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Therapeutic hypothermia improves outcomes following neonatal hypoxic-ischaemic encephalopathy, reducing cases of death and severe 
disability such as cerebral palsy compared with normothermia management. However, when cooled children reach early school-age, they 
have cognitive and motor impairments which are associated with underlying alterations to brain structure and white matter connectivity. 
It is unknown whether these differences in structural connectivity are associated with differences in functional connectivity between cooled 
children and healthy controls. Resting-state functional MRI has been used to characterize static and dynamic functional connectivity 
in children, both with typical development and those with neurodevelopmental disorders. Previous studies of resting-state brain networks 
in children with hypoxic-ischaemic encephalopathy have focussed on the neonatal period. In this study, we used resting-state fMRI 
to investigate static and dynamic functional connectivity in children aged 6–8 years who were cooled for neonatal hypoxic-ischaemic with
out cerebral palsy [n = 22, median age (interquartile range) 7.08 (6.85–7.52) years] and healthy controls matched for age, sex and socio
economic status [n = 20, median age (interquartile range) 6.75 (6.48–7.25) years]. Using group independent component analysis, we 
identified 31 intrinsic functional connectivity networks consistent with those previously reported in children and adults. We found no 
case-control differences in the spatial maps of these intrinsic connectivity networks. We constructed subject-specific static functional con
nectivity networks by measuring pairwise Pearson correlations between component time courses and found no case-control differences in 
functional connectivity after false discovery rate correction. To study the time-varying organization of resting-state networks, we used 
sliding window correlations and deep clustering to investigate dynamic functional connectivity characteristics. We found k = 4 repetitively 
occurring functional connectivity states, which exhibited no case-control differences in dwell time, fractional occupancy or state functional 
connectivity matrices. In this small cohort, the spatiotemporal characteristics of resting-state brain networks in cooled children without 
severe disability were too subtle to be differentiated from healthy controls at early school-age, despite underlying differences in brain struc
ture and white matter connectivity, possibly reflecting a level of recovery of healthy resting-state brain function. To our knowledge, this is 
the first study to investigate resting-state functional connectivity in children with hypoxic-ischaemic encephalopathy beyond the neonatal 
period and the first to investigate dynamic functional connectivity in any children with hypoxic-ischaemic encephalopathy.
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Graphical Abstract

Introduction
Therapeutic hypothermia has considerably improved out
comes following neonatal hypoxic-ischaemic encephalopathy 
(HIE) secondary to perinatal asphyxia. Cooled infants are at 
reduced risk of death or severe disability, such as cerebral 
palsy, compared with normothermia management following 
HIE.1-3 Therapeutic hypothermia is therefore standard care 
for HIE in most high-income counties. However, despite the 
benefits of therapeutic hypothermia, there are still aspects of 
brain development which are impacted by HIE. At early 
school-age, children cooled for HIE, who do not have cerebral 
palsy, have cognitive and motor impairments,4,5 attention and 
visuospatial processing difficulties6 and communication diffi
culties7 compared with healthy controls. An understanding of 
the differences in brain structure and function between cooled 
children and healthy controls is required to inform research 
into therapeutic intervention strategies to promote healthy 
brain development.

Functional MRI (fMRI) allows non-invasive investigation 
of brain activity by measuring changes in the blood oxygen 
level-dependent (BOLD) signal. In resting-state fMRI, the 
participant is scanned during rest (i.e. without engaging 
in a task or responding to stimuli) in order to measure 

spontaneous fluctuations in the BOLD signal.8 Functional 
connectivity (FC) analysis allows investigation of functional 
interactions across the brain, by measuring correlations be
tween pairs of brain regions in these low-frequency fluctua
tions of recorded BOLD signal.9-11 This approach can be 
extended to study the time-varying organization of resting- 
state brain activity using dynamic functional connectivity 
(dFC) analysis.12-15 One such approach is to use sliding win
dow correlations to calculate a series of FC matrices for each 
subject, which can then be clustered at the group level, re
vealing brain states representing repetitively occurring FC 
patterns.12,16 Spatiotemporal characteristics of these dFC 
states have been characterized in typically developing chil
dren17,18 and have been shown to be sensitive to neurodeve
lopmental outcomes.17,19-23

Studies of neonates with HIE (including both those with 
and without severe disability such as cerebral palsy) have 
found alterations to resting-state FC compared with healthy 
controls24,25 and associations between FC and both HIE se
verity and motor and developmental assessment scores.26-28

However, it remains unclear whether brain function in this 
population is affected in later life. We have previously shown 
that children cooled for HIE have disrupted white matter 
connectivity29-31 and structural alterations to subcortical 
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structures32 and mammillary bodies33 compared with 
healthy controls at early school-age. It is unknown whether 
these alterations to brain structure and structural connectiv
ity are associated with measurable differences in functional 
brain activity in these children.

Given that previous studies have shown that HIE severity 
is associated with outcomes and altered resting-state activity 
in neonates, we assessed whether resting-state FC following 
moderate to severe neonatal HIE differed from healthy con
trols at 6–8 years of age, in the absence of severe motor dis
ability. We investigated resting-state brain activity using 
fMRI in children aged 6–8 years without cerebral palsy 
who were treated with therapeutic hypothermia for neonatal 
HIE (cases) and healthy controls matched for age, sex and 
socioeconomic status. We used group-level independent 
component analysis (ICA) to determine a set of intrinsic con
nectivity networks (ICNs) and then studied case-control dif
ferences in the spatial maps of these ICNs and in static and 
dynamic FC between ICNs. To our knowledge, this is the 
first study to investigate FC in children with HIE beyond 
the neonatal period and the first study to investigate dFC 
in any children with HIE.

Materials and methods
Participants
This study investigated participants of the ‘CoolMRI’ 
study,5,29 a study of early school-age children without cere
bral palsy who received therapeutic hypothermia as a neuro
protective intervention for neonatal HIE and control 
children matched for age, sex and socioeconomic status. 
Informed and written consent was obtained from the parents 
of participants and assent obtained from the children. 
Ethical approval was obtained from the North Bristol 
Research Ethics Committee and the Health Research 
Authority (REC ID: 15/SW/0148).

Cases were aged 6–8 years and were sequentially selected 
from those who received therapeutic hypothermia between 
October 2007 and November 2012 for moderate to severe 
encephalopathy, confirmed by amplitude-integrated EEG as
sessment,2 secondary to perinatal asphyxia. Cases did not 
have a diagnosis of cerebral palsy at 2 and at 6–8 years based 
on neurological examination and assessment of motor func
tion. Children were excluded if they were cooled outside the 
standard criteria, born before 35 weeks gestation, had any 
additional diagnosis apart from HIE (such as genetic or 
metabolic disorder), had a major intracranial haemorrhage 
or congenital brain malformation visible on neonatal MRI 
or were non-native English speakers.

Age-, sex- and socioeconomic status-matched controls 
were recruited through local schools and newsletters circu
lated at the University of Bristol. Children were included 
who were born at >35 weeks gestation, had not had peri
natal asphyxia with HIE and spoke English as their primary 
spoken language.

Socioeconomic status was measured based on partici
pant’s postcode at examination, using the index of 
multiple deprivation as defined for England by the UK 
Government (www.gov.uk/government/statistics/english- 
indices-of-deprivation-2019). Each postcode in England is 
assigned a number, on a scale of 1–10, indicating the decile 
within which the local area is ranked in the country, from 
most deprived (1) to least deprived (10).

MRI acquisition
Images were acquired using a 3 Tesla Siemens Magnetom 
Skyra and a 32-channel receive-only head coil. A child- 
friendly, detailed explanatory video was sent to the family 
before assessment day and presented again on the day of 
the scan together with the typical sounds in the MRI scanner. 
Head movement was minimized using cushions. A 
T1-weighted volumetric scan was obtained, for spatial nor
malization, with a magnetization-prepared rapid acquisition 
gradient echo (MPRAGE) pulse sequence using the following 
parameters: echo time (TE) = 2.19 ms, inversion time (TI) =  
800 ms, repetition time (TR) = 1500 ms, flip angle = 9°, field 
of view = 234 × 250 mm, 176 slices, 1.0 mm isotropic voxels 
and generalized autocalibrating partially parallel acquisi
tions (GRAPPA) acceleration factor 4.34 During acquisition 
of the volumetric scan, a film of the participants’ choice was 
projected onto a screen visible through the mirror assembly 
of the head coil. During the resting-state functional acquisi
tion, the film was turned off and participants were instructed 
to keep their eyes open and look at a central fixation cross. 
T2-weighted functional images were acquired using a gradi
ent echo planar imaging sequence with the following para
meters: TE = 30 ms, TR = 906 ms, multiband factor 6, flip 
angle = 60°, field of view = 185 × 185 mm, matrix = 64 ×  
64, slice thickness = 3.125 mm, 36 slices and 2.890 ×  
2.890 × 3.125 mm voxels. We acquired 300 volumes giving 
a scan time of 4 min 32 s. We also acquired dual- 
(gradient)-echo images for distortion correction of fMRI 
data (see below).

Preprocessing
Resting-state fMRI data were preprocessed using FEAT35

from the FMRIB Software Library (FSL v6.0, https://fsl. 
fmrib.ox.ac.uk).36,37 Processing steps were as follows: 
(i) the first 5 volumes in the sequence were discarded to ensure 
steady-state magnetization, leaving 295 volumes (4 minutes 
27 seconds); (ii) motion correction was then applied with 
MCFLIRT38 to align all volumes in the sequence using rigid- 
body registration; (iii) the derived fieldmap was used to correct 
distortions (induced by magnetic field inhomogeneities) in the 
fMRI data; (iv) non-brain tissue was removed using brain ex
traction tool (BET); (v) spatial smoothing was performed with 
a 5 mm full-width at half-maximum Gaussian kernel; and (vi) 
high-pass temporal filtering was applied with a cut-off of 
150 s to remove low-frequency artefacts. Preprocessed fMRI 
data were then transformed to Montreal Neurological 
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Institute (MNI) standard space; first, subject fMRI data were 
registered to the subject’s T1-weighted image using rigid-body 
registration, and then, the subject T1-weighted image was re
gistered to the MNI standard template using nonlinear regis
tration, and the resulting transformation was applied to the 
fMRI data.

Following standard preprocessing steps, each subject’s 
fMRI data were cleaned to remove artefacts due to motion, 
physiological noise and scanner noise, using FSL’s 
FIX.39,40 FIX uses a training data set to automatically clas
sify subject-level ICA components (calculated using 
MELODIC from FSL) into signal and noise and then re
gresses out the noise components from the fMRI data. A 
study-specific training data set was generated by 
hand-labelling components from a random sample of 15 
subjects which were matched to the full cohort for case- 
control status. For each subject in the training sample, com
ponents were labelled signal or noise by two raters (A.P.C.S. 
and J.C.W.B.) based on characteristics of the spatial maps, 
timeseries and frequency spectra (for detailed description 
of characteristics of signal and noise components, see 
Griffanti et al.41). Leave-one-out cross-validation of the 
training data set gave a mean true positive rate of 94.2% 
and a mean true negative rate of 88.4%. The training data 
set was used to denoise all subjects’ fMRI data, including re
gressing out the movement parameters estimated during the 
motion correction preprocessing step.

Quality control
To assess quality of the fMRI scan, we quantified the amount 
of movement of each subject during acquisition using mean 
framewise displacement and maximum absolute displace
ment. Framewise displacement combines measurements of 
translation (x, y, z) and rotation (pitch, yaw, roll) into a sin
gle scalar quantity to summarize instantaneous head motion 
at each timepoint. This was calculated according to Power 
et al.,42 using the movement parameters estimated during 
the motion correction preprocessing step, and averaged 
across timepoints to give mean framewise displacement for 
each subject. Note that this is likely an overestimation of 
the framewise displacement, as rotational displacements 
are calculated based on an approximate radius (distance 
from the centre of the brain to the cortex) of 50 mm, but 
this distance will be slightly smaller in this paediatric cohort. 
Acquisitions were excluded if they had a mean framewise 
displacement > 0.5 or if the maximum absolute displacement 
from the reference volume exceeded 4 mm. T1-weighted 
scans were visually assessed, and those with severe move
ment artefact, which would affect the registration of the sub
ject data to the standard template, were excluded.

Group independent component 
analysis
Following preprocessing, resting-state fMRI data for the 
whole cohort were analysed using spatial group ICA 

(GICA). GICA decomposes data into maximally spatially in
dependent components, whose time courses can be linearly 
combined to reconstruct the original data. GICA was applied 
using GIFT,43,44 as follows. An initial dimensionality reduc
tion step was applied to the fMRI data for each subject, using 
principal component analysis (PCA) to reduce 295 timepoint 
data to 120 directions of maximal variability. Subject data 
for the whole cohort were then concatenated across time, 
and a group PCA step reduced this into 100 components 
with the expectation maximization algorithm. The infomax 
algorithm45 was then used to calculate 100 independent 
components from the reduced-dimensionality group data. 
To ensure robust estimation of independent components, 
ICA was repeated 20 times using ICASSO, and aggregate 
spatial maps were estimated as the modes of component clus
ters. We selected only components which gave a stability in
dex (Iq) > 0.8 in ICASSO. For these components, 
subject-specific spatial maps and time courses were calcu
lated using the GICA back-reconstruction method, which 
is analogous to dual regression, differing only in the projec
tion through the initial PCA step.44

We inspected the spatial maps and temporal properties of 
the independent components to identify ICNs based on the 
criteria described by Allen et al.,16 as follows: (i) peak activa
tion coordinates were in grey matter and had low spatial 
overlap with known artefacts (vascular, ventricular, motion 
or susceptibility); (ii) time courses were dominated by low- 
frequency fluctuations, characterized by a high ratio of 
power <0.10 Hz to 0.15–0.25 Hz46; and (iii) time courses 
had a high dynamic range (the difference between maximum 
and minimum power frequencies). Through this process, we 
identified 31 ICNs which were sorted into 7 functional net
works (basal ganglia, sensorimotor, auditory, visual, 
DMN, attention/cognitive control, cerebellar) based on the 
spatial maps provided by Shirer et al.47

For these 31 ICNs, subject-specific time courses (obtained 
from back-reconstruction, as described above) were de
trended (for linear, quadratic and cubic trends), despiked 
using AFNI’s 3dDespike algorithm (http://afni.nimh.nih. 
gov/afni) to replace outliers with values calculated from a 
third-order spline fit to neighbouring clean data points and 
low-pass filtered using a fifth-order Butterworth filter with 
a 0.15 Hz cut-off frequency.

Static functional connectivity
We calculated a 31 × 31 static functional connectivity (sFC) 
matrix for each subject by measuring the pairwise Pearson 
correlation coefficient between the subject-specific timeseries 
of each ICN and applying Fisher’s z-transform.

Dynamic functional connectivity
Recent studies have demonstrated that investigating resting- 
state connectivity in shorter time windows of tens of 
seconds can reveal dynamic changes in FC, offering greater 
insight into functional properties of brain networks.16,48,49
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We assessed time-varying dFC in this cohort using the meth
odology described in Spencer and Goodfellow,50 which builds 
on the standard sliding window correlation framework16 by 
including a dimensionality reduction step prior to clustering. 
We used deep clustering,51,52 which consists of autoencoders 
for dimensionality reduction prior to k-means clustering, as 
this provides more accurate measurements of state temporal 
properties in synthetic data than other dimensionality reduc
tion methods or k-means clustering alone.50 Autoencoders 
are a type of artificial neural network which, in dimensional
ity reduction applications, are trained to copy the input data 

to the output via a low-dimensional encoding layer.53,54 The 
low-dimensional encoding layer extracts salient features from 
which the original data can be reproduced via the decoding 
layers.52,55 Sliding window correlations and deep clustering 
were performed as follows.

First, we used the sliding window correlation approach to 
convert each ICN time course for each subject to a series of 
FC matrices, representing time-varying functional connec
tions (Fig. 1). We used a tapered window of length 50 TR 
(45.3 s), created by convolving a rectangular window with 
a Gaussian function with a sigma of 6 TR (5.436 s). 

Figure 1 Pipeline of analysis methods. Each subject’s resting-state fMRI data was preprocessed, and then, group independent component 
analysis (GICA) was used to extract intrinsic connectivity networks (ICNs). We identified 31 ICNs and obtained subject-specific spatial maps and 
time courses using back-reconstruction. Static functional connectivity (sFC) was computed for each subject by measuring pairwise correlation 
between ICNs. Dynamic functional connectivity (dFC) was computed by sliding window correlations followed by deep clustering50 to group FC 
windows into k = 4 states (determined using the elbow criterion of the within-cluster distance to the between-cluster distance). Dwell time and 
fractional occupancy were measured for each subject. ICN spatial maps and characteristics of sFC and dFC were compared between cases and 
controls.
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Sliding the window in steps of 1 TR (0.906 s), we calculated 
FC within each window by estimating covariance from the 
precision matrix with L1 regularization,16,56,57 where the 
regularization parameter, λL1, was estimated for each subject 
using cross-validation, and applied Fisher’s z-transform.

For dimensionality reduction, we used the autoencoder 
architecture described in Spencer and Goodfellow.50

Specifically, this consisted of a fully connected autoencoder 
with three encoding layers (number of units: 512, 256, 32) 
and a symmetric decoder. Linear activation functions were 
used for the low-dimensional layer and output layer, and rec
tified linear unit (ReLU) activation functions were used for 
all other layers. We trained the autoencoder for 200 epochs 
with a batch size of 50, using the Adam optimizer58 to min
imize the mean squared error (MSE) between the input and 
output.

We then applied k-means clustering to the low- 
dimensional representation of the dFC data for all subjects, 
as follows. First, we selected exemplar FC windows at local 
maxima in variance and applied 128 repetitions of k-means 
(max 1000 iterations) to the low-dimensional representation 
of these windows, each initialized with the k-means++ algo
rithm.59 From these 128 runs, the set of centroids which gave 
the lowest sum of squared error between each data point and 
its nearest centroid was used to initialize k-means clustering 
(max 10 000 iterations) for all windows.

We determined the number of clusters using the elbow cri
terion of the within-cluster distance to the between-cluster 
distance, which resulted in k = 4. For each subject, we mea
sured the mean dwell time of each cluster (the average time 
spent in that state) and the fractional occupancy of each clus
ter (the fraction of the total scan time spent in that state).

Statistical analysis
After data processing, for each subject we had (i) subject- 
specific spatial maps for 31 ICNs, (ii) a subject-specific sFC 

matrix denoting pairwise FC between ICNs and (iii) dFC 
outputs for each state, consisting of state FC matrices and 
measurements of dwell time and fractional occupancy.

To investigate differences in ICN spatial maps between 
cases and controls, we performed case-control comparison 
of subject-specific spatial maps for each ICN using FSL’s 
RANDOMISE.60 Age and sex were included as covariates 
in a general linear model, performing two-tailed voxelwise 
comparison between cases and controls with 10 000 permu
tations and applying threshold-free cluster enhancement to 
control the family-wise error rate.

We then investigated group differences in sFC between 
cases and controls; we regressed age and sex from each pair
wise functional connection (pairwise association between 
ICNs) and performed a two-tailed t-test using the residuals. 
We present uncorrected results, in addition to results after 
applying false discovery rate (FDR) correction for multiple 
comparisons.

To compare dFC characteristics, we compared dwell time 
and fractional occupancy between cases and controls using 
ANCOVA with age and sex included as covariates. To assess 
group differences in state FC matrices between cases and con
trols, we calculated subject-specific state FC matrices as the 
median of FC windows assigned to each state for a given sub
ject. We performed element-wise comparison between cases 
and controls by first regressing age and sex from each function
al connection and then performing a two-tailed t-test using the 
residuals. We applied FDR multiple comparison correction.

Results
Participant demographics
Fifty cases and 43 controls were recruited for the CoolMRI 
study. Seven cases and four controls did not want to undergo 
scanning, and seven cases had incomplete data due to 

Table 1 Participant demographics and perinatal clinical information

Cases (n = 22) Controls (n = 20) P

Age, median (IQR)/years 7.08 (6.85–7.52) 6.75 (6.48–7.25) 0.0909
Sex, n male (%) 7 (32) 11 (55) 0.2118
Deprivation index, median (IQR) 6 (4–9) 7 (5–8) 0.4099
Framewise displacement, mean ± standard deviation/mm 0.302 ± 0.090 0.274 ± 0.083 0.3077
Cognitive and motor scores

Full-scale IQ, median (IQR) 98 (89–103) 108 (99–116.5) 0.0053
MABC-2 total score, median (IQR) 11 (6–13) 11 (9.5–13) 0.4707
MABC-2 score <15th centile, n (%) 8 (36) 1 (5) 0.0221

Perinatal clinical information
Assisted ventilation at 10 min of age, n (%) 15 (68)
Cardiac compressions required, n (%) 4 (18)
Apgar score at 10 min of age, median (IQR) 6 (5–7)
Worst pH within 1 h of birth, median (IQR) 6.98 (6.90–7.13)

Amplitude-integrated EEG abnormalities prior to TH, n (%)
Moderate 21 (95)
Severe 1 (5)

Apgar score is measured on a 1–10 scale where a higher score indicates healthier (7–10 indicates good health). Perinatal asphyxia is characterized by pH < 7.20.
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Figure 2 Spatial maps of intrinsic connectivity networks. Intrinsic connectivity networks identified by group independent component 
analysis are grouped into functional networks, with arbitrary colours for visualization. Orientation is indicated by the labels in the sensorimotor 
panel as follows: S/I, superior/inferior; A/P, anterior/posterior; R/L, right/left.

Figure 3 Average static functional connectivity (sFC) matrix for the whole cohort (n = 42). Independent component number and 
label is shown in the right, corresponding to the intrinsic connectivity networks (ICNs) shown in Supplementary Table 1. ICNs are arranged into 
seven functional networks shown on the left. Pairwise functional connectivity (FC) is indicated by the colour bar. The number of each component 
corresponds to the independent component number in Supplementary Table 1 and Supplementary Figs. 1 and 2. R/L, right/left; PreCG, precentral 
gyrus; ParaCL, paracentral lobule; SMA, supplementary motor area; PostCG, postcentral gyrus; TTG, transverse temporal gyrus; STG, superior 
temporal gyrus; LOG, lateral occipital gyrus; SFG, superior frontal gyrus; ACC, anterior cingulate cortex; AG, angular gyrus; PCC, posterior 
cingulate cortex; FP, frontal pole; SMG, superior marginal gyrus; OFG, orbitofrontal gyrus; MFG, middle frontal gyrus.
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movement during the scan. Quality control of the fMRI data 
resulted in rejection of 13 cases and 19 controls. One add
itional case was rejected due to poor quality of their 
T1-weighted image, meaning that the data could not be spa
tially normalized. This left 22 cases and 20 controls with 
suitable data. Participant demographics are shown in 
Table 1. There was no significant difference between cases 
and controls in age, sex, deprivation index or framewise dis
placement. As previously reported,29,30 cases had lower cog
nitive scores (P = 0.0053) measured by the Wechsler 
Intelligence Scale for Children 4th Edition,61 and a larger 
proportion of the case group were at risk of motor impair
ment (P = 0.0221), defined as a score under the 15th centile 
on the Movement Assessment Battery for Children 2nd 
Edition (MABC-2).62

Intrinsic connectivity networks
Figure 2 shows the spatial maps of the 31 ICNs identified from 
independent component analysis, grouped into 7 functional 
networks.47 These ICNs are consistent with those found in pre
vious studies of children17,63-65 and adults.16,47,66,67 Details of 
each independent component are provided in Supplementary 
Table 1, with spatial maps shown in Supplementary Figs. 1
and 2. There were no case-control differences in ICN spatial 
maps (P > 0.05), indicating the spatial extent of independent 
components is consistent between groups.

Static functional connectivity
The average sFC matrix for the whole cohort is shown in 
Fig. 3. Similar to previous studies,16,17 sFC patterns in this co
hort show modular organization, with most functional net
works (e.g. sensorimotor, visual, DMN, attention/cognitive 
control) exhibiting positive connectivity between ICNs within 
the network. The ICNs which comprise the DMN exhibited 
negative correlation with most other functional networks.

We investigated group differences in sFC between ICNs 
after regressing age and sex. After FDR correction, there 

were no case-control differences in sFC. The uncorrected 
t-statistic map is presented in Fig. 4. Before multiple com
parison correction, there were group differences in FC within 
the attention/cognitive control network and between this 
and other functional networks (Fig. 4).

Dynamic functional connectivity
We used sliding window correlations and deep clustering to 
identify k = 4 repetitively occurring FC states, shown in 
Fig. 5 along with the distribution of residual dwell time and 
fractional occupancy of each state in cases and controls after 
regressing age and sex. State 1, which makes up the largest 
proportion of FC windows, is characterized by very weak con
nectivity among most ICNs. Previous studies have found simi
lar connectivity patterns in the most frequently observed state 
and have suggested this may be the average of multiple add
itional states which are not sufficiently distinct or prevalent 
to be distinguished.16,18 State 2 is characterized by positive 
connectivity within the sensorimotor network, within the 
DMN and between the sensorimotor and attention/cognitive 
control networks but negative connectivity between the 
DMN and other functional networks. State 3 exhibits strong 
positive connectivity between ICNs in the visual network, and 
between ICNs in the DMN, but strong negative connections 
between many ICNs across all networks. State 4 represents 
a highly integrated state, characterized by positive connectiv
ity between ICNs across all networks. After FDR correction, 
there were no differences in the state FC matrices. There 
were no case-control differences in dwell time or fractional oc
cupancy in any of the states.

Discussion
In this study, we investigated resting-state networks mea
sured from fMRI in children treated with therapeutic hypo
thermia for HIE, who did not develop cerebral palsy, and 
controls matched for age, sex and socioeconomic status. 

Figure 4 Case-control differences in static functional connectivity (sFC). Colour maps from left to right show average sFC in cases (n =  
22), average sFC in controls (n = 20), the difference between these and the t-statistic from a two-tailed t-test of residual functional connectivity 
(FC) after regressing age and sex. A t-statistic of |t| > 2.02 corresponds to uncorrected P < 0.05. None of these differences were significant after 
FDR correction.
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There were no case-control differences in ICN spatial maps, 
sFC between ICNs and dFC states and temporal characteris
tics. From 100 independent components derived by spatial 
group ICA, we identified 31 ICNs based on characteristics 
of the time courses, spatial maps and power spectra. These 
ICNs correspond to known resting-state networks previous
ly reported in both children and adults.16-18,47,63-65 We 
found no case-control differences in the spatial maps of these 
ICNs. We investigated sFC by measuring pairwise correla
tions between ICN time courses over the duration of the 
scan for each subject. Before multiple comparison correc
tion, there were case-control differences in attention and 
cognitive networks; however, these were not significant after 
FDR correction. Using dFC analysis to investigate dynamic 
fluctuations in resting-state activity revealed k = 4 repetitive
ly occurring brain states. There were no differences between 
cases and controls in dwell time, fractional occupancy or 
state FC matrices.

There have been few studies of resting-state FC in children 
with HIE68; resting-state networks in children with HIE have 
previously only been examined in the neonatal period. Jiang 
et al.24 investigated resting-state FC in motor networks in 
neonates cooled for HIE (five mild, eight moderate and three 
severe, as determined using Sarnat criteria), in comparison 
with healthy controls at 1–2 weeks of age. They reported re
duced FC between primary motor regions in neonates with 

HIE and case-control differences in FC spatial maps. Tusor 
et al.25 reported reduced FC in auditory, somatomotor, vis
ual and default-mode networks in infants cooled for HIE 
compared with healthy controls. In a retrospective study of 
neonates with acute brain injury, 27 of whom were cooled 
for HIE (14 mild, 7 moderate, 6 severe as determined by 
Sarnat criteria), more severe outcomes were associated 
with atypical resting-state activity in the basal ganglia, fron
toparietal and default-mode networks.27 Two-year follow- 
up in the same cohort confirmed associations between basal 
ganglia resting-state activity and motor tone and between the 
frontoparietal networks and developmental delay, in add
ition to revealing associations between the default-mode net
work and both developmental delay and motor tone.28

Additionally, Li et al.26 found that functional brain networks 
in neonates with severe HIE had lower local efficiency and 
clustering coefficient compared with those with moderate 
HIE at around 2 weeks of age, indicating reduced capacity 
for segregated functional processing. However, the authors 
did not report whether participants received therapeutic 
hypothermia and it is not standard care nationwide in 
China, where the study was carried out.69 Our cohort did 
not include those with cerebral palsy and thus is not directly 
comparable with the previous studies on infants too young to 
rule out a diagnosis of cerebral palsy. Our cohort was almost 
entirely made up of those with moderate HIE (only one case 

Figure 5 Dynamic functional connectivity (dFC) state maps and temporal properties. (A) dFC state maps, ordered by prevalence, are 
shown for the whole cohort (top row) and for controls (middle) and cases (bottom). The distribution of residual dwell time (B) and fractional 
occupancy (C), after regressing age and sex, is shown as box plots with boxes indicating the interquartile range with a line for the median and 
whiskers extending to the range of the data, not including outliers. Individual data points are shown as circles. Dwell time and fractional occupancy 
were compared between cases and controls for each state using ANCOVA with age and sex included as covariates (n shown in panel A). There 
were no significant differences (P > 0.05) for dwell time (t = 0.633, 0.117, −0.635 and 0.242 for states 1, 2, 3 and 4, respectively) or fractional 
occupancy (t = 0.715, 0.408, 0.243 and 0.447 for states 1, 2, 3 and 4, respectively).
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had severe HIE); it is possible that a cohort made up of cases 
with severe HIE might have more distinguishable differences 
in FC. However, in the same cohort with a similar propor
tion of severe versus moderate HIE, we previously reported 
widespread alterations to structural connectivity and white 
matter diffusion properties.29

The limited case-control differences in ICN spatial maps, 
sFC and dFC characteristics between the case groups and 
matched healthy controls are despite previous findings in the 
same cohort showing widespread alterations to brain struc
ture and white matter connectivity, which are associated 
with cognitive and motor impairments in cases.7,29-33 This 
may be due to the small sample size; our previous work has 
identified heterogeneity in the severity of impairments to brain 
structure and cognition in this cohort5,29,33; therefore, any al
terations to resting-state brain activity are also likely to be het
erogeneous. It may be possible to detect such heterogeneous 
differences using a deep learning approach for FC ‘fingerprint
ing’.70,71 The subtle differences shared across the cohort 
would require a large sample size to distinguish from healthy 
resting-state activity. Before multiple comparison correction, 
there were group differences in FC between the attention/cog
nitive control network and the sensorimotor and visual net
works (Fig. 4). This may reflect neural correlates of the 
attention and visuospatial processing difficulties observed in 
behavioural studies in this cohort6 and the altered structural 
connectivity to regions associated with attention and visuo
spatial processing previously reported.29 However, further 
study with a larger sample size is required to robustly identify 
these differences. Differences in brain activity in this cohort 
may also be detected by a task-based fMRI paradigm which 
demands the specific aspects of cognition known to differ be
tween cooled children and controls.72

It is possible that the minimal group differences reflect a 
level of recovery of healthy resting-state brain function, des
pite the structural differences in this cohort. This may sug
gest that healthy cognitive function could also be recovered 
in this developmental period. For example, if the appropriate 
support or intervention was provided in this developmental 
period between infancy and early school-age, it may be pos
sible to minimize cognitive impairments.73-76

Strengths and limitations
To our knowledge, this is the first study to investigate resting- 
state FC in children with HIE beyond the neonatal period and 
the first to investigate dFC in any children with HIE. The main 
difficulty when scanning children of this age group is move
ment during the scan, which can affect FC measurements.77-79

We took steps to alleviate the effect of movement, using thor
ough preprocessing and data cleaning procedures to identify 
and regress noisy signals and motion parameters, in addition 
to rejecting participants based on quantitative evaluation of 
movement during the scan. As a result, there was no group dif
ference in framewise displacement. However, rejection of 
those with excessive movement resulted in a small sample 
size, which is the main limitation of this study, possibly 

resulting in type 2 errors. A further limitation is the relatively 
short duration of the resting-state scan compared with previ
ous resting-state FC studies, at 4 min 32 s (300 volumes). This 
was done in order to minimize the total scan time and reduce 
the possibility of movement; however, it may reduce the sen
sitivity to subtle connectivity differences.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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