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Abstract

Given an input string, the Burrows-Wheeler Transform (BWT) can be seen as a reversible 

permutation of it that allows efficient compression and fast substring queries. Due to these 

properties, it has been widely applied in the analysis of genomic sequence data, enabling 

important tasks such as read alignment. Mantaci et al. [TCS2007] extended the notion of the BWT 

to a collection of strings by defining the extended Burrows-Wheeler Transform (eBWT). This 

definition requires no modification of the input collection, and has the property that the output is 

independent of the order of the strings in the collection. However, over the years, the term eBWT 

has been used more generally to describe any BWT of a collection of strings. The fundamental 

property of the original definition (i.e., the independence from the input order) is frequently 

disregarded. In this paper, we propose a simple linear-time algorithm for the construction of the 

original eBWT, which does not require the preprocessing of Bannai et al. [CPM 2021]. As a 

byproduct, we obtain the first linear-time algorithm for computing the BWT of a single string that 

uses neither an end-of-string symbol nor Lyndon rotations.

We also combine our new eBWT construction with a variation of prefix-free parsing (PFP) 

[WABI 2019] to allow for construction of the eBWT on large collections of genomic sequences. 

We implement this combined algorithm (pfpebwt) and evaluate it on a collection of human 

chromosomes 19 from the 1,000 Genomes Project, on a collection of Salmonella genomes from 

GenomeTrakr, and on a collection of SARS-CoV2 genomes from EBI’s COVID-19 data portal. 

We demonstrate that pfpebwt is the fastest method for all collections, with a maximum speedup 

of 7.6x on the second best method. The peak memory is at most 2x larger than the second best 
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method. Comparing with methods that are also, as our algorithm, able to report suffix array 

samples, we obtain a 57.1x improvement in peak memory. The source code is publicly available at 

https://github.com/davidecenzato/PFP-eBWT.
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1 Introduction

In the last several decades, the number of sequenced human genomes has been growing 

at unprecedented pace. In 2015 the number of sequenced genomes was doubling every 7 

months [40] – a pace that has not slowed into the current decade. The plethora of resulting 

sequencing data has expanded our knowledge of the biomarkers responsible for human 

disease and phenotypes [5, 43, 42], the evolutionary history between and among species 

[38], and will eventually help realize the personalization of healthcare [3]. However, the 

amount of data for any individual species is large enough that it poses challenges with 

respect to storage and analysis. One of the most well-known and widely-used methods 

for compressing and indexing data that has been applied in bioinformatics is the Burrows-

Wheeler Transform (BWT), which is a text transformation that compresses the input in a 

manner that also allows for efficient substring queries. Not only can it be constructed in 

linear-time in the length of the input, it is also reversible – meaning the original input can 

be constructed from its compressed form. The BWT is formally defined over a single input 

string; thus, in order to define and construct it for one or more strings, the input strings 

need to be concatenated or modified in some way. In 2007 Mantaci et al. [30] presented 

a formal definition of the BWT for a multiset of strings, which they call the extended 
Burrows-Wheeler Transform (eBWT). It is a bijective transformation that sorts the cyclic 

rotations of the strings of the multiset according to the ω-order relation, an order, defined by 

considering infinite iterations of each string, which is different from the lexicographic order.

Since its introduction several algorithms have been developed that construct the BWT of 

collection of strings for various types of biological data including short sequence reads [6, 

4, 11, 14, 27, 13, 14, 1, 19, 36, 37], protein sequences [44], metagenomic data [18] and 

longer DNA sequences such as long sequence reads and whole chromosomes [25]. However, 

we note that in the development of some of these methods the underlying definition of 

eBWT was loosened. For example, ropebwt2 [25] tackles a similar problem of building 

what they describe as the FM-index for a multiset of long sequence reads, however, they 

do not construct the suffix array (SA) or SA samples, and also, require that the sequences 

are delimited by separator symbols. Similarly, gsufsort [27] and egap [14] construct the 

BWT for a collection of strings but do not construct the eBWT according to its original 

definition. gsufsort [27] requires the collection of strings to be concatenated in a manner 

that the strings are deliminated by separator symbols that have an augmented relative 

order among them. egap [14], which was developed to construct the BWT and LCP for a 
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collection of strings in external memory, uses the gSACA-K algorithm to construct the suffix 

array of the concatenated input using an additional O(α + 1) log n bits, and then constructs 

the BWT for the collection from the resulting suffix array. Lastly, we note that there exists 

a number of methods for construction of the BWT for a collection of short sequence reads, 

including ble [6], BCR [4], G2BWT [13], egsa [28]; however, these methods make implicit or 

explicit use of end-of-string symbols appended to strings in the collection. For an example of 

the effects of these manipulations, see Section 2, and [10] for a more detailed study.

We present an efficient algorithm for constructing the eBWT that preserves the original 

definition of Mantaci et al. [30]—thus, it does not impose any ordering of the input strings 

or delimiter symbols. It is an adaptation of the well-known Suffix Array Induced Sorting 

(SAIS) algorithm of Nong et al. [33], which computes the suffix array of a single string T 
ending with an end-of-string character $. Our adaptation is similar to the algorithm proposed 

by Bannai et al. [2] for computing the BBWT, which can also be used for computing the 

eBWT, after linear-time preprocessing of the input strings. The key change in our approach 

is based on the insight that the properties necessary for applying Induced Sorting are valid 

also for the ω-order between different strings. As a result, is it not necessary that the input 

be Lyndon words, or that their relative order be known at the beginning. Furthermore, our 

algorithmic strategy, when applied to a single string, provides the first linear-time algorithm 

for computing the BWT of the string that uses neither an end-of-string symbol nor Lyndon 

rotations.

We then combine our new eBWT construction with a variation of a preprocessing 

technique called prefix free parsing (PFP). PFP was introduced by Boucher et al. [8] for 

building the (run length encoded) BWT of large and highly repetitive input text. Since its 

original introduction, it has been extended to construct the r-index [24], been applied as 

a preprocessing step for building grammars [15], and used as a data structure itself [7]. 

Briefly, PFP is a one-pass algorithm that divides the input into overlapping variable length 

phrases with delimiting prefixes and suffixes; which in effect, leads to the construction of 

what is referred to as the dictionary and parse of the input. It follows that the BWT can be 

constructed in the space that is proportional to the size of the dictionary and parse, which is 

expected to be significantly smaller than linear for repetitive text.

In our approach, prefix-free parsing is applied to obtain a parse that is a multiset of cyclic 

strings (cyclic prefix-free parse) on which our eBWT construction is applied. We implement 

our approach (called pfpebwt), measure the time and memory required to build the eBWT 

for sets of increasing size of chromosome 19, Salmonella, and SARS-CoV2 genomes, and 

compare this to that required by gsufsort, ropebwt2, and egap. We show that pfpebwt 

is consistently faster and uses less memory than gsufsort and egap on reasonably large 

input (≥ 4 copies of chromosome 19, ≥ 50 Salmonella genomes, and ≥ 25,000 SARS-CoV2 

genomes). Although ropebwt2 uses less memory than pfpebwt on large input, pfpebwt 

is 7x more efficient in terms of wall clock time, and 2.8x in terms of CPU time. Moreover, 

pfpebwt is capable of reporting SA samples in addition to the eBWT with a negligible 

increase in time and memory [24], whereas ropebwt2 does not have that ability. If we 
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compare pfpebwt only with methods that are able to report SA samples in addition to the 

eBWT (e.g., egap and gsufsort), we obtain a 57.1x improvement in peak memory.

2 Preliminaries

A string T = T[1..n] is a sequence of characters T[1] · · · T[n] drawn from an ordered 

alphabet Σ of size σ. We denote by |T| the length n of T, and by ε the empty string, the only 

string of length 0. Given two integers 1 ≤ i, j ≤ n, we denote by T[i..j] the string T[i] · · · T[j], 
if i ≤ j, while T[i..j] = ε if i > j. We refer to T[i..j] as a substring (or factor) of T, to T[1..j] as 

the j-th prefix of T, and to T[i..n] = T[i..] as the i-th suffix of T. A substring S of T is called 

proper if T ≠ S. Given two strings S and T, we denote by lcp(S, T) the length of the longest 
common prefix of S and T, i.e., lcp(S, T) = max{i | S[1..i] = T[1..i]).

Given a string T = T[1..n] and an integer k, we denote by Tk the kn-length string TT · · · T 
(k-fold concatenation of T), and by Tω the infinite string TT · · · obtained by concatenating 

an infinite number of copies of T. A string T is called primitive if T = Sk implies T = S and k 
= 1. For any string T, there exists a unique primitive word S and a unique integer k such that 

T = Sk. We refer to S = S 1.. n
k  as root(T) and to k as exp(T). Thus, T = root(T)exp(T).

We denote by <lex the lexicographic order: for two strings S[1..n] and T[1..m], S <lex T if S 
is a proper prefix of T, or there exists an index 1 ≤ i ≤ n, m such that S[1..i − 1] = T[1..i − 

1] and S[i] < T[i]. Given a string T[1..n], the suffix array [29], denoted by SA = SAT, is the 

permutation of {1, . . . , n} such that T[SA[i]..] is the i-th lexicographically smallest suffix of 

T.

We denote by ≺ω the ω-order [16, 30], defined as follows: for two strings S and T, S ≺ω T 
if root(S) = root(T) and exp(S) < exp(T), or Sω <lex Tω (this implies root(S) ≠ root(T)). One 

can verify that the ω-order relation is different from the lexicographic one. For instance, CG 
<lex CGA but CGA ≺ω CG.

The string S is a conjugate of the string T if S = T[i..n]T[1..i − 1], for some i ∈ {1, . . . , 

n} (also called the i-th rotation of T). The conjugate S is also denoted conji(T). It is easy 

to see that T is primitive if and only if it has n distinct conjugates. A Lyndon word is a 

primitive string which is lexicographically smaller than all of its conjugates. For a string T, 

the conjugate array1 CA = CAT of T is the permutation of {1, . . . , n} such that CA[i] = j 
if conjj(T) is the i-th conjugate of T with respect to the lexicographic order, with ties broken 

according to string order, i.e. if CA[i] = j and CA[i′] = j′ for some i < i′, then either conjj(T) 

<lex conj′, (T), or conj′ (T) = conj′, (T) and j < j′. Note that if T is a Lyndon word, then 

CA[i] = SA[i] for all 1 ≤ i ≤ n [17].

Given a string T, U a circular or cyclic substring of T if it is a factor of TT of length at most 

|T|, or equivalently, if it is the prefix of some conjugate of T. For instance, ATA is a cyclic 

1Our conjugate array CA is called circular suffix array and denoted SAo in [20, 2], and BW-array in [23, 35], but in both cases defined 
for primitive strings only.
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substring of AGCAT. It is sometimes also convenient to regard a given string T[1..n] itself as 

circular (or cyclic); in this case we set T[0] = T[n] and T[n + 1] = T[1].

2.1 Burrows-Wheeler-Transform

The Burrows-Wheeler Transform [9] of T, denoted BWT, is a reversible transformation 

extensively used in data compression. Given a string T, BWT(T) is a permutation of the 

letters of T which equals the last column of the matrix of the lexicographically sorted 

conjugates of T. The mapping T ↦ BWT(T) is reversible, up to rotation. It can be 

made uniquely reversible by adding to BWT(T) and index indicating the rank of T in the 

lexicographic order of all of its conjugates. Given BWT(T) and an index i, the original string 

T can be computed in linear time [9]. The BWT itself can be computed from the conjugate 

array, since for all i = 1, . . . , n, BWT(T)[i] = T[CA[i] − 1], where T is considered to be 

cyclic.

It should be noted that in many applications, it is assumed that an end-of-string-character 

(usually denoted $), which is not element of Σ, is appended to the string; this character is 

assumed to be smaller than all characters from Σ. Since T$ has exactly one occurrence of $, 

BWT(T$) is now uniquely reversible, without the need for the additional index i, since T$ 

is the unique conjugate ending in $. Moreover, adding a final $ makes the string primitive, 

and $T is a Lyndon word. Therefore, computing the conjugate array becomes equivalent to 

computing the suffix array, since CAT$ [i] = SAT$ [i]. Thus, applying one of the linear-time 

suffix-array computation algorithms [32] leads to linear-time computation of the BWT.

When no $-character is appended to the string, the situation is slightly more complex. For 

primitive strings T, first the Lyndon conjugate of T has to be computed (in linear time, [39]) 

and then a linear-time suffix array algorithm can be employed [17]. For strings T which are 

not primitive, one can take advantage of the following well-known property of the BWT: let 

T = Sk and BWT(S) = U[1..m], then BWT(T) = U[1]kU[2]k · · · U[m]k (Prop. 2 in [31]). 

Thus, it suffices to compute the BWT of root(T). The root of T can be found by computing 

the border array b of T: T is a power if and only if n/(n − b[n]) is an integer, which is 

then also the length of root(T). The border array can be computed, for example, by the 

preprocessing phase of the KMP-algorithm for pattern matching [21], in linear time in the 

length of T.

2.2 Generalized Conjugate Array and Extended Burrows-Wheeler Transform

Given a multiset of strings ℳ = T1 1..n1 , …, Tm 1..nm , the generalized conjugate array of ℳ, 

denoted by GCAℳ or just by GCA, contains the list of the conjugates of all strings in ℳ, 

sorted according to the ω-order relation. More formally, GCA[i] = (j, d) if conjj(Td) is the 

i-th string in the ⪯ω-sorted list of the conjugates of all strings of ℳ, with ties broken first 

w.r.t. the index of the string (in case of identical strings), and then w.r.t. the index in the 

string itself.

The extended Burrows-Wheeler Transform (eBWT) is an extension of the BWT to a 

multiset of strings [30]. It is a bijective transformation that, given a multiset of strings 

ℳ = T1, …, Tm , produces a permutation of the characters on the strings in the multiset ℳ. 
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Formally, eBWT(ℳ) can be computed by sorting all the conjugates of the strings in the 

multiset according to the ⪯ω-order, and the output is the string obtained by concatenating 

the last character of each conjugate in the sorted list, together with the set of indices 

representing the positions of the original strings of ℳ in the list. Similarly to the BWT, the 

eBWT is thus uniquely reversible. The eBWT(ℳ) can be computed from the generalized 

conjugate array of ℳ in linear time, since eBWT(ℳ)[i] = Td[j − 1] if GCA[i] = (j, d), where 

again, the strings in ℳ are considered to be cyclic. It is easy to see that when ℳ consists of 

only one string, i.e. ℳ = T , then eBWT(ℳ) = BWT(T).

Example 1.—Let ℳ = GTACAACG, CGGCACACACGT, C . Then GCA(ℳ) is as follows, 

where we give the pair (j, d) vertically, i.e. the first row contains the position in the string, 

and the second row the index of the string:

5 3 5 7 6 9 4 4 6 8 1 1 7 10 3 2 8 1 11 2 12
1 1 2 2 1 2 1 2 2 2 3 2 1 2 2 2 1 1 2 1 2

From the GCA we can compute eBWT(ℳ) = CTCCACAGAACTAAGCCGCGG, with index 

set {11, 12, 18}. Note that e.g. the conjugate conj8(T2) comes before conj1(T3), since 

CACGTCGGCACA ≺ω C, because (CACGTCGGCACA)ω <lex Cω = CCCC . . . holds. The 

full list of conjugates is in Appendix A.

Remark 2.—Note that if end-of-string symbols are appended to 

the string of the collection the output of eBWT could be 

quite different. For instance, if ℳ = GTACAACG$1, CGGCACACACGT$2, C$3 , 

eBWT(ℳ) = GTCCTCCAC$3AGAAA$2ACGCC$1GG.

Note that while in the original definition of eBWT [30], the multiset ℳ was assumed 

to contain only primitive strings, our definition is more general and allows also for non-

primitive strings. For example, eBWT({ATA, TATA}) = TATTAAA, with index set {2, 6}, 

while eBWT({ATA, TA, TA}) = TATTAAA, with index set {2, 6, 7}. Also the linear-time 

algorithm for recovering the original multiset can be straightforwardly extended.

The following lemma shows how to construct the generalized conjugate array GCAℳ of a 

multiset ℳ of strings (not necessarily primitive), once we know the generalized conjugate 

array GCAℛ of the multiset ℛ of the roots of the strings in ℳ. It follows straightforwardly 

from the fact that equal conjugates will end up consecutively in the GCA.

Lemma 3.—Let ℳ = T1, …, Tm  be a multiset of strings and let ℛ the multiset of the roots 

of the strings in ℳ, i.e. ℛ = S1, …, Sm , where T i = Si
ri , with ri ≥ 1 for 1 ≤ i ≤ m. Let 

GCAℛ[1…K] = j1, i1 , j2, i2 , …, jK, iK , where K = ∑i = 1
m Si . The generalized conjugate array 

is then given by
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GCAℳ[1..N] = [ j1, i1 , j1 + Si1 , i1 , …, j1 + ri1 − 1 ⋅ Si1 , i1 ,
j2, i2 , j2 + Si2 , i2 , …, j2 + ri2 − 1 ⋅ Si2 , i2 ,

…
jK, iK , jK + SiK , iK , …, jK + riK − 1 ⋅ SiK , iK ],

with N = ∑i = 1
m Si ⋅ ri.

From now on we will assume that the multiset ℳ = T1, …, Tm  consists of m primitive 

strings.

3 A simpler algorithm for computing the eBWT and GCA

In this section, we describe our algorithm to compute the eBWT of a multiset of strings 

ℳ. We will assume that all strings in ℳ are primitive, since we can use Lemma 3 to 

compute the eBWT of ℳ otherwise. Our algorithm is an adaptation of the well-known SAIS 

algorithm of Nong et al. [33], which computes the suffix array of a single string T ending 

with an end-of-string character $. Our adaptation is similar to that of Bannai et al. [2] for 

computing the BBWT, which can also be used for computing the eBWT. Even though our 

algorithm does not improve the latter asymptotically (both are linear time), it is significantly 

simpler, since it does not require first computing and sorting the Lyndon rotations of the 

input strings.

In the following, we assume some familiarity with the SAIS algorithm, focusing on the 

differences between our algorithm and the original SAIS. Detailed explanations of SAIS can 

be found in the original paper [33], or in the books [34, 26].

The main differences between our algorithm and the original SAIS algorithm are: (1) we are 

comparing conjugates rather than suffixes, (2) we have a multiset of strings rather than just 

one string, (3) the comparison is done w.r.t. the omega-order rather than the lexicographic 

order, and (4) the strings are not terminated by an end-of-string symbol.

We need the following definition, which is the cyclic version of the definition in [33] (where 

S stands for smaller, L for larger, and LMS for leftmost-S):

Definition 4 (Cyclic types, LMS-substrings).

Let T be a primitive string of length at least 2, and 1 ≤ i ≤ |T|. Position i of T is called 
(cyclic) S-type if conji(T) <lex conji+1(T), and (cyclic) L-type if conji(T) >lex conji+1(T). 

An S-type position i is called (cyclic) LMS if i − 1 is L-type (where we view T as a 
cyclic string). An LMS-substring is a cyclic substring T[i, j] of T such that both i and j are 
LMS-positions, but there is no LMS-position between i and j. Given a conjugate conji(T), 
its LMS-prefix is the cyclic substring from i to the first LMS-position strictly greater than i 
(viewed cyclically).

Since T is primitive, no two conjugates are equal, and in particular, no two adjacent 

conjugates are equal. Therefore, the type of every position of T is defined.
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Example 5.

Continuing Example 1,

G T A C A A C G C G G C A C A C A C G T
S L S L S S S S S L L L S L S L S S S L

* * * * * *

where we mark LMS-positions with a *. The LMS-substrings are ACA, AACGGTA, 

CGGCA, and ACGTC. The LMS-prefix of the conjugate conj7(T1) = CGGTACAA is 

CGGTA.

Lemma 6 (Cyclic type properties).

Let T be primitive string of length at least 2. Let a1 be the smallest and aσ the largest 
character of the alphabet. Then the following hold, where T is viewed cyclically:

1. if T[i] < T[i + 1], then i is of type S, and if T[i] > T[i + 1], then i is of type L,

2. if T[i] = T[i + 1], then the type of i is the same as the type of i + 1,

3. i is of type S iff T[i′] > T[i], where i′ = min{j | T[j] ≠ T[i]},

4. if T[i] = a1 then i is of type S, and if T[i] = aσ, then i is of type L.

Proof.—1. follows from the fact that for all b, c Σ ∈, if b < c then for all U, V ∈ Σ*, bU ≺ω 
cV; 2. follows by induction from the fact that for all U, V ∈ Σ*, if U ≺ω V, then cU ≺ω cV; 

3. and 4. follow from 2. by induction.

Corollary 7 (Linear-time cyclic type assignment).

Let T be a primitive string of length at least 2. Then all positions can be assigned a type in 
altogether at most 2|T| steps.

Proof.—Once the type of one position is known, then the assignment can be done in one 

cyclic pass over T from right to left, by Lemma 6. Therefore, it suffices to find the type of 

one single position. Any position of character a1 or of character aσ will do; alternatively, any 

position i such that T[i + 1] ≠ T[i], again by Lemma 6. Since T is primitive and has length at 

least 2, the latter must exist and can be found in at most one pass over T.

Let N be the total length of the strings in ℳ. The algorithm constructs an initially empty 

array A of size N, which, at termination, will contain the GCA of ℳ. The algorithm also 

returns the set ℐ containing the set of indices in A representing the positions of the strings 

of ℳ. The overall procedure consists of the following steps:

Algorithm SAIS-for-eBWT

Step 1 remove strings of length 1 from ℳ (these will be added back at the end)

Step 2 assign cyclic types to all positions of strings from ℳ
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Step 3 use procedure Induced Sorting to sort cyclic LMS-substrings

Step 4 assign names to cyclic LMS-substrings; if all distinct, go to Step 6

Step 5 recurse on new string multiset ℳ′, returning array A′, map A′ back to A

Step 6 use procedure Induced Sorting to sort all positions in ℳ, add length-1 strings in their respective 
positions, return (A, ℐ)

At the heart of the algorithm is the procedure Induced Sorting of [33] (Algorithms 

3.3 and 3.4), which is used once to sort the LMS-substrings (Step 3), and once to induce 

the order of all conjugates from the correct order of the LMS-positions (Step 6), as in the 

original SAIS. Before sketching this procedure, we need to define the order according to 

which the LMS-substrings are sorted in Step 2. Note that our definition of LMS-order is an 

extension of the LMS-order defined in [33], to LMS-prefixes. It can be proved that these 

definitions coincide for LMS-substrings.

Definition 8 (LMS-order).

Given two strings S and T, let U resp. V be their LMS-prefixes. We define U <LMS V if 
either V is a proper prefix of U, or neither is a proper prefix of the other and U <lex V.

The procedure Induced Sorting for the conjugates of the multiset is analogous to the 

original one, except that strings are viewed cyclically. First, the array A is subdivided 

into so-called buckets, one for each character. For c ∈ Σ, let nc denote the total number 

of occurrences of the character c in the strings in ℳ. Then the buckets are 1, na1 , 

na1 + 1, na1 + na2 , …, N − naσ + 1, N , i.e., the k-th bucket will contain all conjugates starting 

with character ak. The procedure Induced Sorting first inserts all LMS-positions at the 

end of their respective buckets, then induces the L-type positions in a left-to-right scan of 

A, and finally, induces the S-type positions in a right-to-left scan of A, possibly overwriting 

previously inserted positions. We need two pointers for each bucket b, head(b) and tail(b), 

pointing to the current first resp. last free position of the bucket.

Procedure Induced Sorting [33]

1. insert all LMS-positions at the end of their respective buckets; initialize head(b), 

tail(b) to the first resp. last position of the bucket, for all buckets b

2. induce the L-type positions in a left-to-right scan of A: for i from 1 to N − 

1, if A[i] = (j, d) then A[head(bucket(Td[j − 1]))] ⟵ (j − 1, d); increment 

head(bucket(Td[j − 1]))

3. induce the S-type positions in a right-to-left scan of A: for i from N to 2, if A[i] = 
(j, d) then A[tail(bucket(Td[j − 1]))] ⟵ (j − 1, d); decrement tail(bucket(Td[j − 

1]))

At the end of this procedure, the LMS-substrings are listed in correct relative LMS-order 

(see Lemma 10), and they can be named according to their rank. For the recursive step, we 

define, for i = 1, . . . , m, a new string T i
′, where each LMS-substring of Ti is replaced by its 

rank. The algorithm is called recursively on ℳ′ = T1
′ , …, Tm

′  (Step 5).
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Finally (Step 6), the array A′ = GCA ℳ′  from the recursive step is mapped back into the 

original array, resulting in the placement of the LMS-substrings in their correct relative 

order. This is then used to induce the full array A. All length-1 strings Ti which were 

removed in Step 1 can now be inserted between the L- and S-type positions in their bucket 

(Lemma 9). See Figure 1 for a full example.

3.1 Correctness and running time

The following lemma shows that the individual steps of Induced Sorting are applicable for 

the ω-order on conjugates of a multiset (part 1), that L-type conjugates (of all strings) come 

before the S-type conjugates within the same bucket (part 2), and that length-1 strings are 

placed between S-type and L-type conjugates (part 3). The second property was originally 

proved for the lexicographic order between suffixes in [22]:

Lemma 9 (Induced sorting for multisets).—Let U,V ∈ Σ*.

1. If U ≺ω V, then for all c ∈ Σ, cU ≺ω cV.

2. If U[i] = V[j], i is an L-type position, and j an S-type position, then conji(U) ≺ω 
conjj(V).

3. If U[i] = V[j] = c, i is an L-type position, and j an S-type position, then conji(U) 

≺ω c ≺ω conjj(V).

Proof.: 1. follows directly from the definition of ω-order. 3. implies 2. For 3., let i′ be the 

nearest character following i in U such that U [i′] ≠ c. By Lemma 6, U [i′] < c, and thus 

conji(U) <lex c|U|, and therefore, conji(U) ≺ω c. Analogously, if j′ is the next character in V 
s.t. V[j′] ≠ c, then by Lemma 6, V[j′] > c, and therefore, c ≺ω conjj(V).

Next, we show that after applying procedure Induced Sorting, the conjugates will appear in 

A such that they are correctly sorted w.r.t. to the LMS-order of their LMS-prefixes, while 

the order in which conjugates with identical LMS-prefixes appear in A is determined by the 

input order of the LMS-positions.

Lemma 10 (Extension of Thm. 3.12 of [33]).—Let T1, T2 ∈ ℳ, let U be the LMS-

prefix of conji(T1), with i′ the last position of U; let V be the LMS-prefix of conjj(T2), and 
j′ the last position of V. Let k1 be the position of conji(T1) in array A after the procedure 
Induced Sorting, and k2 that of conjj(T2).

1. If U <LMS V, then k1 < k2.

2. If U = V, then k1 < k2 if and only if conji′, (T1) was placed before conjj′(T2) at 
the start of the procedure.

Proof.: Both claims follow from Lemma 9, and the fact that from one LMS-position to the 

previous one, there is exactly one run of L-type positions, preceded by one run of S-type 

positions.

The next lemma shows that the LMS-order of the LMS-prefixes respects the ω-order.
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Lemma 11.—Let S, T ∈ Σ*, let U be the LMS-prefix of S and V the LMS-prefix of T. If U 

<lms V then S ≺ω T.

Proof.: If neither U nor V is a proper prefix one of the other, then there exists an index i s.t. 

S[i] = U[i] < V[i] = T[i], and therefore, S ≺ω T. Otherwise, V is a proper prefix of U. Let 

i = |V| and c = V[i]. Since both U and V are LMS-prefixes, with i being the last position of 

V but not of U, this implies that V[i] = T[i] is of type S, while U[i] = S[i] is of type L. Let 

j be the next character in S s.t. S[j] ≠ c, and k be the next character in T s.t. T[k] ≠ c. By 

Lemma 6, S[j] < c, T[k] > c, and by definition of j, k all characters inbetween equal c. Then 

for i′ = min(j, k), we have S[i′] < T[i′], with i′ being the first position where S and T differ. 

Therefore, S ≺ω T.

Theorem 12.—Algorithm SAIS-for-eBWT correctly computes the GCA and eBWT of a 
multiset of strings ℳ in time O(N), where N is the total length of the strings in ℳ.

Proof.: By Lemma 6, Step 2 correctly assigns the types. Step 3 correctly sorts the LMS-

substrings by Lemma 10. It follows from Lemma 11 that the order of the conjugates of 

the new strings T i
′ coincides with the relative order of the LMS-conjugates. In Step 6, the 

LMS-conjugates are placed in A in correct relative order from the recursion; by Lemmas 10 

and 11, this results in the correct placement of all conjugates of strings of length > 1, while 

the positioning of the length-1 strings is given by Lemma 9.

For the running time, note that Step 1 takes time at most 2N. The Induced Sorting procedure 

also runs in linear time O(N). Finally, since no two LMS-positions are consecutive, and we 

remove strings of length 1, the problem size in the recursion step is reduced to at most N/2.

3.2 Computing the BWT for one single string

The special case where ℳ consists of one single string leads to a new algorithm for 

computing the BWT, since for a singleton set, the eBWT coincides with the BWT. To the 

best of our knowledge, this is the first linear-time algorithm for computing the BWT of a 
string without an end-of-string character that uses neither Lyndon rotations nor end-of-string 

characters.

We demonstrate the algorithm on a well-known example, T = banana. We get the following 

types, from left to right: LSLSLS, and all three S-type positions are LMS. We insert 2, 4, 6 

into the array A; after the left-to-right pass, indices are in the order 2, 4, 6, 1, 3, 5, and after 

the right-to-left pass, in the order 6, 2, 4, 1, 3, 5. The LMS-substring aba (pos. 6) gets the 

name A, and the LMS-substring ana (pos. 2,4) gets the name B. In the recursive step, the 

new string T′ = ABB, with types SLL and only one LMS-position 1, the GCA gets induced 

in just one pass: 1, 3, 2. This maps back to the original string: 6, 2, 4, and one more pass 

over the array A results in 6, 4, 2, 1, 5, 3 and the BWT nnbaaa. See Figure 2.

4 eBWT and prefix-free parsing

In this section, we show how to extend the prefix-free parsing to build the eBWT. We define 

the cyclic prefix-free parse for a multiset of strings ℳ = T1, T2, …, Tm  (with |Ti| = ni, 1 ≤ i 
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≤ m) as the multiset of parses P = P1, P2, …, Pm  with dictionary D, where we consider Ti as 

circular, and Pi is the parse of Ti. We denote by pi the length of the parse Pi.

Next, given a positive integer w, let E be a set of strings of length w called trigger strings. 

We assume that each string Tℎ ∈ ℳ has length at least w and at least one cyclic factor in E.

We divide each string Tℎ ∈ ℳ into overlapping phrases as follows: a phrase is a circular 

factor of Th of length > w that starts and ends with a trigger string and has no internal 

occurrences of a trigger string. The set of phrases obtained from strings in ℳ is the 

dictionary D. The parse Ph can be computed from the string Th by replacing each occurrence 

of a phrase in Th with its lexicographic rank in D.

Example 13.

Let ℳ = T1:CACGTGCTAT, T2:CCACTTGCTAGA, T3:CACTTGCTAT  and let E = {AC, 

GC}. The dictionary D of the multiset of parses P of ℳ is D = {ACCAC, ACGTGC, 
ACTTGC, GCTAGAC, GCTATCAC} and P = 2 5 , 3 4 1 , 3 5 , where P2 = 2 5 means that 

the parsing of T2 is given by the second and fifth phrases of the dictionary. Note that the 

string T2 has a trigger string AC that spans the first position of T2.

We denote by S the set of suffixes of D having length greater than w. The first important 

property of the dictionary D is that the set S prefix-free, i.e., no string in S is prefix of 

another string of S. This follows directly from [8].

Example 14.

Continuing Example 13, we have that

S = {ACCAC, ACGTGC, ACTTGC, AGAC, ATCAC, CAC, CCAC, CGTGC,
CTAGAC, CTATCAC, CTTGC, GAC, GCTAGAC, GCTATCAC, GTGC,
TAGAC, TATCAC, TCAC, TGC, TTGC}

The computation of eBWT from the prefix-free parse consists of three steps: computing 

the cyclic prefix-free parse of ℳ (denoted as P), computing the eBWT of P by using the 

algorithm described in Section 3; and lastly, computing the eBWT of ℳ from the eBWT of 

P using the lexicographically sorted dictionary D = {D1, D2, . . . , D|D|} and its prefix-free 

suffix set S. We now describe the last step as follows. We define δ as the function that 

uniquely maps each character of Th[j] to the pair (i, k), where with 1 ≤ i ≤ ph, k > w, 
and Th[j] corresponds to the k-th character of the Ph[i]-th phrase of D. We call i and k the 

position and the offset of Th[j], respectively. Furthermore, we define α as the function that 

uniquely associates to each conjugate conjj(Th) the element s ∈ S such that s is the k-th 

suffix of the Ph[i]-th element of D, where (i, k) = δ(Th[j]). By extension, i and k are also 

called the position and the offset of the suffix α(conjj(Th)).

Example 15.—In Example 13, δ(T2[4]) = (1, 2) since T2[4] is the second character 

(offset 2) of the phrase ACTTGC, which is the first phrase (position 1) of P2. Moreover, 
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α(conj4(T2)) = CTTGC since CTTGC is the suffix of D3, which is prefix of conj4(T2) = 

CTTGCTAGACCA.

Lemma 16.—Given two strings Tg, Tℎ ∈ ℳ if α(conji(Tg)) <lex α(conji(Th)) it follows that 

conji(Tg) ≺ω. conjj(Th).

Proof.: It follows from the definition of a that α(conji(Tg)) and α(conji(Th)) are prefixes of 

conji(Tg) and conjj(Th), respectively.

Proposition 17.—Given two strings Tg, Tℎ ∈ ℳ. Let conji(Tg) and conjj(Th) be the i-th 

and j-th conjugates of Tg and Th, respectively, and let (i′, g′) = δ(Tg[i]) and (j′, h′) = 
δ(Th[j]). Then conji(Tg) ≺ω. Conjj(Th) if and only if either αconji(Tg)) <lex α(conjj(Th)), or 
conji′+1(Pg) ≺ω conjj′+1(Ph), i.e., Pg[i′] precedes Ph[j′] in eBWT(P).

Proof.: By definition of α, conji(Tg) = α(conji(Tg))Tg [i + g″]Tg [i + g″ + 1] . . .Tg [i − 1] 

and conjj(Th) = α(conjj(Th))Th[j + h″]Th[j + h″ + 1] . . .Th[j − 1] where g″ = |α(canji(Tg))| 

and h″ = |α(conjj(Th))|, respectively. Moreover, conji(Tg) ≺ω conjj(Th) if and only if either 

α(conjj(Th)) <lex α(Conjj(Th)) or conji+g″−w(Tg) ≺ω Conjj+h″−w (Th), where w is the length 

of trigger strings. It is easy to verify that the position of Tg[i + g″ − w] and Th[j + h″ − 

w] is i′ + 1 and j′ + 1, respectively. Moreover, since Tg[i + g″ − w] and Th[j + h″ − w] 

are the first character of a phrase, we have that conji+g″− w(Tg) conjj+h″-w(Th) if and only if 

conji′+1(Pg) conjj′+1(Ph).

Next, using Proposition 17, we define how to build the eBWT of the multiset of strings 

ℳ from P and D. First, we note that we will iterate through all the suffixes in S in 

lexicographic order, and build the eBWT of ℳ in blocks corresponding to the suffixes in S. 

Hence, it follows that we only need to describe how to build an eBWT block corresponding 

to a suffix s ∈ S. Given s ∈ S, we let Ss be the set of the lexicographic ranks of the phrases 

of D that have s as a suffix, i.e., Ss = i |1 ≤ i ≤ |D| , s is a suffix of Di ∈ D , s is a suffix of Di 

∈ D}. Moreover, given the string Tℎ ∈ ℳ, we let conji(Th) be the i-th conjugate of Th, let j 

and k be the position and offset of Th[i], and lastly, let p be the position of Ph[j] in eBWT(P). 
We define f(p, k) = DPℎ[j][k − 1] if k > 1, otherwise f(p, k) = DPℎ[j − 1] DPℎ[j − 1] − w  where we 

view Ph as a cyclic string.

Example 18.—In Example 13, eBWT(P) = 4 5 1 5 3 2 3. Let us consider conj4(T2) and 

conj3(T3) that are both mapped to the suffix CTT by the function α. By using Example 15, 

the position and the offset of T2[4] are 1 and 2, respectively. The position of P2[1] = 3 in 

eBWT(P) is 5, because conj2(P2) ≺ω conj2(P3). This implies that conj4(T2) ≺ω conj3(T3) by 

Proposition 17. Furthermore, f(5, 2) = T2[3] = A.

Finally, we let Os be the set of pairs (p, c) such that for all d ∈ Ss, p is the position of 

an occurrence of d in eBWT(P), and c is the character resulting the application of the f 
function considering as k the offset of s in Dd, i.e., c = f(p, |Dd| − |s| + 1). Formally, 

Os = (p, f p, DeBWT(P)[p] − |s | + 1 ∣ eBWT(P)[p] ∈ Ss .
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Example 19.—In Example 13, if s = CAC ∈ S and Ss = 1, 5 , where 1 : ACCAC and 5 : 

GCTATCAC, then it follows that Os = (3, C), (2, T ), (4, T )  since the phrase 1 is in position 

3 in the eBWT(P) and the suffix CAC starts in position 3 of D1, the character preceding 

the occurrences of CAC corresponding to the phrase 1 is C. Analogously, the phrase 5 is in 

positions 2 and 4 in the eBWT(P) and the suffix CAC starts in position 6 of D5, hence the 

character preceding the occurrences of CAC corresponding to the phrase 5 is T.

To build the eBWT block corresponding to s ∈ S, we scan the set Os in increasing order of 

the first element of the pair, i.e., the position of the occurrence in eBWT(P), and concatenate 

the values of the second element of the pair, i.e., the character preceding the occurrence of s 
in Th. Note that if all the occurrences in Os are preceded by the same character c, we do not 

need to iterate through all the occurrences but rather concatenate Os  copies of the character 

c.

Example 20.—In Example 13, 

eBWT(ℳ) = GCCCTTTTCTAAGGGAAATTTCCCCAATGTCC, where the block of 

the eBWT corresponding to the suffix s = CAC ∈ S is underlined. Given 

Os = (3, C), (2, T ), (4, T ) , we generate the block by sorting Os by the first element of each 

pair – resulting in Os = (2, T ), (3, C), (4, T )  – and concatenating the second element of each 

pair obtaining TCT.

Keeping track of the first rotations.

So far, we showed how to compute the first component of the eBWT. Now we show how to 

compute the second component of the eBWT i.e., the set of indices marking the first rotation 

of each string. The idea is to keep track of the starting positions of each text in the parse, by 

marking the offset of the first position of each string in the last phrase of the corresponding 

parse. We propagate this information during the computation of the eBWT of the parse. 

When scanning the suffixes of S, we check if one of the phrases sharing the same suffix 

s ∈ S is marked as a phrase containing a starting position, and if the offset of the starting 

position coincides with the offset of the suffix. If so, when generating the elements of Os, 

we mark the element corresponding to the occurrence of the first rotation of a string, and we 

output the index of the eBWT when that element is processed.

Implementation notes.

In practice, as in [8], we implicitly select the set of trigger strings E, by rolling a Karp-Rabin 

hash over consecutive windows of size w and take as a trigger strings of length w all 

windows such that their hash value is congruent 0 modulo a parameter p. In our version of 

the PFP, we also need to ensure that there is at least one trigger string on each sequence of 

the collection. Hence, we change the way we select the trigger strings as follows. We define 

a set D of remainders and we select a window of length w as a trigger string with hash value 

congruent d modulo p if d ∈ D. Note that if we set D = 0  we obtain the same set of trigger 

strings as in the original definition. We choose the set D in a greedy way. We start with 

D = 0  by scanning the set of sequences and checking if the current sequence has a trigger 

string according to the current D. As soon as we find one, we move to the next sequence. If 
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we don’t find any trigger string, we take the reminder of the last window we checked, and 

we include it in the set D.

We note that we consider S to be the set of suffixes of the phrases of D such that s ∈ S
is not a phrase in D nor it has length smaller than w in the implementation. This allows 

us to compute f more efficiently since we can compute the preceding character of all the 

occurrences of a suffix in S from its corresponding phrase in D. Moreover, as in [8], for each 

phrase in D, we keep an ordered list of their occurrences in the eBWT of the parse. For a 

given suffix s ∈ S, we do not generate Os all at once and sort it – but rather, we visit the 

elements of Os in order using a min-heap as we merge the ordered lists of the occurrences in 

the eBWT of the parse of the phrases that share the same suffix s.

5 Experimental results

We implemented the algorithm for building the eBWT and measured its performance on real 

biological data. We performed the experiments on a server with Intel(R) Xeon(R) CPU E5–

2620 v4 @ 2.10GHz with 16 cores and 62 gigabytes of RAM running Ubuntu 16.04 (64bit, 

kernel 4.4.0). The compiler was g++ version 9.4.0 with -O3 -DNDEBUG -funroll-loops 

-msse4.2 options. We recorded the runtime and memory usage using the wall clock time, 

CPU time, and maximum resident set size from /usr/bin/time. The source code is 

available online at: https://github.com/davidecenzato/PFP-eBWT.

We compared our method (pfpebwt) with the BCR algorithm implementation of [25] 

(ropebwt2), gsufsort [27], and egap [14]. We did not compare against G2BWT [13], 

lba [6], and BCR [4] since they are currently implemented only for short reads2. We did 

not compare against egsa [28] since it is the predecessor of egap or against methods that 

construct the BWT of a multiset of strings using one of the methods we evaluated against, 

i.e., LiME [18], BEETL [11], metaBEETL [1], and ebwt2snp [36, 37].

5.1 Datasets

We evaluated our method using 2,048 copies of human chromosomes 19 from the 1000 

Genomes Project [42]; 10,000 Salmonella genomes taken from the GenomeTrakr project 

[41], and 400,000 SARS-CoV2 genomes from EBI’s COVID-19 data portal [12]. The 

sequence data for the Salmonella genomes were assembled, and the assembled sequences 

that had length less than 500 bp were removed. In addition, we note that we replaced all 

degenerate bases in the SARS-CoV2 genomes with N’s and filtered all sequences with 

more than 95% N’s. A brief description of the datasets is reported in Table 1. We used 

12 sets of variants of human chromosome 19 (chr19), containing 2i variants for i = 0, . . ., 

11 respectively. We used 6 collections of Salmonella genomes (salmonella) containing 

50, 100, 500, 1,000, 5,000, and 10,000 genomes respectively. We used 5 sets of SARS-

CoV2 genomes (sars-cov2) containing 25,000, 50,000, 100,000, 200,000, 400,000 genomes 

respectively. Each collection is a superset of the previous one.

2G2BWT crashed and BCR did not terminate within 48 hours with the smallest of each dataset; lba works only with sequences of 
length up to 255
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5.2 Setup

We run pfpebwt and ropebwt2 with 16 threads, and gsufsort and egap with a single 

thread since they do not support multi-threading. Using pfpebwt, we set w = 10 and p = 

100. Furthermore, for pfpebwt on the salmonella dataset, we used up to three different 

remainders to build the eBWT. We used ropebwt2 with the −R flag to exclude the reverse 

complement of the sequences from the computation of the BWT. All other methods were run 

with default parameters.

We repeated each experiment five times, and report the average CPU time and peak memory 

for the set of chromosomes 19 up to 64 distinct variants, for Salmonella up to 1,000 

sequences, and for all SARS-CoV2. The experiments that exceeded 48 hours of wall clock 

time or exceeded 62 GB of memory were omitted for further consideration, e.g., 128 

sequences of chr19, 5000 sequences of salmonella and 400,000 sequences of sars-cov2 

for egap. Furthermore, gsufsort failed to successfully build the eBWT for 256 sequences 

of chr19, 5000 sequences of salmonella, and 400,000 sequences of sars-cov2 or more, 

because it exceeded the 62GB memory limit.

5.3 Results

In Figures 3, 4, and 5 we illustrate the construction time and memory usage to build the 

eBWT and the BWT of collections of strings for the chromosome 19 dataset, the Salmonella 
dataset, and the SARS-CoV2 dataset, respectively.

pfpebwt was the fastest method to build the eBWT of 4 or more sequences of chromosome 

19, with a maximum speedup of 7.6x of wall-clock time and 2.9x of CPU time over 

ropebwt2 on 256 sequences of chromosomes 19, 2.7x of CPU time over egap on 64 

sequences, and 3.8x of CPU time over gsufsort on 128 sequences. On Salmonella 
sequences, pfpebwt was always the fastest method, except for 10,000 sequences where 

ropebwt2 was the fastest method on wall-clock time. pfpebwt had a maximum speedup 

of 3.0x of wall-clock time over ropebwt2 on 100 sequences of salmonella. Considering the 

CPU time, pfpebwt was the fastest for ≥ 500 sequences with a maximum speedup of 1.7x 

over ropebwt2 on 100 sequences and 1.2x over gsufsort and egap on 1,000 sequences. 

On SARS-CoV2 sequences, pfpebwt was always the fastest method, with a maximum 

speedup of 2.4x of wall-clock time over ropebwt2 while a maximum speedup of 1.3x of 

CPU time over ropebwt2 on 400,000 sequences, 2.9x over gsufsort and 2.7x over egap 

on 200,000 sequences of SARS-CoV2.

Considering the peak memory, on the chromosomes 19 dataset, ropebwt2 used the smallest 

amount of memory for 1, 2, 4, 8, and 2,048 sequences, while pfpebwt used the smallest 

amount of memory in all other cases. pfpebwt used a maximum of 5.6x less memory than 

ropebwt2 on 256 sequences of chromosomes 19, 28.0x less than egap on 64 sequences, 

and 45.3x less than gsufsort on 128 sequences. On Salmonella sequences, pfpebwt used 

more memory than ropebwt2 for 50, 100, and 10,000 sequences, while pfpebwt used 

the smallest amount of memory on all other cases. The largest gap between ropebwt2 

and pfpebwt memory peak is of 1.7x on 50 sequences. On the other hand, pfpebwt 

used a maximum of 17.0x less memory than egap and gsufsort on 1,000 sequences. 
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On SARS-CoV2 sequences, pfpebwt always used the smallest amount of memory, with a 

maximum of 6.4x less memory than ropebwt2 on 25,000 sequences of SARS-CoV2, 57.1x 

over gsufsort and egap on 200,000 sequences.

The memory peak of ropebwt2 is given by the default buffer size of 10 GB, and the size 

of the run-length encoded BWT stored in the rope data structure. This explains the memory 

plateau on 10.5 GB of ropebwt2 on the chromosomes 19 dataset. However, ropebwt2 

is able only to produce the BWT of the input sequence collection, while pfpebwt can be 

trivially extended to produce also the samples of the conjugate array at the run boundaries 

with negligible additional costs in terms of time and peak memory.

6 Conclusion

We described the first linear-time algorithm for building the eBWT of a collection of strings 

that does not require the manipulation of the input sequence, i.e., neither the addition of 

an end-of-string character, nor computing and sorting the Lyndon rotations of the input 

strings. We also combined our algorithm with an extension of the prefix-free parsing to 

enable scalable construction of the eBWT. We demonstrated pfpebwt was efficient with 

respect to both memory and time when the input is highly repetitive. Lastly, we curated a 

novel dataset of 400,000 SARS-CoV2 genomes from EBI’s COVID-19 data portal, which 

we believe will be important for future benchmarking of data structures that have potential 

use in bioinformatics.

A: eBWT missing examples

Full conjugate table for Example 1: ℳ = {GTACAACG,CGGCACACACGT,C}.

GCA ⪯ω-sorted conjugates

1 (5,1) AACGGTAC

2 (3,1) ACAACGGT

3 (5,2) ACACACGTCGGC

4 (7,2) ACACGTCGGCAC

5 (6,1) ACGGTACA

6 (9,2) ACGTCGGCACAC

7 (4,1) CAACGGTA

8 (4,2) CACACACGTCGG

9 (6,2) CACACGTCGGCA

10 (8,2) CACGTCGGCACA

→ 11 (1,3) C

→ 12 (1,2) CGGCACACACGT

13 (7,1) CGGTACAA

14 (10,2) CGTCGGCACACA

15 (3,2) GCACACACGTCG

16 (2,2) GGCACACACGTC
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17 (8,1) GGTACAAC

→ 18 (1,1) GTACAACG

19 (11,2) GTCGGCACACAC

20 (2,1) TACAACGG

21 (12,2) TCGGCACACACG

eBWT({GTACAACG,CGGCACACACGT,C}) = CTCCACAGAACTAAGCCGCGG
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Figure 1. 
The algorithm SAIS-for-eBWT on Example 1. Start positions of input strings are marked in 

bold.
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Figure 2. 
Example for computing the BWT for one string, start index marked in bold.
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Figure 3. 
Chromosome 19 dataset construction CPU time and peak memory usage. We compare 

pfpebwt with ropebwt2, gsufsort, and egap.
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Figure 4. 
Salmonella dataset construction CPU time and peak memory usage. We compare pfpebwt 

with ropebwt2, gsufsort, and egap.
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Figure 5. 
SARS-CoV2 dataset construction CPU time and peak memory usage. We compare pfpebwt 

with ropebwt2, gsufsort, and egap.
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Table 1

Datasets used in the experiments. We give the alphabet size in column 3. We report the length of the file and 

the ratio of the length to the number of runs in the eBWT in columns 4 and 5, respectively.

Name Description σ n/106 n/r

chr19 Human chromosome 19 5 121,086.62 2199.21

salmonella Salmonella genomes 4 48,791.75 112.72

sars-cov2 SARS-CoV2 genomes 5 11,930.96 1424.65
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