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Abstract
Cell- and antibody-based CD19-directed therapies have demonstrated great potential for treating B-cell non-
Hodgkin lymphoma (B-NHL). However, all these approaches suffer from limited response rates and considerable 
toxicity. Until now, therapy decisions have been routinely based on histopathological CD19 staining of a single 
lesion at initial diagnosis or relapse, disregarding heterogeneity and temporal alterations in antigen expression. To 
visualize in vivo CD19 expression noninvasively, we radiolabeled anti-human CD19 monoclonal antibodies with 
copper-64 (64Cu-αCD19) for positron emission tomography (CD19-immunoPET). 64Cu-αCD19 specifically bound to 
subcutaneous Daudi xenograft mouse models in vivo. Importantly, 64Cu-αCD19 did not affect the anti-lymphoma 
cytotoxicity of CD19 CAR-T cells in vitro. Following our preclinical validation, 64Cu-αCD19 was injected into four 
patients with follicular lymphoma, diffuse large B-cell lymphoma or mantle zone lymphoma. We observed varying 
64Cu-αCD19 PET uptake patterns at different lymphoma sites, both within and among patients, correlating with 
ex vivo immunohistochemical CD19 expression. Moreover, one patient exhibited enhanced uptake in the spleen 
compared to that in patients with prior B-cell-depleting therapy, indicating that 64Cu-αCD19 is applicable for 
identifying B-cell-rich organs. In conclusion, we demonstrated the specific targeting and visualization of CD19+ 
B-NHL in mice and humans by CD19-immunoPET. The intra- and interindividual heterogeneous 64Cu-αCD19 uptake 
patterns of lymphoma lesions indicate variability in CD19 expression, suggesting the potential of CD19-immunoPET 
as a novel tool to guide CD19-directed therapies.
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To the editor
CD19-directed therapies, such as chimeric antigen 

receptor (CAR)-T cells, the Fc receptor-optimized mono-
clonal antibody (mAb) Tafasitamab-cxix or the mAb-
drug conjugate Loncastuximab tesirine, have emerged as 
relevant treatment alternatives for B-cell non-Hodgkin 
lymphoma (B-NHL). While some patients achieve com-
plete and durable remission, the overall response rate 
of ∼ 50% falls considerably below that observed in Pro-
B-ALL patients. Furthermore, 70% of B-NHL patients 
fail to achieve long-term survival, exposing them to sig-
nificant toxicity, particularly neurotoxicity or cytokine 
release syndrome [1–5].

In contrast to single-cell leukemia targeting, chal-
lenges such as impaired lymphoma cell accessibility, a 
complex immunosuppressive microenvironment, inter- 
and intraindividual alterations in CD19 expression, 
CD19 epitope loss or downregulation following CD19-
directed therapy, and unreliable immunohistochemical 
CD19 staining limit accurate patient stratification and 
therapeutic success in B-NHL patients [6–9]. Beyond 
histopathological assessment, there is currently no 
target-specific approach available that can be used for 
patient stratification and treatment decision-making in 
B-NHL.

Positron emission tomography (PET) with radiola-
beled antibodies (immunoPET) enables whole-body 
visualization and quantification of specific target 
expression over time, therapeutic drug biodistribu-
tion, and tumor accessibility [10]. Recently, we revealed 
heterogeneous GD2-derived uptake patterns and dis-
tinct alterations during targeted therapy in pediatric 
patients with metastatic neuroblastoma and sarcoma 
using a radiolabeled anti-GD2-mAb [11, 12]. In this 
study, we developed a copper-64 (64Cu)-radiolabeled 
mAb directed against human CD19 for positron emis-
sion tomography (PET) imaging and demonstrated, for 
the first time, the specific in vivo targeting and non-
invasive visualization of CD19+ lymphoma lesions in 
experimental lymphoma-bearing mice and four human 
B-NHL subjects.

Radiolabeling of the αCD19-mAb (64Cu-αCD19) 
yielded a stable radioimmunoconjugate with minimal 
dimerization, high radiochemical (> 95%) and radionu-
clidic purity (≥ 99.9%), and an immunoreactivity of 57% 
(Fig. S1a, b). In vivo PET/MR and ex vivo biodistribution 
demonstrated significantly greater 64Cu-αCD19 uptake 
in subcutaneous Daudi lymphoma xenografts compared 
to a 64Cu-αB7-H3 control tracer (Fig.  1a, b; Fig. S1c). 
Importantly, the αCD19-mAb impaired αCD19-CAR-
T-cell-mediated cytotoxicity in vitro only at concentra-
tions ∼ 1000 times greater than the applied dose for PET 
imaging (Fig. 1c).

First-in-human PET/MRI scans were con-
ducted ∼ 24  h after 64Cu-αCD19 injection in four 
B-NHL patients to evaluate eligibility for CD19-
directed therapies (Fig. 2). As expected from previous 
therapeutic applications in childhood B-ALL patients 
treated with substantially higher mAb doses, all 
patients tolerated the 64Cu-αCD19 injections without 
any obvious clinical signs of toxicity.

Patient 1, with double-hit follicular lymphoma, 
exhibited remarkable tracer uptake in the cervical, 
abdominal, and singular bone lymphoma manifesta-
tions (Fig.  2a-c; average standardized uptake value, 
SUVavg 7.7–8.5). Interestingly, all lesions could be bet-
ter differentiated by CD19-immunoPET than by [18F]
FDG-PET/CT conducted 90 days before (Fig. S2a-c). 
Immunohistochemistry of a previously extirpated cer-
vical lymph node revealed moderate CD19 protein 
expression. In contrast, the abdominal lymphoma bulk, 
irradiated by a total fractionated dose of 30  Gy with 
palliative intent shortly before, yielded little tracer 
accumulation (Fig. S2b; SUVavg < 1.5), suggesting 
residual necrotic/avital tissue.

In Patient 2, who suffered from refractory DLBCL, 
the thoracic (Fig.  2d) and abdominal lymphoma 
manifestations (Fig.  2d-f ) indicated the strongest 
64Cu-αCD19 accumulation among all the subjects 
(SUVavg up to 27.7). Likewise, intense histological 
CD19 expression was found in the resectate of a peri-
toneal lymphoma conglomerate. Furthermore, we 
detected markedly greater tracer uptake in the 
spleen (SUVavg 21.7) than in the other three patients 
(SUVavg 5.1–8.5). Notably, Patient 2 was the only sub-
ject who did not receive the B-cell-depleting αCD20-
mAb rituximab within the last 6 months prior to 
CD19-immunoPET, indicating that 64Cu-αCD19 is 
applicable for detecting physiological B cells in lym-
phatic organs.

We further revealed pronounced tracer accumulation 
in the bone marrow of Patient 3 with DLBCL (Fig.  2h) 
compared to the other B-NHL patients (SUVavg 12.7 
vs. 5.0, Patient 1). Interestingly, a subsequent bone 
marrow biopsy showed 99% B-NHL infiltration with 
intense CD19 expression, demonstrating the ability of 
CD19-ImmunoPET to differentiate CD19+ lymphoma 
lesions. However, we detected faint uptake in the known 
retrosternal and iliacal lesions (Fig.  2g, i) of Patient 3, 
which were highly suspicious of vital lymphoma accord-
ing to [18F]FDG-PET/CT (Fig. S5d, f ).

Moreover, in line with the low histological CD19 
expression in an extirpated cervical lymph node from ini-
tial diagnosis, Patient 4, with marginal zone lymphoma, 
exhibited slight 64Cu-αCD19 uptake in the margin of a 
large pulmonary lymphoma bulk (Fig. 2j) and no relevant 
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PET-derived signal in the retroperitoneal manifestations 
(Fig. 2l).

In conclusion, for the first time, we demonstrated the 
feasibility of detecting CD19+ lymphoma lesions noninva-
sively by CD19-immunoPET in B-NHL patients, which is 
fully consistent with the findings of our preclinical mouse 
studies. This innovative imaging approach may improve 
both patient stratification and therapeutic surveillance 
by detecting heterogeneous CD19 expression or antigen 
downregulation during CD19-directed therapies.

Furthermore, the noninvasive visualization of endog-
enous B cells holds great promise in multiple sclerosis 
[13] or for targeting tumor-associated tertiary lymphatic 
structures [14]. Finally, prospective clinical studies are 
needed to validate the optimal tracer dose, the accuracy 
of 64Cu-αCD19 uptake, the influence of physiological 
B cells on the PET uptake, potential tracer-related tox-
icities, and the superiority of this approach over conven-
tional CD19 histopathology.

Fig. 1  Preclinical evaluation of 64Cu-αCD19 and potential epitope blocking. (a) Representative transversal PET/MR (fused) as well as single MR and PET 
images of CD1 nude mice subcutaneously injected with Daudi lymphomas 48  h post-i.v. administration of 64Cu-αCD19 or unrelated isotype control 
(64Cu-αB7-H3). Lymphoma sites are marked by white arrows. (b) PET quantification of lymphoma uptake calculated as %ID/cc (in vivo) or %ID/g (ex vivo) 
and tumor-to-muscle ratios (n = 4–5 per group, unpaired t test, P values < 0.05 (*) were considered statistically significant). (c) Potential epitope blocking 
by αCD19-mAb and consecutive functional impairment of αCD19-CAR-T cells were tested in cytotoxicity assays against the CD19-expressing NHL cell 
line JeKo-1. αCD19-mAb dose titration demonstrated functional blocking effects at a concentration of 100 µg/ml (upper blot). CD19KO lymphoma cells 
served as a control to exclude target-independent effects (lower blot). (n = 12 per concentration, ordinary ANOVA, corrected for multiple comparison 
using the Tukey test, (****) P < 0.0001). The concentration of 0.1 µg/ml (blue) was calculated as the blood and lymphoma lesions based on the clinical 
PET/MR data
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Abbreviations
64Cu	� copper-64
B-NHL	�  B-cell non-Hodgkin lymphoma
CD19	� cluster of differentiation 19
CT	� computed tomography
DLBCL	� diffuse large B-cell lymphoma
FDG	� < Superscript>18</Superscript> F-fluorodeoxyglucose
mAb	� monoclonal antibody
MRI	� magnetic resonance imaging

PET	� positron emission tomography
SUVavg	� average standardized uptake value
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Fig. 2  First-in-human application of 64Cu-αCD19. CD19-immunoPET was performed on four lymphoma patients [1–4] with different histological sub-
types 19–25 h after 64Cu-αCD19 injection. Left: Immunohistochemical analysis of CD19 protein expression (CD19-IHC) in lymphoma tissues and maxi-
mum intensity projection (MIP) of standardized uptake values (SUV) for each patient. FL = follicular lymphoma, DLBCL = diffuse large B-cell lymphoma, 
MZL = mantle zone lymphoma, LN = lymph node. a-l. Exemplary transversal images (levels are marked in the MIP by red lines) of different lymphoma 
lesions (indicated by white arrows) and spleens (green arrow) are shown for each patient
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