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Summary
Background Non-high-density lipoprotein cholesterol (non-HDL-c) was a strong risk factor for incident cardiovascular
diseases and proved to be a better target of lipid-lowering therapies. Recently, gut microbiota has been implicated in
the regulation of host metabolism. However, its causal role in the variation of non-HDL-c remains unclear.

Methods Microbial species and metabolic capacities were assessed with fecal metagenomics, and their associations
with non-HDL-c were evaluated by Spearman correlation, followed by LASSO and linear regression adjusted for
established cardiovascular risk factors. Moreover, integrative analysis with plasma metabolomics were performed
to determine the key molecules linking microbial metabolism and variation of non-HDL-c. Furthermore, bi-
directional mendelian randomization analysis was performed to determine the potential causal associations of
selected species and metabolites with non-HDL-c.

Findings Decreased Eubacterium rectale but increased Clostridium sp CAG_299 were causally linked to a higher level of
non-HDL-c. A total of 16 microbial capacities were found to be independently associated with non-HDL-c after
correcting for age, sex, demographics, lifestyles and comorbidities, with the strongest association observed for
tricarboxylic acid (TCA) cycle. Furthermore, decreased 3-indolepropionic acid and N-methyltryptamine, resulting
from suppressed capacities for microbial reductive TCA cycle, functioned as major microbial effectors to the
elevation of circulating non-HDL-c.

Interpretation Overall, our findings provided insight into the causal effects of gut microbes on non-HDL-c and
uncovered a novel link between non-HDL-c and microbial metabolism, highlighting the possibility of regulating
non-HDL-c by microbiota-modifying interventions.

Funding A full list of funding bodies can be found in the Sources of funding section.
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Introduction
Accumulating evidence implicates that non-high-density
lipoprotein cholesterol (non-HDL-c) functions as an
important modifiable risk factor associated with
atherosclerotic cardiovascular diseases (ASCVDs).1

Despite an optimal control of low-density lipoprotein
cholesterol (LDL-c), subjects with discordantly high non-
HDL-c are still at a higher risk for adverse cardiovas-
cular events.2 Compared to LDL-c, targeting non-HDL-c
takes into account more residual risks for ASCVDs,
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especially several proatherogenic lipoproteins contain-
ing apolipoprotein B (apoB).3 Thus, identifying novel
therapeutic approaches for deceasing non-HDL-c has
the potential to ameliorate the global burden of
ASCVDs.

Gut microbiota has been reported to be a central
regulator in host metabolism and immune homeosta-
sis.4 Growing evidence from both human studies and
animal models suggested a pathophysiological role of
gut microbiota in lipid metabolism through several
un Yat-sen University, Guangzhou, PR China.
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Research in context

Evidence before this study
Non-high-density lipoprotein cholesterol (non-HDL-c) is a
major residual risk for atherosclerotic cardiovascular diseases.
So far, however, no effective therapeutic strategies exist. Gut
microbiota is a central regulator of host metabolism. Despite
several small-scale human studies and murine models
implicating a critical role of gut microbiota in lipid
metabolism, currently whether and how microbial
metabolism are causally involved in the regulation of non-
HDL-c remain largely unknown.

Added value of this study
Utilizing a deep characterization of gut microbiota by shotgun
metagenomics, metabolomics and host genotyping in 1361

community residents free of cardiovascular disease and lipid-
lowering therapies, we demonstrate a causal role of
Eubacterium rectale and Clostridium sp CAG_299 in the
variation of circulating non-HDL-c. Moreover, through the
integration of multi-omics and Mendelian Randomization
analysis, depletion of 3-indolepropionic acid and N-
methyltryptamine are proved to be the key effectors linking
gut microbiota and elevated non-HDL-c.

Implications of all the available evidence
These findings highlight the potential of targeting gut
microbiota to control non-HDL-c, and demonstrate that 3-
indolepropionic acid and N-methyltryptamine may serve as
postbiotics for the management of atherogenic lipids.
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mechanisms, including increased gut permeability and
endotoxemia, changes in production of short-chain fatty
acids (SCFAs) and choline, and perturbation of bile acid
(BA) metabolism.5 Compared to conventionally raised
mice, germ free mice demonstrated an enhanced
clearance of triglycerides (TG) from the circulation,6

whereas, circulating TG and cholesterols were
increased in mice receiving fecal microbial trans-
plantation from obese donors.7 Beneficial effects of
probiotics supplementation, such as Bifidobacterium
spp. and Lactobacillus, on lipid profiles provided further
evidence for a role of gut microbiota in the regulation of
lipid homeostasis.8,9 Compositional changes of gut
microbiota have also been observed in humans.
Reduced microbial gene richness was found to be
associated with increased overall adiposity and dyslipi-
daemia,10 whereas, an energy-restricted diet intervention
was reported to decrease serum lipids through aug-
menting microbial gene counts.11 Additionally, a cohort
study from the Netherlands suggested that up to 6% of
the variance in serum TG and 4% in HDL-c could be
attributed to gut microbiota.12 However, most of the
studies used 16S rRNA gene sequencing, which was
limited by a lack of taxonomic and functional resolution.
Moreover, despite recent progress in establishing the
associations between microbial species and lipid meta-
bolism, whether and how microbial metabolism are
causally involved in the variation of non-HDL-c remains
unclear.

To address the questions above, we first performed
metagenomic and Mendelian randomization (MR)
analysis in a large cohort of 1361 community residents,
and found that Eubacterium rectale (E. rectale) and Clos-
tridium sp CAG_299 were causally involved in non-
HDL-c variation. Subsequently, integrative analysis
with both metabolomics profiling and targeted analysis
was employed to determine the key molecular trans-
ducers linking selected microbial species to the variation
of circulating non-HDL-c.
Methods
Study participants
This study was approved by the Ethics Committee of
School of Public Health, Sun Yat-Sen University (L2017-
001), and was in accordance with the principles of the
Declaration of Helsinki. Written informed consents
were obtained from each individual. Local residents,
who have lived in Guangdong Province, China for over 5
years, were invited for health screening through flyers
and advertisement at the Community Healthcare Center
of Chashan Town (Dongguan City, Guangdong, China).
Fecal metagenomics and plasma metabolomics data
were available from 1415 participants aged between 35
and 74 years. Detailed inclusion and exclusion criteria
for this study were as follows:

Inclusion criteria
(i) No severe disability, and absence of any malignant
tumors, thyroid disorder, biliary acute or chronic viral
hepatitis, cirrhosis, chronic renal insufficiency, acute or
chronic inflammatory disease; (ii) not pregnant and (iii)
able to understand the nature and possible consequence
of the study.

Exclusion criteria
(i) Ongoing treatment for hyperlipidemia (n = 43); (ii)
use of antibiotic drugs within 3 months at sample
collection (n = 7); and (iii) gastrectomy, infectious dis-
ease or known history of coronary heart disease (n = 4).
Finally, a total of 1361 participants were included in
current analysis (Fig. 1). More details about metadata
collection were provided in Supplementary Materials.

Determination of lipid profiles
Blood samples after an overnight fast for 10–12 h were
collected and analyzed immediately at local laboratory.
Measurements of total cholesterol (TC), TG, HDL-c and
LDL-c were assessed by enzymatic methods on a
Microplate Reader (Mindray BS800M; Mindray,
www.thelancet.com Vol 104 June, 2024
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Fig. 1: Flowchart of the study. 1361 individuals free of lipid-lowering therapies and antibiotics use prior to sample collection were included and
subjected to integrative analysis of fecal metagenomics sequencing, genotyping, and plasma metabolomics. apoB = apolipoprotein B;
Lp(a) = lipoprotein(a); IDL = intermediate-density lipoprotein; LDL = low-density lipoprotein; VLDL = very low-density lipoprotein.

Articles
Shenzhen, China). Non-HDL-c was calculated by sub-
tracting HDL-c from TC as previously described.3 Given
that no threshold or reference of non-HDL-c had been
established for Asian populations, subjects were divided
into two groups by the median level of non-HDL-c in
this study (low non-HDL-c group defined as
<3.88 mmol/L, and high non-HDL-c group defined as
≥3.88 mmol/L).

Host genotyping
Host DNA was extracted from buffy coat using TIA-
Namp Blood DNA Kit fromTIANGEN Co., Ltd. (Beijing,
China) according to the manufacturer’s instruction. The
dosage of DNA used for subsequent library preparation
was more than 1 μg and their concentration was
controlled at no less than 80 ng/μL. Genotyping was
performed with Infinium Chinese Genotyping Array-24
v1.0 BeadChip at Illumina platform by WeGene Co.,
Ltd. (Beijing, China). Quality control was performed
with PLINK (v.1.9), and we excluded single-nucleotide
polymorphisms (SNPs) with (1) Minor Allele Fre-
quency <5%; (2) Hardy–Weinberg equilibrium violation
P < 0.00001, and (3) genotype calling rate <5%.13

Furthermore, we calculated linkage disequilibrium
(LD) between each pair of SNPs at a window of 50 SNPs,
and removed one of a pair of SNPs if LDs was higher
than 0.5. Finally, a total of 3,855,574 and 1,972,724
SNPs were retained in the current genome-wide asso-
ciation study (GWAS) with bacterial species and me-
tabolites, respectively among 1361 participants. The
www.thelancet.com Vol 104 June, 2024
threshold of P < 1 × 10−5 were set for identifying SNPs
associated with microbiota or metabolites to maximize
the amount of genetic variance explained by selected
SNPs, as previously described.13

Fecal DNA extraction and sequencing
Participants received MGIEasy stool collection kit con-
taining a room temperature stabilizing reagent and
detailed instructions at the community center during
study visit. Stool samples were collected on the same day
of blood drawing and stored at −20 ◦C at the community
center for a maximum of one day before transportation
to the central freezer at −80 ◦C until analysis. Stool DNA
was extracted from frozen stools using MagMAXTM
Microbiome Ultra Nucleic Acid Isolation kit (Thermo
Fisher Scientific, MA, USA). All samples were
sequenced on the Illumina NovaSeq 6000 paltform
(Illunima, San Diego, California, USA; Paired-end;
insert size, 350 bp; read length, 150 bp) by Novogene
Co., Ltd. (Beijing, China). More details about quality
control and data analysis for metagenomics were pro-
vided in Supplementary Materials.

Metabolomics profiling and targeted quantification
of key metabolites
After at least 10 h of fasting, blood samples were
collected and stored at −80 ◦C for further analysis. An
integrated method for large-scale detection, identifica-
tion, and quantification of widely targeted metabolites,
was performed as previously described.14 Furthermore,
3
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a targeted analysis of 3-indolepropionic acid, orotic acid
and N-methyltryptamine was carried out by ultra-
performance liquid chromatography-tandem mass
spectrometry. More details concerning metabolomics
profiling and data analysis, as well as targeted metab-
olomics analysis were provided in Supplementary
Materials.

Statistical analysis
General characteristics
All statistical analyses were performed using R software
version 4.0.3 (R Foundation for Statistical Computing,
Vienna, Austria). Continuous parameters were exam-
ined for normality using the Shapiro–Wilk test. Since all
continuous variables were non-normally distributed,
they were presented as median with interquartile range
(IQRs), and analyzed with Wilcoxon rank-sum test.
Categorical variables were presented as counts and
percentages (%) and analyzed with χ2 test or Fisher exact
test, as appropriate. For variables with missing values,
multiple imputation was performed with “mice” pack-
age before subjecting to further analysis. Spearman rank
correlation coefficient was calculated using cor.test.
Benjamini-Hochberg’s false-discovery rate-corrected P-
value (Pfdr) was applied for all multiple comparisons.

Metagenomics analysis
After filtering out low-prevalence microbiome features
(defined as a detection rate less than 5% for species, and
20% for metabolic functions in all subjects), Spearman
correlation analysis was firstly applied to identify species
and metabolic functions significantly associated with
non-HDL-c (Pfdr < 0.05). Subsequently, a feature selec-
tion strategy based on repeated least absolute shrinkage
and selection operator (LASSO) with 10-fold cross-
validation was implemented to screen for key species
associated with non-HDL-c using the R package
‘glmnet’ (v.4.1-3).15 Furthermore, general linear regres-
sion was employed to assess the independent associa-
tions of core species with the variation in circulating
non-HDL-c after adjustment for (i) model 1: age and
sex; (ii) model 2: model 1 plus smoking, drinking, diet
diversity and physical activity; (iii) model 3: model 2 plus
overweight, diabetes and hypertension (Pfdr < 0.1). Due
to a lack of information on physical activity, the inde-
pendent associations between selected species and non-
HDL-c in the independent validation cohort (Xu et al.16)
were determined by general linear regression adjusted
for age, sex, overweight, smoking, drinking and diet
diversity.

Mendelian randomization analysis
To interrogate the causal effects of selected microbial
species and microbial metabolites on the variation of
non-HDL-c, bi-directional MR analysis was performed
based on R package “Mendelian Randomization”. SNPs
with F statistic (beta2/SE2) >10 were considered as
strong genetic IVs, and used for subsequent MR anal-
ysis. MR estimates were calculated using inverse-
variance-weighted (IVW) methods. In addition, we
report MR estimates using weighted median, simple
median and the MR-Egger regression methods. To
ensure the validity of the results, several sensitivity an-
alyses were performed: (1) check out the horizontal
pleiotropy (MR-Egger intercept P > 0.05); (2) check out
the heterogeneity (Cochran’s Q-test P > 0.05).17 In
addition, to identify potential heterogeneous SNPs, the
“leave-one-out” analysis was performed by omitting
each instrumental SNP in turn. Furthermore, we per-
formed reverse MR analysis on selected species and
metabolites by the same analysis procedure to ensure its
causality.

Metabolomics analysis
As the metabolomics data were extremely skewed,
metabolite LC-MS peak areas were log transformed and
scaled to a mean of zero and SD of one before analysis.18

First, Spearman correlation analysis was applied to
identify metabolites significantly correlated with non-
HDL-c (Pfdr < 0.05). Second, general linear regression
adjusted for indicated covariates, including age, sex,
smoking, drinking, diet diversity, physical activity,
overweight, diabetes and hypertension, was employed to
screen for metabolites significantly associated with at
least one of two species causally linked to the variation
of non-HDL-c (Pfdr < 0.05). Moreover, the associations
of 3-indolepropionic acid, orotic acid and N-methyl-
tryptamine determined by targeted metabolomics anal-
ysis and non-HDL-c were determined by linear
regression analysis.

Identification of microbial enzymes involved in the production
of selected metabolites
To delineate how Clostridium sp CAG_299 and E. rectale
influence the level of 3-indolepropionic acid, orotic acid
and N-methyltryptamine, a BLASTP search was per-
formed with the protein sequence of enzymes known to
be involved in tricarboxylic acid (TCA) cycles, and its
closely related pathways, as the query against all open
reading frames of Clostridium sp CAG_299 and
E. rectale.

Role of funders
The funder of this study had no role in study design,
data collection, data analysis, data interpretation or the
writing of the report.
Results
Microbial species contribute to the variation in
non-HDL-c
A total of 1361 participants with no history of cardio-
vascular disease, any lipid-lowering or antibiotics
treatment were analyzed. The median age was 50
www.thelancet.com Vol 104 June, 2024
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(IQR: 44–56) years-old, and 54.7% of them were female.
Overall, men had a higher level of non-HDL-c than
women (Supplementary Fig. S1). According to the me-
dian level of non-HDL-c in this cohort, individuals with
high non-HDL-c were older, more likely to be men and
had worse lipid profiles, in addition to greater pro-
portions of metabolic disorders (Table 1).

We then analyzed gut microbial profiles using
shotgun metagenome sequencing in fecal samples. A
total of 23 species were found to be significantly asso-
ciated with non-HDL-c (Pfdr < 0.05, Fig. 2a). To further
identify key species closely related to circulating non-
HDL-c, LASSO embedded with 10-fold cross-validation
was employed, and a panel of 8 species, mainly from
Firmicutes and Bacteroidetes phylum, were identified
(Fig. 2b and c). After correcting for potential covariates
which may affect gut microbiota, including age, sex,
smoking, drinking, diet diversity, physical activity,
overweight, diabetes and hypertension, 5 species out of
Characteristics Non-HDL-c

Overall Low

N, (n%) 1361 6

Demographics

Age, yrs 50.0 (44.0–56.0) 4

Male, n (%) 615 (45.3) 2

Laboratory measures

SBP, mm Hg 124.0 (114.0–135.0) 12

DBP, mm Hg 80.5 (74.0–87.8) 7

Waist circumference, cm 83.5 (76.5–91.0) 8

Triglyceride, mmol/L 1.16 (0.83–1.67) 0

TC, mmol/L 5.24 (4.68–5.91) 4

HDL-c, mmol/L 1.37 (1.16–1.62) 1

LDL-c, mmol/L 3.15 (2.67–3.67) 2

Non-HDL-c, mmol/L 3.88 (3.27–4.52) 3

Glucose, mmol/L 4.70 (4.28–5.19) 4

HOMA-IR 1.80 (1.16–2.94) 1

Comorbidities

Overweight, n (%) 657 (48.3) 2

Diabetes, n (%) 82 (6.1)

Hypertension, n (%) 456 (33.5) 1

Lifestyles

Diet diversity 5 (5–6)

MET, min/w 1764.0 (693.0–3612.0) 153

Drinking, n (%) 161 (11.8)

Cigarettes

Never, n (%) 1092 (80.2) 5

Quit smoking, n (%) 89 (6.5)

Current smoking, n (%) 180 (13.3)

Data were expressed as median (interquartile range) or n (%), and P Value were determin
of missing variables: Waist circumference (n = 4), Diet diversity (n = 11), MET (n = 18). S
HDL-c = high-density lipoprotein cholesterol; LDL-c = low-density lipoprotein cholestero
model assessment of insulin resistance; MET = metabolic equivalent.

Table 1: Baseline characteristics of study participants.
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this selected panel remained significantly associated
with non-HDL-c (Fig. 2d, all Pfdr < 0.1). Among them,
several SCFAs-producing bacteria,19 such as Prevotella
disiens (P. disiens), E. rectale, and Faecalibacterium
prausnitzii (F. prausnitzii), accounted for the largest
contribution to the variance of non-HDL-c, followed by
Parabacteroides goldsteinii (P. goldsteinii) and Clostridium
sp CAG_299 (Fig. 2d). Compared to individuals with
elevated non-HDL-c, F. prausnitzii was substantially
higher, while Clostridium sp CAG_299, a genus previ-
ously reported to be enriched in patients with coronary
atherosclerosis,20 was remarkably lower in subjects with
low non-HDL-c (Fig. 2e). Consistently, F. prausnitzii,
E. rectale and P. disiens demonstrated an inverse corre-
lation with non-HDL-c and other established risk factors
for ASCVDs,21 such as atherogenic lipids, increased
homeostatic model assessment for insulin resistance
(HOMA-IR) and waist circumference (Fig. 2a). On the
contrary, Clostridium sp CAG_299 and P. goldsteinii
(<3.88 mmol/L) High (≥3.88 mmol/L) P value

80 (50.0) 681 (50.0)

8.0 (43.0–55.0) 52.0 (46.0–57.0) <0.001

81 (41.0) 334 (49.0) 0.004

1.0 (111.0–133.0) 126.0 (117.0–139.0) <0.001

9.0 (73.0–87.0) 82.0 (76.0–89.0) <0.001

1.0 (74.0–89.0) 86.0 (80.0–92.0) <0.001

.94 (0.71–1.37) 1.40 (1.02–1.95) <0.001

.67 (4.31–5.05) 5.90 (5.45–6.49) <0.001

.43 (1.23–1.70) 1.32 (1.11–1.55) <0.001

.70 (2.34–2.94) 3.65 (3.37–4.08) <0.001

.27 (2.85–3.59) 4.51 (4.15–5.04) <0.001

.61 (4.23–5.06) 4.79 (4.34–5.30) <0.001

.58 (0.99–2.51) 2.14 (1.35–3.43) <0.001

72 (40.0) 385 (57.0) <0.001

27 (4.0) 55 (8.1) 0.001

97 (29.0) 259 (38.0) <0.001

5 (5–6) 5 (5–6) 0.761

3.0 (693.0–3892.0) 1893.0 (840.0–3465.0) 0.300

78 (11.0) 83 (12.0) 0.700

0.110

59 (82.0) 533 (78.0)

44 (6.5) 45 (6.6)

77 (11.0) 103 (15.0)

ed by Wilcoxon rank-sum test, χ2 test or Fisher exact test, as appropriate. Number
BP = systolic blood pressure; DBP = diastolic blood pressure; TC = total cholesterol;
l; Non-HDL-c = non-high-density lipoprotein cholesterol; HOMA-IR = homeostatic
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Fig. 2: Microbial species contributed to non-HDL-c variation. (a) Heatmap of the Spearman’s correlation coefficients between 23 species and
clinical indices (n = 1361). #Pfdr < 0.1, *Pfdr < 0.05, **Pfdr < 0.01, and ***Pfdr < 0.001. (b) Tuning parameter selection via 10-fold cross-validation
with minimum criteria in the LASSO model. (c) LASSO coefficient profiles of 23 candidate key species. (d) The independent association of 8
species selected by LASSSO with non-HDL-c adjusted for (i) Model 1: age and sex; (ii) Model 2: Model 1 plus lifestyles including smoking,
drinking, diet diversity and physical activity; (iii) Model 3: Model 2 plus overweight, diabetes, and hypertension. Red, blue and gray indicate
positive, negative and insignificant correlations with non-HDL-c, respectively (n = 1361). (e) Distribution of 5 species independently associated
with non-HDL-c in subjects with lower (n = 680) or higher (n = 681) non-HDL-c. Red and blue indicate two groups above and below the median
level of non-HDL-c, respectively. *Pfdr < 0.05 by Wilcoxon rank-sum test.
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exhibited positive associations not only with non-HDL-c
but also with LDL-c and TC (Fig. 2a). Taken together,
these findings indicated that microbial species were
closely related to circulating non-HDL-c.

E. rectale and Clostridium sp CAG_299 are causally
linked to circulating non-HDL-c
Furthermore, bi-directional MR analysis was employed
to explore the causal associations between selected
species and the variation of non-HDL-c. Of the 5 species
independently associated with non-HDL-c, only Clos-
tridium sp CAG_299 and E. rectale were found to be
associated with non-HDL-c in three MR methods,
including IVW, simple median and weighted median
(Fig. 3a and b). IVW estimate suggested that Clostridium
sp CAG_299 enhanced (ORIVW = 1.238, 95%
CI = 1.016–1.509, Pfdr < 0.1), while E. rectale suppressed
the level of circulating non-HDL-c (ORIVW = 0.924, 95%
CI = 0.873–0.979, Pfdr < 0.1, Supplementary Fig. S2). On
the contrary, IVW estimate did not support any causal
associations of F. prausnitzii, P. disiens and P. goldsteinii
with non-HDL-c (Fig. 3c–e). Importantly, for the two
causal associations observed, the F-statistics of the IVs
were all greater than 10, eliminating the bias of weak
IVs, and the results of Cochran’s IVW Q test showed no
significant heterogeneity of these IVs. Additionally, ac-
cording to the results of the MR-Egger regression
intercept analysis, no significant directional horizontal
pleiotropy was found for these two causal relationships
(Supplementary Fig. S2). Moreover, leave-one-out anal-
ysis further suggested that the causal links between
Clostridium sp CAG_299, E. rectale and non-HDL-c were
not driven by any single SNP (Supplementary Fig. S3).
Furthermore, reverse MR analysis demonstrated that
there were no significant causal effects of non-HDL-c on
all the 5 species in any MR method (Fig. 3f–j), sug-
gesting that Clostridium sp CAG_299 and E. rectale were
likely to be causally involved in the variation of circu-
lating non-HDL-c. Of Note, despite a younger age and
better metabolic status in terms of lower blood pressure
and more favorable lipid profiles (Supplementary
Table S1), the negative associations of Clostridium sp
CAG_299 and E. rectale with non-HDL-c remained sig-
nificant after adjustment for age, sex, overweight,
www.thelancet.com Vol 104 June, 2024
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Fig. 3: Causal links between selected species and non-HDL-c. (a–e) Scatterplot of associations between genetic variants and (a) Clostridium sp
CAG_299 (n = 1361), (b) Eubacterium rectale (n = 1361), (c) Faecalibacterium prausnitzii (n = 1361), (d) Prevotella disiens (n = 1361), and (e)
Parabacteroides goldsteinii (n = 1361) versus between genetic variants and non-HDL-c. (f–j) Scatterplot of associations between genetic variants
and non-HDL-c versus between genetic variants and (f) Clostridium sp CAG_299 (n = 1361), (g) Eubacterium rectale (n = 1361), (h) Faecali-
bacterium prausnitzii (n = 1361), (i) Prevotella disiens (n = 1361), and (j) Parabacteroides goldsteinii (n = 1361). The slope of each line corresponded
to the estimated MR effect. Associations between the abundance of (k) Eubacterium rectale, or (l) Clostridium sp CAG_299 and circulating non-
HDL-c in an independent validation cohort.
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smoking and drinking in an independent validation
cohort (Fig. 3k and l).16 Taken together, the above
findings demonstrated that Clostridium sp CAG_299
and E. rectale may function as major regulators in
non-HDL-c.

Alterations of metabolic capacities of gut
microbiota account for the variation in non-HDL-c
To further explore how gut microbiota modulates host
metabolism and contributes to the variation of non-
HDL-c, we then annotated microbial genes to MetaCyc
database. After quality control, a total of 26 metabolic
capacities were found to be significantly correlated
with non-HDL-c (Supplementary Table S2 and
Supplementary Fig. S4, all Pfdr < 0.05). After correcting
for demographics, lifestyles, and metabolic comorbid-
ities, 16 metabolic pathways, spanning TCA cycle, sugar
acid degradation and vitamin biosynthesis, remained
significantly associated with non-HDL-c (Fig. 4a, all Pfdr
< 0.1). Among them, TCA cycles (PWY-5392, P23-PWY)
and adenosylcobalamin biosynthesis from cobyrinate
www.thelancet.com Vol 104 June, 2024
a,c-diamide I (PWY-5509), a key step in the biosynthesis
of vitamin B12, showed the strongest association with
circulating non-HDL-c. When subjects were categorized
into binary groups according to the median of non-
HDL-c in this cohort, D-fructuronate degradation
(PWY-7242) and superpathway of hexuronide and hex-
uronate degradation (GALACT-GLUCUROCAT-PWY),
belonging to sugar acid degradation were markedly
suppressed in individuals with high non-HDL-c
(Fig. 4b). Interestingly, in line with previous report
that the end-product of sugar acid degradation would
eventually be transported into mitochondria as the pri-
mary fuel for TCA cycle carbon flux,22 TCA cycle-related
pathways (P23-PWY, PWY-5392) exhibited a negative
correlation with non-HDL-c. Moreover, consistent with
the beneficial effects of TCA cycle metabolism on
stimulating insulin secretion,23 microbial reductive TCA
cycles also displayed a negative association with adverse
lipid profiles and HOMA-IR (Fig. 4c). Additionally,
given the fact that D-galactose, a nerve poison,24 has been
implicated in the activation of oxidative stress and
7
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metabolic inflammation,25 it was not surprising to find
that metabolic capacities involved in D-galactose degra-
dation (PWY-6317, PWY66-422) were strongly associ-
ated with lower levels of non-HDL-c, and displayed an
inverse correlation with TC and insulin resistance in our
results (Fig. 4c). Collectively, the above findings implied
that differential capacities for microbial metabolism are
closely related to the alteration of non-HDL-c.

Microbiota-related metabolites are closely
associated with circulating non-HDL-c
As metabolites always function as effectors for gut
microbiota to act on target organs,26 an integrative
analysis of metagenomics and untargeted metabolomics
were further employed to interrogate how microbial
metabolites modulate non-HDL-c. A total of 210 me-
tabolites were found to be significantly correlated with
non-HDL-c (Supplementary Table S3, all Pfdr < 0.05),
among which, only 8 molecules were found to be
significantly associated with at least one of the two
species causally related to non-HDL-c, after adjustment
for age, sex, lifestyles and metabolic comorbidities (Pfdr
< 0.05). Of these 8 potential microbial effectors, L-
cystine, phenylsulfate, and hyodeoxycholic acid were
upregulated while the other 5 microbiota-related me-
tabolites were downregulated in participants with high
non-HDL-c (Fig. 5a). In line with the antioxidant,27 anti-
inflammatory28 and hypoglycemic29 effect previously re-
ported, cinnamoylglycine was found to be remarkably
lower in individuals with elevated non-HDL-c (Fig. 5a),
and was negatively associated with atherogenic lipids,
HOMA-IR and Clostridium sp CAG_299 (Fig. 5b). On
the contrary, phenylsulfate, a uremic toxin,30 which was
capable of inducing reactive oxygen species production,
rendering cells vulnerable to oxidative stress,31 demon-
strated a positive correlation with non-HDL-c, TC and
Clostridium sp CAG_299 (Fig. 5b). Of note, such an
observation was further supported by a positive
www.thelancet.com Vol 104 June, 2024
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Fig. 5: Correlation between non-HDL-c-related microbial features and plasma metabolites. (a) Distribution of 8 metabolites highly
associated with non-HDL-c and at least one of the two species causally associated with non-HDL-c in subjects with lower (n = 680) or higher
(n = 681) levels of non-HDL-c. Red and blue indicate two groups above and below the median level of non-HDL-c, respectively. #Pfdr < 0.1, *Pfdr
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association between higher levels of phenylsulfate and
exacerbation of diabetes.32 Additionally, consistent with
the association between L-cystine and enhanced risk of
mortality in patients with coronary artery disease,33 L-
cystine was notably higher in subjects with elevated non-
HDL-c and demonstrated a positive association with
LDL-c, TC, fasting glucose, waist circumference and
decreased E. rectale (Fig. 5a and b). Collectively, these
findings further supported the biological relevance of
microbial metabolites in the variation of non-HDL-c.

3-Indolepropionic acid and N-methyltryptamine
act as the key microbial effectors to non-HDL-c
variation
Intriguingly, glutamate synthase, a key enzyme involved
in L-glutamate biosynthesis, can be annotated in the
genome of Clostridium sp CAG_299 through protein
sequence BLAST (Fig. 6a). As an important substrate for
the production of glutamate, activation of L-glutamate
biosynthesis due to high abundance of Clostridium sp
www.thelancet.com Vol 104 June, 2024
CAG_299 in subjects with high non-HDL-c consumed a
large amount of 2-oxoglutarate. Notably, also func-
tioning as a key intermediate metabolite in the TCA
cycle (P23-PWY), reduced 2-oxoglutarate subsequently
hampered the TCA cycle and led to a decreased abun-
dance of the intermediate metabolites in this pathway,
such as oxaloacetate. On the one hand, reduced level of
2-oxoglutarate inhibited L-tryptophan degradation XIII
pathway, and finally led to a lower biosynthesis of 3-
indolepropionic acid (Fig. 6b). On the other hand,
decreased abundance of oxaloacetate suppressed the
biosynthesis of L-aspartate, which in turn led to an
attenuated metabolic cascade including L-asparagine
biosynthesis, glycine production, and L-serine biosyn-
thesis, Glycine, serine and threonine metabolism, and
tryptophan metabolism, and finally resulted in a
reduced production of N-methyltryptamine (Fig. 6c). In
line with the functional inference, most of the inter-
mediate metabolites along these pathways demonstrated
a lower abundance in subjects with elevated non-HDL-c
9
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Fig. 6: Microbial metabolites serve as effectors to non-HDL-c variance. (a–d) Illustration of how (a) high Clostridium sp CAG_299 but low
Eubacterium rectale, as well as suppressed reductive tricarboxylic acid (TCA) cycle (n = 1361), and subsequent decreased (b) 3-indolepropionic
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(Fig. 6a and b). Additionally, both N-methyltryptamine
and 3-indolepropionic acid demonstrated an inverse
correlation with Clostridium sp CAG_299 and multiple
ASCVD risk factors, such as proatherogenic lipids and
insulin resistance (Fig. 5b).

In a similar fashion, malate dehydrogenase, a key
enzyme involved in TCA cycle (PWY-5392) can be anno-
tated in the genome of E. rectale (Fig. 6a). Decreased
abundance of E. rectale in subjects with high non-HDL-c
led to a lower expression of malate dehydrogenase, which
subsequently suppressed TCA cycle and resulted in a
reduced production of oxaloacetate. As an intermediate
metabolite in the TCA cycle, decreased oxaloacetate
restrained L-aspartate biosynthesis and led to a lower pro-
duction of the downstream metabolites including N-car-
bamoyl-L-aspartate and L-dihydroorotic acid, which in turn
hampered pyrimidine metabolism and resulted in a lower
production of orotic acid (Fig. 6d). Consistently, orotic acid
was found to be inversely associated with cardiometabolic
risk factors, including TC, fasting glucose and HOMA-IR,
while positively associated with E. rectale (Fig. 5b).
Furthermore, targeted metabolomics analysis
showed that the median levels of 3-indolepropionic acid,
orotic acid and N-methyltryptamine were 517.88 ng/mL,
195.61 ng/mL and 0.05 ng/mL, respectively, in in-
dividuals with low levels of non-HDL-c, which were
considerably higher than the level observed in subjects
with high non-HDL-c (Fig. 6e–g). Additionally, all the
three microbial metabolites demonstrated a significant
negative correlation with non-HDL-c in the circulation
(Fig. 6h–j, all P < 0.05), further suggesting that orotic
acid, 3-indolepropionic acid and N-methyltryptamine
might be key players in the regulation of non-HDL-c. To
further determine the causal associations of these three
metabolites and the variation of non-HDL-c, bi-direc-
tional MR analysis was applied. Though all these 3
metabolites were all found to be associated with non-
HDL-c in at least two MR methods, including IVW,
simple median and weighted median (Fig. 7a–c, and
Supplementary Fig. S5), reverse MR analysis also sup-
ported a significant causal effect of non-HDL-c on orotic
acid (Fig. 7d–f), suggesting that only 3-indolepropionic
www.thelancet.com Vol 104 June, 2024
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Fig. 7: Causal links between selected metabolites and non-HDL-c. (a–c) Scatterplot of associations between genetic variants and (a) 3-
indolepropionic acid (n = 1361), (b) N-methyltryptamine (n = 1361), and (c) orotic acid (n = 1361) versus between genetic variants and
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acid and N-methyltryptamine were causally linked to
reduced non-HDL-c. Importantly, for the two causal
associations observed, the F-statistics of the IVs were all
greater than 10, eliminating the bias of weak IVs, and
the results of Cochran’s IVW Q test showed no signif-
icant heterogeneity of these IVs. Additionally, according
to the results of the MR-Egger regression intercept
analysis, no significant directional horizontal pleiotropy
was found for these two causal relationships
(Supplementary Fig. S5). Moreover, leave-one-out
analysis further suggested that the causal links be-
tween 3-indolepropionic acid, N-methyltryptamine and
non-HDL-c were not driven by any single SNP
(Supplementary Fig. S6). Collectively, the above findings
demonstrated that decreased 3-indolepropionic acid and
N-methyltryptamine served as key microbial effectors of
E. rectale and Clostridium sp CAG_299 to elevated non-
HDL-c.
Discussion
Despite several small-scale human studies and murine
models implicating a critical role of gut microbiota in
lipid metabolism,5,34 evidence concerning the effect of
microbial metabolism in non-HDL-c variation remains
limited. Here, utilizing a deep characterization of gut
microbiota by shotgun metagenomics, metabolomics
and host genotyping in 1361 community-dwelling par-
ticipants free of lipid-lowering therapies, we demon-
strated a causal role of E. rectale and Clostridium sp
CAG_299 in non-HDL-c variation and uncovered a
strong correlation between microbial reductive TCA
cycle and circulating non-HDL-c. Moreover, through the
www.thelancet.com Vol 104 June, 2024
integration of multi-omics and MR analysis, we further
identified decreased production of 3-indolepropionic
acid and N-methyltryptamine as key molecular trans-
ducers to the elevation of circulating non-HDL-c.

Emerging evidence implies that gut microbiota may
affect various physiological processes in the host,
including lipid metabolism.35 Similar to our observation,
a recent study in 2309 individuals from Europe identi-
fied a close association of 32 microbial families and
genera with various lipoprotein particles, including very-
low-density and high-density subfractions.36 Moreover, a
strong association between family Clostridiaceae/Lach-
nospiracease and serum lipids was also found in a study
conducted in northern Netherlands.12 However, these
studies were primarily performed in Caucasians and
didn’t take into account the confounding effect of
comorbidities.12,36 Due to a substantial influence of ge-
netic backgrounds, diet, lifestyles, and geographic dif-
ferences on gut microbiota, core microbial features and
their associations with host metabolism were quite
different across ethnics.37 In this regard, we were the
first to delineate the microbial metabolism and non-
HDL-c in Chinese, with a relatively large and medica-
tion-naïve cohort. Moreover, targeting of 16S variable
regions with short-read sequencing platforms is low in
taxonomic resolution.38 In this connection, with the
advantage of metagenomics, our findings from large-
scale cohort lend further support to the observation
that perturbations in gut microbiota contribute to the
variation in non-HDL-c, and proved that decrease in
SCFAs-producers and increase of Clostridium sp
CAG_299 and P. goldsteinii remained independently
associated with the variation in non-HDL-c after
11
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extensive adjustment for potential confounders,
including demographics, lifestyles and metabolic
comorbidities. Moreover, taking advantage of the causal
inference potential of MR analysis, we expanded exist-
ing evidence by proving that E. rectale and Clostridium sp
CAG_299 were causally associated with non-HDL-c in
the circulation. As a predominant atherogenic agent,
our findings demonstrated that interventions targeting
gut microbiota to reduce non-HDL-c might provide
additional benefits for ASCVDs control.

Given the ability of bile salt hydrolase (BSH) to hy-
drolyze conjugated bile salts into deconjugated BAs,
which contributes to the maintenance of cholesterol
balance, the genera Eubacterium, a major reservoir of
BSHs,39 was found to play a critical role in lipid ab-
sorption via catalyzing BSH activity. In a similar
fashion, a butyrate-mediated inhibitory effect on the
progression of atherosclerosis provided by E. rectale had
also been found in murine models.40 Therefore, it was
not surprising to find that E. rectale was causal in
decreasing non-HDL-c in our study. On the contrary,
Clostridium sp CAG_299 was found to be causal in
promoting non-HDL-c levels and was positively associ-
ated with LDL-c, TC and waist circumference. Such an
observation was supported by previous findings that
Clostridium OTUs were more abundant upon exposure
to high-cholesterol diet.5 Intriguingly, the genus Clos-
tridium had been reported to disrupt the balance of BAs
metabolism, which in turn led to an increase in circu-
lating cholesterol.41 In addition, consistent with the
positive correlation between F. prausnitzii, E. rectale,
Prevotella gena and increasing adherence to Mediterra-
nean diet,19 F. prausnitzii and P. disiens were also found
to be negatively associated with non-HDL-c in our study.
Similar to the observation that F. prausnitzii, a well-
known butyrate producer, could reduce hepatic fat
accumulation42 and exert anti-inflammatory effects,43 it
was found to be significantly lower in subjects with
elevated non-HDL-c and negatively correlated with TG
and insulin resistance. Additionally, as a propionate-
producer, the genera Prevotella was reported to be
enriched in response to high-fiber diets and promote the
differentiation of anti-inflammatory Treg/Tr1 cells in
the gut.44 Consistent with previous reports that propio-
nate was able to decrease intestinal cholesterol absor-
bance via an immunomodulatory pathway,45 P. disiens
exhibited an inverse correlation with atherogenic lipids,
but a positive association with HDL-c in our cohort.
Thus, the above findings further support the notion that
gut microbiota might be a promising therapeutic target
for reducing non-HDL-c.

Moreover, different from previous large-scale studies
using 16S rRNA sequencing, which lacks functional
resolution,46 with the advantage of metagenomics tech-
nique, we found that capacities for microbial reductive
TCA cycle were substantially suppressed in subjects
with elevated non-HDL-c. More importantly, integrative
analysis of metagenomics and metabolomics demon-
strated that consistent with a reduced capacity for TCA
cycle and a decrease of TCA cycle intermediates, 3-
indolepropionic acid, whose levels were completely
depended on microbial catabolism of tryptophan,47 was
found to be remarkably lower in individuals with high
non-HDL-c. Notably, 3-indolepropionic acid had been
reported to have an anti-atherogenic effect. Mechanisti-
cally, elevated 3-indolepropionic acid alleviated athero-
sclerotic plaque development through enhancing
macrophage reverse cholesterol transport in miR-142-
5p/ABCA1 dependent signalling.48 In line with previ-
ous reports that 3-indolepropionic acid inhibited lipid
accumulation5 and was strongly associated with lower
risk of type 2 diabetes,49,50 we also found a negative
correlation between 3-indolepropionic acid and several
risk factors for cardiometabolic diseases, such as
adverse lipid profiles and insulin resistance, as well as
Clostridium sp CAG_299 in our cohort. Likewise, the
suppressed capacity for TCA cycle also led to an inhi-
bition of oxaloacetate and L-aspartate biosynthesis,
which in turn resulted in a dampened generation of L-
dihydroorotic acid and reduced level of orotic acid in
individuals with high non-HDL-c. Moreover, as a key
intermediate metabolite in the biosynthetic pathway of
pyrimidines, which had a beneficial effect on post-
ischemic myocardial function,51 it was not surprising
to find a strong correlation between orotic acid and
lower levels of TC and insulin resistance, as well as
elevated SCFA-producers in our study. Such an obser-
vation was further supported by animal studies that di-
etary supplementation with orotic acid lowered the
levels of pro-atherogenic lipids and maintained lipid
homeostasis in cardiomyocytes, via the activation of
peroxisome proliferator-activated receptor alpha.52 In
addition, decreased biosynthesis of oxaloacetate and
L-aspartate inhibited the generation of glycine and
L-serine, which eventually led to a suppression of trypt-
amine biosynthesis and a lower level of N-methyltrypt-
amine in participants with high non-HDL-c. Notably,
as a precursor of N-methyltryptamine, tryptamine
contributed to metabolic health through attenuating pro-
inflammatory cytokine responses in an aryl hydrocarbon
receptor-dependent manner.47 Consistently, a close cor-
relation between N-methyltryptamine and lower levels
of adverse lipids, high level of HDL-c, and a depletion of
Clostridium sp CAG_299 was found in our cohort.
However, according to results of bi-directional MR
analysis, only 3-indolepropionic acid and N-methyl-
tryptamine were likely to be causally involved in the
variation of circulating non-HDL-c. Though the molec-
ular mechanisms underlying the beneficial effects of
these metabolites on non-HDL-c remain unclear and
warrants further investigation in animal models, our
integrative analysis suggested that 3-indolepropionic
acid and N-methyltryptamine may function as poten-
tial postbiotics for modulating non-HDL-c.
www.thelancet.com Vol 104 June, 2024
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Limitations of this study
Though our findings remained robust after adjustment
for a range of potential confounders, this study is not
exempt from limitations. First, this is a single-center
study that only included Chinese participants, which
might limit the generalizability of our findings to other
ethnicities. Second, though causal effects of gut micro-
biota and metabolites on non-HDL-c had been proved by
MR analysis, more validations in preclinical models and
prospective cohorts are needed before moving from
potential to action.
Conclusions
In summary, our study uncovers a causal effect of
gut microbiota on non-HDL-c and identify 3-
indolepropionic acid and N-methyltryptamine as key
effectors of gut microbiota to the variation of non-HDL-
c. These findings highlight the potential of targeting gut
microbiota to control non-HDL-c and improve the effi-
cacy of ASCVDs prevention.
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