicle markers in central demyelinating diseases related to inflammatory pathways: data from in vivo studies

Mechanisms Model and Methods
Multiple 
sclerosis

NMOSD Interpretation Ref

Fibrinogen activation EAE mice with MOG33-35 injection. EV analysis by flow cytometry ↑ Cxcl10
↑ Ccl2

NA Fibrinogen EV triggered CD8+ function and caused MS. [58]

Myeloid activation EAE mice with Th1/LPS-primed microglia EV injection ↑ GFAP
↑ CD86
↑ iNOS
↑ IL6
↑ IL1β
↑ COX
↑ CD45
↑ Iba1+
↓ CD206

NA Microglia EVs were found to be responsible for generating inflammation and suppressing 
remyelination.

[51]

Astrocytes EAE mice with exosome isolation and detected with flow cytometry ↑ GFAP NA Astrocyte-derived exosome associated with demyelination. [56]
ASMase, acid sphingomyelinase; Ccl2, Chemokine (C-C motif) ligands 2; CIS, clinically isolated syndrome; COX, cyclooxygenase; Cxcl10, C-X-C Motif Chemokine Ligand 10; EAE, experimental autoimmune encephalitis; EV, 
extracellular vesicle; GFAP, Glial fibrillary acidic protein; iNOS, inducible nitric oxide synthase; MOG, myelin oligodendrocyte glycoprotein; MP, microparticles; NA, not available; NMOSD, neuromyelitis optica spectrum disor-
der; PPMS, primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis.
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hinder immune cells from peripheral transmigration into the CNS 
[92]. Fingolimod also modified the expression of EVs as shown by 
a decrease in the expression of endothelium-derived EVs such as 
CD105, which inhibited the adhesion of inflammatory cells to the 
BBB [93]. Natalizumab, a humanized monoclonal antibody, modi-
fied platelets and lymphocyte EVs, resulting in immune cell sup-
pression and 4-integrin adhesion on activated endothelial surfaces 
[92]. DMTs which can limit the peripheral inflammatory cells, 
are preferable treatments since most inflammatory cells originate 
from outside the CNS rather than within it. Considering that 
DMTs were responsible for changes in EV levels, the measurement 
of blood EVs may be useful surrogate-markers for the assessment 
of therapeutic efficacy in MS. However, more studies are required 
to add weight to these findings and assess this possibility further. 
All of these findings are summarized in Table 5.

In contrast, the mainstay treatment of NMOSD is immunosup-
pressants. In acute exacerbation, intravenous methylprednisolone 
or plasma exchange is the current major therapy [9]. In the main-
tenance phase, immunosuppressive drugs including azathioprine, 
mycophenolate mofetil, methotrexate and rituximab are pre-
scribed to NMOSD patients [9]. However, the data on NMOSD 
treatment and EVs is scant. Further study in the field is still re-
quired.

EXTRACELLULAR VESICLES AS THE POTENTIAL TREATMENT 
STRATEGIES IN CENTRAL DEMYELINATING DISEASES

Currently, Investigators have been focusing on the role of EVs 
as a drug delivery tool. EVs are naturally produced and seldom 
induce intolerance, therefore they have been considered as next-
generation possible therapeutic strategies. Mesenchymal EVs are 
one of the possible groups of EVs being explored in therapeutic 
approaches for MS [94-96]. Several researchers have hypothesized 
that placental mesenchymal cells could have a protective func-
tion in MS, since previous studies showed decreased exacerbating 
rates of MS in pregnant women, especially in the third trimester, 
and a rapid emergence in exacerbation rates after delivery [97]. 
At various points throughout pregnancy, the maternal circula-
tion becomes flushed with a wide range of EVs representing the 
maternal-fetal interaction. Pregnant women secrete numerous 
EVs to suppress the immune response caused by the presence 
of fetal antigens. Approximately 20% of circulating exosomes in 
the pregnant woman are of placental origin, and their concentra-
tion increases during pregnancy, reaching their peak in the third 
trimester. Placental EVs originated from various kinds of cells. In 
a normal physiologic state, after the blastocyte adheres to the pla-
centa, fetal trophoblastic cells differentiate into cytotrophoblasts 

Table 4. Targeting extracellular vesicle markers in central demyelinating diseases related to inflammatory processes: data from in vitro studies

Mechanisms Model and Methods
Multiple 
sclerosis

NMOSD Interpretation Ref

Treg cell Mononuclear cells cultured with Treg extract exosome ↑ T cell proliferation
↓ Apoptotic rate

NA Dysregulated Treg induced T cell proliferation and decreased T cell apoptosis caus-
ing inflammation.

[49]

T cell Human cerebral microvascular endothelial cell + CCL4/
CCL5 with TEER measurement

↓ TEER change NA CCL4 and CCL5 enhanced BBB dysfunction. [45]

Astrocytes co-cultured with MS patient-derived T cells ↑ IFN-γ
↑ IL-17A
↑ CCL2

NA EVs from astrocytes can stimulate T cells into pro-inflammatory stage. [46]

B cell Oligodendrocyte from rat brain cultured in exosome 
enrich extracts

↑ Cell surface 
components

↑ External cell mem-
brane components

NA B cells are the key instigators of the pathogenesis of MS. 
Key cargo of B cell exosomes in MS derived from cell surface and external cell 

membrane components.

[47]

Endothelial cells Endothelial microvesicle detection from cultured human 
brain microvascular endothelial cell

↑ CD4+ 
↑ CD8+

NA EMP stimulated CD4+ and C8+ T cell proliferation. [37]

Human cerebral microvascular endothelial cell + TNFα 
and measure transendothelial migration assay

↑ Monocyte transmi-
gration

NA Endothelial EV enhanced adhesion of monocyte to endothelium and migration of 
monocyte

[36]

Activated microglia Astrocyte cultured with microglia ↓ Syt1
↓ N1g1

NA Activated microglia derived exosomes associated with synaptic dysfunction. [52]

Platelet and endothelial 
cells

TEER measurement ↑ F-actin
↑ VE-adherin
↑ ZO-1

NA Platelet and endothelial derived EV triggered BBB dysfunction in MS. [33]

Synthetic EV Microglia cultured with OPC and IL4 ↑ Argenase 1 
↑ MBP 
↑ OPC accumulation

NA Pro-regenerative exposed microglia-induced remyelination. [53]

Microglia cultured with OPC and Th1 inflammatory 
cytokines

↑ IL-1a
↑ C1q
↑ IL-1β
↑ iNOS 
↓ MBP

NA Pro-inflammatory exposed microglia inhibited remyelination.

Astrocyte cultured with OPC and microglia derived Th1 
inflammatory cytokines

↓ MBP
↓ OPC accumulation

NA Astrocyte exposed microglia-derived EV and inflammatory cytokines inhibited 
OPC.

Adeno-associated virus (AAV) with miR-129-2-3p 
cultured with oligodencrocyte and rat optic nerve tissue

NA ↓ Demyelination miR-129-2-3p targeting SMAD3 gene can inhibit demyelinating process in NMOSD [88]

BBB, blood brain barrier; CCL4, Chemokine (C-C motif) ligands 4; CCL5, Chemokine (C-C motif) ligands 5; CIS, clinically isolated syndrome. EMP, Endothelial microparticles; EV, extracellular vesicles; IL, interleukin; iNOS, in-
ducible nitric oxide synthase; MBP, myelin basic protein; MS, multiple sclerosis; NA, not available; NMOSD, neuromyelitis optica spectrum disorder; OPC, oligodendrocyte progenitor cells; PBMC, peripheral blood mononuclear 
cells; PPMS, primary progressive multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis; TEER, transendothelial electrical resistance; Th1, T helper 1 cell; TNFα, tumor 
necrosis factor alpha; Treg, regulatory T cells.
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and syncytiotrophoblasts. EVs generated by cytotrophoblasts 
and syncytiotrophoblasts enhance embryonic and placental de-
velopment. Martire et al. demonstrated an association between 
placental EVs and MS patients by analyzing EVs secreted from 
placental tissue culture. Major EV groups, specifically embry-
onic, mesenchymal, and hematopoietic stem cells, showed high 
expressive capacity. EVs from these origins have been reported 
to inhibit the inflammatory cascade and enhance immune toler-
ance. Contrarily, the EVs derived from antigen-presenting cells 
(such as HLA-A/B/C molecules, CD86, and CD1c), T cells (CD2, 
CD3, CD25), activated immune cells with cytotoxic properties 
(CD56), and B cells (CD19, CD20) were significantly decreased in 
pregnant women [98]. Tumor necrosis factor (TNF)-related EVs, 

specifically Fas ligand (FasL) and TNF-related apoptosis-inducing 
ligand (TRAIL), suppressed inflammation by triggering apoptosis 
in peripheral mononuclear cells. Trophoblast-related EVs are also 
related to Treg proliferation and NF-κB activation inhibition [99]. 
Steroid hormone concentrations, which include estrogen and pro-
gesterone, surge in pregnant women, particularly in the third tri-
mester. Progesterone at high concentrations causes lymphocytes to 
release progesterone-induced binding factor (PIBF). The findings 
demonstrated that PIBF continuously rises during pregnancy and 
declines dramatically after delivery. PIBF is associated with the se-
cretion of anti-inflammatory cytokines from Th2 cells, including 
IL-4, IL-5, and IL-10 [98, 100]. In addition, EAE mice injected with 
placental EVs showed a decrease in T cell proliferation, increase 
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Fig. 1. Extracellular vesicles from serum and cerebrospinal fluid in immune-mediated central demyelinating diseases. Multiple sclerosis (MS) and 
neuromyelitis optica spectrum disorder (NMOSD) are designated as central demyelinating diseases. Blood-brain barrier disruption caused by impaired 
endothelial cell function, astrocyte damage, and inflammatory cell activation can contribute to oligodendrocyte injury and demyelination. It has been 
proposed that extracellular vesicles (EVs) are possible triggers for this immune-mediated process. Various types of cells secrete individual EVs. Serum 
platelet EVs, fibrinogen EVs, glycolipid EVs, microglia/leukocyte EVs, and endothelial EVs, have been linked to MS pathology. Similarly, the high levels 
of microglia/leukocyte EVs and oligodendrocyte EVs in CSF have been related to MS. The elevation in CSF astrocyte EVs is associated with NMOSD. 
Alteration in both serum and CSF microRNAs is associated with demyelinating disorders. CD, cluster of differentiation; CLIC1, Chloride Intracellular 
Channel 1; CSF, cerebrospinal fluid; cxcl13, C-X-C Motif Chemokine Ligand 13; DSG2, Desmoglein 2; EV, extracellular vesicles; GFAP, Glial fibrillary 
acidic protein; GZMA, Granzyme A; ICAM1, Intercellular Adhesion Molecule 1; IgM, immunoglobulin M; miR, microribonucleic acid; MMP7, matrix 
metalloproteinase 7; MOG; myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; PECAM, 
Platelet endothelial cell adhesion molecule; SERPINA3, Serpin Family A Member 3; TNFRSF25, TNF Receptor Superfamily Member 25.
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Treg cell, and a subsequent decrease in inflammation adding 
weight to these findings [101, 102]. The same effects were observed 
in EVs produced from bone marrow, periodontal ligament cells, 
adipose tissue, and umbilical cord mesenchyme, which raised the 
levels of protective cytokines, such as IL10, transforming growth 
factor-beta (TGF-β), and stromal cell-derived factor 1 alpha (SDF-
1α), but reduced pro-inflammatory cytokines including tumor 
necrosis factor-alpha (TNF-α) and NALP-3 [94, 96, 103-109].

The effectiveness of mesenchymal EVs has not only been ob-
served in human-derived mesenchymal EVs, but also in EAE mice 
treated with Rhesus monkey mesenchymal stromal cell EVs. This 
treatment showed evidence of stimulation of oligodendrocytes 
and prevention of the polarization of M2 to M1 microglia, result-
ing in remyelination [95]. EVs from doxycycline-inducible let-
7g transgenic (Let-7Tg) mice also resulted in measurable benefits 
with regard to inflammatory suppression. Let-7 inhibits CD4+ 
T cell proliferation, which may contribute to the lower number 
of CNS-infiltrated Let-7Tg CD4+ T cells. Th17 differentiation 
and IL1 receptor 1 (IL1R1) activity were suppressed by the Let-7g 
transgene, resulting in a pro-regenerative environment [110]. 

Since the goal of improving MS demyelination is to promote re-
myelination, many EVs were examined to investigate their efficacy 

with regard to possible effects [111-113]. Intranasally administered 
miR-219a-5p extracts boosted OPC proliferation in EAE mice 
resulting in remyelination [114]. IFN-stimulated dendritic cell EV 
aided remyelination, as indicated by an increase in MBP. One study 
found that the exposure of aging animals to EV-containing serum 
from youth animals also increases oligodendrocyte proliferation 
and promotes remyelination [115]. The experimental model dis-
covered that environmentally enriched EVs primarily containing 
miR-219 can promote remyelination, but miR-219 deficient EVs 
cause remyelination failure and inhibit oligodendrocyte progeni-
tor cell proliferation [116, 117]. An in vitro study showed that IL4 
promotes remyelination by causing microglia to transform into 
the pro-regenerative form [53]. All of these findings suggest that 
personalized medicine is possible through the development of 
EVs as carrier for numerous therapeutic compounds for MS. All 
data is summarized in Table 6. Potential interventions are also il-
lustrated in Fig. 2.

CONCLUSION

EVs have been shown to be linked to the pathogenesis of 
immune-mediated central demyelinating disorders, however the 

Table 5. Extracellular vesicles markers in central demyelinating diseases and therapeutic strategies: reports from clinical studies
Treatment Design and population Methods Specimens EV origins Major findings in treated group Interpretation Ref

Fingolimod Treated: 19
Control: Untreated MS 15, 

Healthy: 15

Scanning electron microscope, flow 
cytometry

Platelet-free 
plasma

Endothelium ↓ CD105 Fingolimod reduced endothelial MP levels. [93]

Fingolimod Treated: 11
Untreated: 5
Healthy: 8

Nanoparticle tracking system, cryo-
electron microscopy, flow cytometry

plasma Platelet
Leukocyte
Monocyte

↑ EV concentration at 5 hours
↓ Lymphocyte activation at 5 hours

Fingolimod inhibited EV immediately after initiation 
and activated compensatory mechanisms, resulting 
in increased EV at 5 hours.

[92]

IFN-β Treated: 7
Untreated: 4

qPCR Serum NA ↑ miR-22-3p
↑ miR-660-5p
↓ miR-486-5p
↓ miR-451a
↓ let-7b-5p
↓ miR-320b
↓ miR-122-5p
↓ miR-215-5p
↓ miR-320d
↓ miR-19-3p
↓ miR-26a-5p
↓ miR-142-3p
↓ miR-146a-5p
↓ miR-15b-3p
↓ miR-23a-3p
↓ miR-223-3p

Many inflammatory related exosomes altered after 
IFN-β treatment.

[91]

IFN-β Treated: 20
Untreated: 24

Flow cytometry blood Platelet
Leukocyte

↑ CD61 (PMP)
↑ CD45 (LMP)
↑ CD14 (LMP)

IFN-β increased PMP and LMP. [42]

IFN-β1a Treated: 30
Untreated: 79

Flow cytometry Platelet-poor 
plasma

Endothelium ↓ CD31+ (EMP) IFN-β1a decreased EMP. [89]

IFN-β1a Treated: 16 Flow cytometry plasma Endothelium ↓ CD31+ at 3, 6, 12 months
↓ CD146+ at 3 months
↓ CD54+ at 3, 6, 12 months
↓ T2-weighted lesion volume

CD31+ and CD54+ could be used as surrogate 
markers for IFN-β1a treatment.

[39]

IFN-β1b Comparing before and after 
treatment: 11 relapsing MS, 
9 remitting MS

Healthy: 10

Cultured BMVEC with EMP and 
detection by flow cytometry from 

plasma Endothelium ↓ CD31
↓ CD54
↓ CD62E
↓ Transmigration of monocyte
↓ Transmigration of monocyte:EMP

IFN-β1b inhibited the adhesion of lymphocytes and 
endothelium and prevented T cells entering BBB.

[90]

Natalizumab Treated: 20
Untreated: 24

Flow cytometry blood Platelet
Leukocyte

↑ CD61 (PMP)
↑ CD45 (LMP)
↑ CD14 (LMP)

Natalizumab increased PMP and LMP. [42]

ASMase, acid sphingomyelinase; BBB, blood brain barrier; BMVEC; brain microvascular endothelial cells; EV, extracellular vesicles; HC, healthy control; IFN-β, interferon-beta; EMP, endothelial microparticle; LMP, leukocyte 
microparticle; miR, microribonucleic acid; MP, microparticle; MS, multiple sclerosis; NA, not available; PBMC, peripheral blood mononuclear cells; PMP, platelet microparticle; qPCR, quantitative polymerase chain reactio.
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actions and presence of individual EVs have been found to vary 
between different diseases. Platelet and endothelial EVs, as well as 
activated microglia-derived exosomes, were found to be associated 
with synaptic and BBB dysfunctions in MS. In vivo data provided 
evidence of an association between fibrinogen and astrocyte-
derived exosomes with neuroinflammation and demyelination. 

Although robust evidence from serum and CSF of MS individuals 
highlighted the role of various EVs, including those from leuko-
cytes, microglia, and microRNAs, concerning central inflamma-
tory pathways, there was still no definitive evidence regarding the 
implementation of EVs as a surrogate biomarker in diagnosis, 
prognosis management or therapeutic approaches. NMOSDs are 

Table 6. Extracellular vesicles markers in central demyelinating diseases and therapeutic strategy: reports from in vivo and in vitro studies

Treatment Design and population EV origins
Major finding in treated 

group
Interpretation Ref

In vivo studies
Placental exosomes EAE mice with placental EV injection Human placenta ↓ T cell proliferation Placental EV suppressed T cell proliferation and inflammation. [101]

EAE mice injected with mice placental EV Mice placenta ↑ Treg Placental EV promote Treg population resulting in anti-
inflammatory state

[102]

Human MSC EAE mice injected with supernatant of cultured BMSC Bone marrow ↑ IL10
↑ TGFβ
↓ TNFα

BMSC inhibited inflammatory process [94]

EAE mice injected with BMSC containing miR-367-3p Bone marrow ↑ SLC7A11
↑ GPX4
↓ ferroptosis

BMSC-derived EVs suppress ferroptosis [104]

EAE mice injected with BMSC containing miR-23b-3p Bone marrow ↓ IL17
↓ Microglia inflammation

BMSC inhibited inflammatory process [105]

EAE mice injected with BMSC Bone marrow ↑ Anti-inflammation: miR-193, 
miR-146a

↓ Proinflammation: miR-155, 
miR-21, and miR-326

BMSC inhibited inflammatory process [108]

EAE mice injected with Chimiric TAxI-peptide-chimeric 
Umbilical cord MSC-exos

Chimeric Umbilical 
cord MSC

↑ Anti-inflammation: IL-4, IL-
10, TGF-β, IDO-1 

↓ proinflammation: IL-2, IL-6, 
IL-17A, IFN-γ, and TNF-α

Chimeric umbilical cord MSCs can suppress inflammatory 
process of MS

[106]

EAE mice injected with Umblical cord MSC containing miR-
23a-3p

Umbilical cord MSC ↑ OPC Umbilical cord MSC can promote remyelination in MS model [107]

Periodontal ligament 
stem cell exosomes

EAE mice injected with hPDLSC Periodontal ligaments ↑ IL10
↑ TGFβ
↑ SDF-1α
↓ NALP3

hPDLSC inhibited inflammatory process. [103]

Rhesus monkey MSC EAE mice injected with MSC Mesenchymal cells ↑ MBP
↓ Amyloid-β precursor protein
↑ M2 microglia
↓ M1 microglia

MSC promoted remyelination by promoted oligodendrocyte 
and inhibited inflammatory microglia.

[95]

Mouse MSC EAE mice injected with mouse MSC loaded with FOX3P gene Bone marrow ↑ Treg
↑ IL10

BSC EV promote Treg population and function resulting in 
anti-inflammatory.

[111]

M2 macrophage de-
rived exosomes

EAE mice injected with si-lncRNA PVT1 M2 macrophages ↑ Treg activity
↓ Th17

lncRNA PVT1 could suppress inflammation of RRMS. [112]

EAE mice injected with miR-21-5p M2 macrophages ↓ Th17 miR-21-5p caused Th17 differentiation silencing.
miR-219a-5p exosomes EAE mice intranasally injected with miR-219a-5p miR-219a-5p ↑ OPC miR-219a-5p promoted remyelination. [114]
Let-7 EAE mice with Let-7g transgene Let-7 ↓ Th17 differentiation

↓ IL1R1
↓ IL23R
↓ CCR2
↓ CCR5

Let-7 exosomes reduced Th17 differentiation by blocking 
IL1R1 and IL23R and inhibition of CCR3 and CCR5.

[110]

IFNγ-stimulated den-
dritic cells

Intranasal administration of IFNγ-stimulated DC exosome 
with lysolecithin injection

Dendritic cells ↑ MBP IFNγ-stimulated dendritic cell exosomes associated with remy-
elination.

[116]

Environmental enrich-
ment exosomes

Serum from enriched rat cultured with rat hippocampus with 
lysolecithin injection

Blood exosome ↑ MBP Serum environmental enriched exosomes associated with re-
myelination.

[117]

In vitro studies
IL4 In vitro study: Microglia cultured with OPC IL4 IL4 ↑ Argenase 1 

↑ MBP 
↑ OPC accumulation

Pro-regenerative exposed microglia induced remyelination [53]

MSC Umbilical cord MSC and their exosome co-culture with 
PBMC from MS patients and HC. EV detected by flow cy-
tometry

Mesenchymal stem 
cells

↓ PBMC proliferation MSCs inhibited mononuclear cell proliferation. [96]

Umbilical cord MSC and their exosome co-cultured with T 
cells

Umbilical cord mesen-
chymal stem cells

↑ IL10 MSCs induced anti-inflammatory IL-10 secreting T cell. [113]

Adipose tissue MSC containing miR-29b co-cultured with T 
cells

Adipose tissue ↓ IL-4
↓ IL-17
↓ Tbx21
↓ RORγt

Adipose tissue MSC associated with T cell differentiation into 
anti-inflammatory T cells.

[109]

IFNγ-stimulated DC IFNγ-stimulated DC exosome cultured with mice hippocam-
pus

Dendritic cells ↑ miR-219
↑ MBP
↓ Reduced glutathione
↓ PDGFRα
↓ ELOVL7

IFNγ-stimulated DC exosomes mainly contained miR-219 and 
were associated with remyelination.

[116]

Environmental enrich-
ment exosomes

Environmental enrichment exosomes cultured with rat hip-
pocampus

Serum with Environ-
mental enrichment

↑ MBP
↑ miR-219

Environmental enriched exosomes mainly contained miR-219 
and associated with remyelination.

[117]

BMSC, bone marrow stem cells; CCR2, C-C Motif Chemokine Receptor 2; CCR5, C-C Motif Chemokine Receptor 5; DC, dendritic cells; EAE, experimental autoimmune encephalitis; ELOVL7, fatty acid elongase 7; EV, extracel-
lular vesicles; hPDLSC, human periodontal ligament stem cells exosome; let-7, lethal-7; IFNγ, interferon gamma; IL, interleukin; IL1R1, Interleukin 1 receptor Type 1;IL23R, Interleukin 23 receptor; lncRNA, long non-coding 
ribonucleic acid; iNOS, inducible nitric oxide synthase; MBP, myelin basic protein; MHC II, major histocompatibility complex class 2; miR, microribonucleic acid; MSC, mesenchymal cells; NALP3, NLR family pyrin domain con-
taining 3; OPC, oligodendrocyte precursor cell; PDGFRα, platelet derived growth factor receptor alpha; PLP, proteolipid protein; PVT1, Plasmacytoma Variant Translocation 1; RRMS, relapsing remitting multiple sclerosis; SDF-
1α, stromal cell-derived factor-1 alpha; si-lncRNA, silencing long non-coding ribonucleic acid; TGFβ, transforming growth factor beta; Th17, T helper 17 cells; TNFα, tumor necrosis factor alpha; Treg, regulatory T cells.
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a new spectrum of demyelinating diseases that to date lack data 
concerning the role of EVs. There is limited clinical evidence to in-
dicate the difference in the action of exosomes between NMOSD 
and MS, however some miRNA dysregulation has been shown to 
be related to clinical relapses of those diseases. Even though MS 
and NMOSD are considered CDD and share overlapping clinical 
features the data pertinent to EVs and CDD mostly focus on MS, 
whereas the data on NMOSD remain limited. Increased research 
and data into the clinical use of EVs as a potential therapeutic 
strategy is still required. However, as they have been considered 
carriers for diverse biological molecules, there is a very real pos-
sibility that EVs could be exploited as a next-generation targeted 
therapy as a precision medicine approach for MS and NMOSD.
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