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Abstract

Stable isotopes such as 2H, 13C, and 15N have important applications in chemistry and drug 

discovery. Late-stage incorporation of uncommon isotopes via isotopic exchange allows for direct 

conversion of complex molecules into their valuable isotopologues without requiring a de novo 
synthesis. While synthetic methods exist for the conversion of hydrogen and carbon atoms into 

their less abundant isotopes, a corresponding method for accessing 15N-primary amines from their 

naturally occurring 14N-analogues has not yet been disclosed. We report an approach to access 
15N-labeled primary amines via late-stage isotopic exchange using a simple benzophenone imine 

as the 15N source. By activating α-1° and α-2° amines to Katritzky pyridinium salts and α-3° 

amines to redox-active imines, we can engage primary alkyl amines in a deaminative amination. 

The redox-active imines proceed via a radical-polar-crossover mechanism, whereas the Katritzky 

salts are engaged in copper catalysis via an electron donor-acceptor complex. The method is 

general for a variety of amines, including multiple drug compounds, and results in complete and 

selective isotopic labeling.
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INTRODUCTION

The incorporation of isotopes into organic molecules is of paramount interest across many 

areas of science. Stable isotopes such as 2H, 13C, and 15N have had important applications 

in elucidating chemical mechanisms1-5 and in drug discovery as tracers for metabolic 

studies.6-13 In addition, 13C and 15N-labeled amino acids have been extensively used as 

labeling tracers in quantitative proteomics (SILAC).14,15 More specialized uses, such as in 

hyperpolarized NMR,16 are also emerging, increasing the demand for reliable syntheses 

of these labeled materials. As molecules for these advanced applications become more 

complex, new synthetic routes to prepare isotopically enriched materials must advance to 

minimize the length and cost of synthesis.17 Selective replacement of an atom for its isotope 

through late-stage functionalization is attractive because it obviates the need for a costly and 

time consuming de novo synthesis. However, such a realization requires very mild reaction 

conditions and ideally complete isotopic exchange.

Significant efforts towards late-stage atom exchange18 of hydrogen- and carbon-containing 

molecules have been previously described. Installing 2H in organic frameworks has been 

achieved by exploiting the inherent acidity of many C-H bonds, or by using isotopically 

enriched metal-hydrides or hydrogen-atom-transfer reagents (Scheme 1A).19 Although 

powerful, the C-H functionalization step is often in equilibrium between the labeled and 

unlabeled substrate, which can lead to incomplete labeling. Strategies aiming to incorporate 

carbon isotopes, specifically via carbon atom exchange, have been developed largely using 

decarboxylative carboxylation with 13CO2 (Scheme 1B).20-25 This strategy again relies on 

the reversibility of the decarboxylation process, which makes it challenging to obtain high 

levels of the desired isotopic enrichment without biasing the system, often by using large 

excess of labeled starting material.26

In contrast, due to the strength of C-N bonds, as well as the inherent nucleophilicity and 

poor leaving group ability of amines, direct exchange of a nitrogen atom for its isotope is a 

non-trivial transformation. The unique properties of 15N, such as wide chemical shift range 

and optimal relaxation lifetime, makes it an ideal nucleus for emerging biological imaging 

techniques.16 The current technology for obtaining an 15N-labeled primary amine requires a 

de novo synthesis of the desired molecule,27-30 precluding fast and modular diversification 

of existing medicinally relevant or naturally abundant nitrogen containing molecules for 

their 15N counterparts.31-33 In addition, some of these examples also result in incomplete 

labeling. Herein, we present strategies for direct conversion of a broad range of primary 

amines to their isotopic counterparts (Scheme 1C). Judicious choice of reaction conditions 

renders the reaction feasible for α-primary, -secondary, and -tertiary amines, including many 

pharmaceutical compounds. The isotope is introduced using 15N-labeled benzophenone 

imine, easily synthesized from 15N-ammonium chloride, the most economic and abundant 

form of 15N. The isotopically labeled products are isolated with complete labeling, as the 

unreacted 14N-starting material is functionalized and separated. The reaction proceeds under 

mild conditions, making it amenable to many complex drug targets.
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RESULTS AND DISCUSSION

We envisioned that we could utilize existing amine activation strategies (Scheme 2A) to 

engage primary amines in isotopic editing. State-of-the-art amine activation for α-1° and 

αa-2° amines relies on the formation of Katritzky pyridinium salts, which can undergo 

single-electron reduction via transition metal (TM) catalysis34 or photoredox catalysis35 

to generate a primary or secondary carbon-centered radical. For sterically hindered α-3° 

amines, Katritzky salt formation is not possible due to steric clash of the 2,6-phenyl 

substitution and the α-3° amine. Instead, the use of redox-active imines that engage 

in a single-electron oxidation enables the formation of a tertiary alkyl radical.36,37 We 

posited that these radical species could be further oxidized and trapped with a 15N-labeled 

nucleophile in a radical-polar-crossover (RPC) mechanism. RPC has gained traction over the 

years as a reliable method for coupling nucleophiles to sterically hindered electrophiles via a 

carbocation intermediate.38-45

It became immediately apparent that using the redox-active imines for RPC posed several 

significant challenges: a sacrificial oxidant is needed for photocatalyst turnover and radical 

oxidation; the alkyl radical could be reduced via hydrogen-atom-transfer; the carbocation 

trapping could be outcompeted by water (hydration product) or by elimination to form an 

alkene. Extensive optimization (see Supporting Information for full optimization efforts) led 

us to suitable conditions to minimize these deleterious pathways and successfully form the 

isotopically labeled amines, showing a clear trend with respect to yield and carbocation 

stability. We found that irradiating the redox-active imines with 456 nm light in combination 

with an oxidizing iridium photocatalyst, potassium persulfate as a sacrificial oxidant, 

potassium phosphate tribasic, and 15N-benzophenone imine in pivalonitrile (Condition 

A) provides good yields of the desired 15N-labeled α-3° amines (Scheme 2B). The 

reaction tolerates acyclic α-3° amines (3a-e) with myriad protected functionalities, such 

as alcohols (3d) and amines (3e). Cyclic α-3° amines with various ring sizes are also 

competent coupling partners in the reaction conditions (3f-m), including an example with 

an unprotected alcohol (3m). Benzylic α-3° amines (3n, 3o) give higher yields of desired 

product, likely due to the stability of both the radical and carbocation intermediates, which 

mitigates undesired reactivity. However, electron-deficient benzylic α-3° amines are not 

suitable coupling partners, instead forming the homodimer of the radical species as the 

major product (see SI).

In an effort to engage α-1° and α-2° amines in isotopic exchange, we turned to Katritzky 

salts for a redox-neutral RPC. The oxidized photocatalyst after radical generation can be 

reduced by the resulting radical, generating the desired carbocation intermediate. We found 

that a reducing ruthenium photocatalyst and 15N-benzophenone imine as the nucleophile 

(Condition B) affords labeled primary benzylic amines in high yields (4a-c). Electron-rich 

benzylic amines are good coupling partners, while electron neutral ones lead to a drop 

in yield (4d, 4e) and electron-deficient ones result in trace yields (4f, 4g), likely due to 

the challenging generation of the carbocation intermediate. In addition, using nonbenzylic 

Katritzky salts in the RPC system results in trace yields of desired product. It was apparent 

that the dependence on carbocation stability limited this system to electron-rich α-primary 

amines.
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To address this limitation, we sought a method suitable for isotopic exchange of unactivated 

α-1° and α-2° amines by functionalizing the intermediate radical through a divergent 

pathway that does not involve carbocation formation (Scheme 3). Radicals generated from 

Katritzky salts are known to interact with a wide variety of electrophilic coupling partners 

because of the polarity match with the nucleophilic carbon-centered radical.46 To instead 

encourage coupling with nucleophilic amine sources, we turned to copper catalysis as a 

viable approach for a C–N cross coupling given recent precedent using benzophenone imine 

as a coupling partner.47,48 In this approach, we hypothesized that a photoredox catalyst 

could reduce the Katritzky salt to the corresponding radical, which can be subsequently 

trapped by a copper catalyst.

We were pleased to find that this approach proved effective for performing isotopic 

exchange on α-secondary amines. However, control studies revealed that omitting 

photocatalyst has little effect on the yield of the reaction, but light is necessary for 

productive reactivity (see SI for optimization and control studies). Therefore, we propose 

that the single-electron transfer event occurs with the copper catalyst and the Katritzky 

salt through a transiently formed electron donor-acceptor (EDA) complex,49,50 enabling 

formation of the desired radical and the oxidized Cu(II) catalyst (Scheme 3A). Alternatively, 

the Cu(I)(TMHD)imido species, which would be formed if benzophenone imine exchanged 

with Br, can still form an EDA complex with the Katritzky salt (see Figure S1 in SI). 

Ligand exchange and radical trapping (or vice versa) results in the formation of a Cu(III) 

species that is poised to undergo reductive elimination to yield the desired product. UV-

Vis studies confirm that upon mixing the copper catalyst with the Katritzky salt in the 

presence of base, a new complex is formed that can absorb light. This complex can then 

undergo photoinduced single-electron transfer, allowing isotopic exchange for unactivated 

α-secondary amines (Scheme 3B).

Interestingly, replacing Katritzky salt A for Katritzky salt B containing an α-1° amine 

disrupts the EDA complex with a concomitant loss of reactivity (Scheme 3C and 3D). 

Because the redox potentials of A and B differ by around 50 mV (see SI for cyclic 

voltammetry data), we wondered if this loss in yield was due to the slight shift in electronics. 

However, utilizing an α-1° Katritzky salt with electron-deficient aryl substituents, thus 

shifting the redox potential past that of A, also results in low yield (see SI). Therefore, 

we mainly attribute this loss of reactivity to steric differences between the two pyridinium 

salts. In the case of A, the α-2° amine is twisted out of plane, creating a rigid complex 

for the copper catalyst to interact with and twisting the pyridinium ring out of planarity. 

Conversely, B has more degrees of freedom and less steric clash, resulting in a more 

planarized pyridinium ring and possibly affecting the manner in which it interacts with the 

Cu(I)(TMHD) catalyst.51 Redesigning the Katritzky salt52 and installing ethylene bridges 

between the triphenyl core to rigidify the structure (Katritzky salt C) results in the formation 

of a new EDA complex while restoring reactivity and yield (Scheme 3D).

Having established a viable strategy for isotopic exchange of unactivated primary amines, 

we proceeded to examine the scope of amines for the transformation (Scheme 4). 

Cyclic α-2° amines containing various functionalities provide good yields, including six- 

(5a-5d), five- (5e, 5f), four- (5g), and seven-membered rings (5h). Linear α-2° amines 
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are also competent coupling partners (5i, 5j). Excitingly, amino acid motifs (5k, 5l) are 

successful coupling partners in this transformation, affording valuable 15N-labeled amino 

acid derivatives53,54 and complimenting recent carbon isotope exchange methodologies on 

amino acids.55

Utilizing Pyr2 allows for isotopic exchange of a wide variety of α-1° amines. Various 

heterocycles are tolerated, including furans (6c, 6e), indoles (6g), pyrazoles (6h), imidazoles 

(6i), and thiazoles (6j). Protected lysine 6d undergoes desired coupling efficiently, 

showcasing the ability to label either nitrogen of this amino acid. Lastly, electron-deficient 

arenes that were low yielding under the radical-polar crossover conditions can be efficiently 

converted in the Cu catalytic system (6l, 6m).56

Lastly, we sought to demonstrate the versatility and applicability of our reaction conditions 

by labeling a variety of drug-like molecules (Scheme 5). Amine functionality is one of the 

most prevalent functional groups in pharmaceutical targets,57 with primary amines occurring 

in a variety of market drugs or being used as late-stage intermediates (see 7b) towards 

substituted amine and amide containing drugs.58 Installing an isotopic label as the last step 

in a complex molecule synthesis is ideal, as the yield of the isotopically enriched substrate is 

maximized and there is minimal isotopically labeled waste.

Utilizing α-1° amines such as Mosapride intermediate 7b and Boc-Histamine 7c give the 

desired product in moderate to good yields. Drug derivatives containing α-2° amines such as 

Mexilitene 7a, Tamiflu 7e, DL-DOPA 7g, and Alogliptin also give desired isotopic exchange 

product in synthetically useful yields, while demonstrating the feasibility of deprotection to 

the primary amine (7h). In addition, α-3° amines such as Namenda 7d and Phentermine 7f 
also perform well in the isotopic exchange.

CONCLUSIONS

In conclusion, we have developed a general method for the synthesis of 15N-labeled primary 

amines. This expands the range of isotopic labeling to include nitrogen-isotope exchange of 

primary amines, complementary to hydrogen- and carbon-isotope exchange methodologies. 

By condensing α-1° and -2° amines to the Katritzky pyridinium salt and α-3° amines to 

redox-active imines, we have developed the first isotopic-exchange conditions suitable for 

all three categories of primary alkyl amines. The reaction tolerates a variety of functionality 

and is amenable to the isotopic exchange of late-stage drug derivatives. We hope that 

unlocking this new approach to the synthesis of 15N-labeled materials will broaden their 

already prevalent uses in mechanistic studies, amino acid labeling, hyperpolarization probes, 

and labels in clinical pharmacology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Overview of Late-Stage Stable Isotope Incorporation.
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Scheme 2. Reaction Design and Scope.
All yields are isolated yields with >99% 15N labeling. Compounds without an asterisk 

indicates that the reaction was conducted with coupling partner 1 and Condition A. An 

asterisk indicates that the reaction was conducted with coupling partner 2 and Condition B. 

(a) NMR yield with mesitylene as an internal standard.
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Scheme 3. 
Activating Amines for Isotopic Exchange via Copper Catalysis.
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Scheme 4. Scope of Amines for Isotopic Exchange with Cu Catalysis.
All yields are isolated yields with >99% 15N labeling. Compounds without an asterisk 

indicates that the reaction was conducted with Pyr1. An asterisk indicates the reactions 

conducted with Pyr2.
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Scheme 5. Scope of Reaction Conditions with Drug-Like Molecules.
All yields are isolated yields with >99% 15N labeling. (a) 1 equiv Pyr1, 20 mol% CuI, 

30 mol% TMHD, 2 equiv Cs2CO3, 3 equiv 15N-benzophenone imine, DMF (0.4M), 

456 nm LED irradiation for 16 hours. (b) Reaction conditions are the same as in 

(a) but with 1 equiv Pyr2 instead of Pyr1. (c) 1 equiv redox-active imine, 1 mol% 

[Ir(dFCF3ppy)2dtbbpy]PF6,2 equiv potassium persulfate, 1 equiv potassium phosphate 

tribasic, 3 equiv 15N-benzophenone imine, ~25 mg 3Å MS in pivalonitrile (0.25M) with 

456 nm irradiation for 24 hours.
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