
Computing the original eBWT faster, simpler, and with less
memory

Christina Boucher,
Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, United States

Davide Cenzato,
Department of Computer Science, University of Verona, Verona, Italy

Zsuzsanna Lipták,
Department of Computer Science, University of Verona, Verona, Italy

Massimiliano Rossi,
Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, United States

Marinella Sciortino
Department of Computer Science, University of Palermo, Palermo, Italy

Abstract

Given an input string, the Burrows-Wheeler Transform (BWT) can be seen as a reversible

permutation of it that allows efficient compression and fast substring queries. Due to these

properties, it has been widely applied in the analysis of genomic sequence data, enabling

important tasks such as read alignment. Mantaci et al. [TCS2007] extended the notion of the BWT

to a collection of strings by defining the extended Burrows-Wheeler Transform (eBWT). This

definition requires no modification of the input collection, and has the property that the output is

independent of the order of the strings in the collection. However, over the years, the term eBWT

has been used more generally to describe any BWT of a collection of strings. The fundamental

property of the original definition (i.e., the independence from the input order) is frequently

disregarded. In this paper, we propose a simple linear-time algorithm for the construction of the

original eBWT, which does not require the preprocessing of Bannai et al. [CPM 2021]. As a

byproduct, we obtain the first linear-time algorithm for computing the BWT of a single string that

uses neither an end-of-string symbol nor Lyndon rotations.

We also combine our new eBWT construction with a variation of prefix-free parsing (PFP)

[WABI 2019] to allow for construction of the eBWT on large collections of genomic sequences.

We implement this combined algorithm (pfpebwt) and evaluate it on a collection of human

chromosomes 19 from the 1,000 Genomes Project, on a collection of Salmonella genomes from

GenomeTrakr, and on a collection of SARS-CoV2 genomes from EBI’s COVID-19 data portal.

We demonstrate that pfpebwt is the fastest method for all collections, with a maximum speedup

of 7.6x on the second best method. The peak memory is at most 2x larger than the second best

c.boucher@cise.ufl.edu .

HHS Public Access
Author manuscript
Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

Published in final edited form as:
Int Symp String Process Inf Retr. 2021 October ; 12944: 129–142. doi:10.1007/978-3-030-86692-1_11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

method. Comparing with methods that are also, as our algorithm, able to report suffix array

samples, we obtain a 57.1x improvement in peak memory. The source code is publicly available at

https://github.com/davidecenzato/PFP-eBWT.

Keywords

extended BWT; prefix-free parsing; SAIS algorithm; omega-order; Theory of computation; Data
compression; Theory of computation; Pattern matching; Theory of computation; Data structures
design and analysis

1 Introduction

In the last several decades, the number of sequenced human genomes has been growing

at unprecedented pace. In 2015 the number of sequenced genomes was doubling every 7

months [40] – a pace that has not slowed into the current decade. The plethora of resulting

sequencing data has expanded our knowledge of the biomarkers responsible for human

disease and phenotypes [5, 43, 42], the evolutionary history between and among species

[38], and will eventually help realize the personalization of healthcare [3]. However, the

amount of data for any individual species is large enough that it poses challenges with

respect to storage and analysis. One of the most well-known and widely-used methods

for compressing and indexing data that has been applied in bioinformatics is the Burrows-

Wheeler Transform (BWT), which is a text transformation that compresses the input in a

manner that also allows for efficient substring queries. Not only can it be constructed in

linear-time in the length of the input, it is also reversible – meaning the original input can

be constructed from its compressed form. The BWT is formally defined over a single input

string; thus, in order to define and construct it for one or more strings, the input strings

need to be concatenated or modified in some way. In 2007 Mantaci et al. [30] presented

a formal definition of the BWT for a multiset of strings, which they call the extended
Burrows-Wheeler Transform (eBWT). It is a bijective transformation that sorts the cyclic

rotations of the strings of the multiset according to the ω-order relation, an order, defined by

considering infinite iterations of each string, which is different from the lexicographic order.

Since its introduction several algorithms have been developed that construct the BWT of

collection of strings for various types of biological data including short sequence reads [6,

4, 11, 14, 27, 13, 14, 1, 19, 36, 37], protein sequences [44], metagenomic data [18] and

longer DNA sequences such as long sequence reads and whole chromosomes [25]. However,

we note that in the development of some of these methods the underlying definition of

eBWT was loosened. For example, ropebwt2 [25] tackles a similar problem of building

what they describe as the FM-index for a multiset of long sequence reads, however, they

do not construct the suffix array (SA) or SA samples, and also, require that the sequences

are delimited by separator symbols. Similarly, gsufsort [27] and egap [14] construct the

BWT for a collection of strings but do not construct the eBWT according to its original

definition. gsufsort [27] requires the collection of strings to be concatenated in a manner

that the strings are deliminated by separator symbols that have an augmented relative

order among them. egap [14], which was developed to construct the BWT and LCP for a

Boucher et al. Page 2

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/davidecenzato/PFP-eBWT

collection of strings in external memory, uses the gSACA-K algorithm to construct the suffix

array of the concatenated input using an additional O(α + 1) log n bits, and then constructs

the BWT for the collection from the resulting suffix array. Lastly, we note that there exists

a number of methods for construction of the BWT for a collection of short sequence reads,

including ble [6], BCR [4], G2BWT [13], egsa [28]; however, these methods make implicit or

explicit use of end-of-string symbols appended to strings in the collection. For an example of

the effects of these manipulations, see Section 2, and [10] for a more detailed study.

We present an efficient algorithm for constructing the eBWT that preserves the original

definition of Mantaci et al. [30]—thus, it does not impose any ordering of the input strings

or delimiter symbols. It is an adaptation of the well-known Suffix Array Induced Sorting

(SAIS) algorithm of Nong et al. [33], which computes the suffix array of a single string T
ending with an end-of-string character $. Our adaptation is similar to the algorithm proposed

by Bannai et al. [2] for computing the BBWT, which can also be used for computing the

eBWT, after linear-time preprocessing of the input strings. The key change in our approach

is based on the insight that the properties necessary for applying Induced Sorting are valid

also for the ω-order between different strings. As a result, is it not necessary that the input

be Lyndon words, or that their relative order be known at the beginning. Furthermore, our

algorithmic strategy, when applied to a single string, provides the first linear-time algorithm

for computing the BWT of the string that uses neither an end-of-string symbol nor Lyndon

rotations.

We then combine our new eBWT construction with a variation of a preprocessing

technique called prefix free parsing (PFP). PFP was introduced by Boucher et al. [8] for

building the (run length encoded) BWT of large and highly repetitive input text. Since its

original introduction, it has been extended to construct the r-index [24], been applied as

a preprocessing step for building grammars [15], and used as a data structure itself [7].

Briefly, PFP is a one-pass algorithm that divides the input into overlapping variable length

phrases with delimiting prefixes and suffixes; which in effect, leads to the construction of

what is referred to as the dictionary and parse of the input. It follows that the BWT can be

constructed in the space that is proportional to the size of the dictionary and parse, which is

expected to be significantly smaller than linear for repetitive text.

In our approach, prefix-free parsing is applied to obtain a parse that is a multiset of cyclic

strings (cyclic prefix-free parse) on which our eBWT construction is applied. We implement

our approach (called pfpebwt), measure the time and memory required to build the eBWT

for sets of increasing size of chromosome 19, Salmonella, and SARS-CoV2 genomes, and

compare this to that required by gsufsort, ropebwt2, and egap. We show that pfpebwt

is consistently faster and uses less memory than gsufsort and egap on reasonably large

input (≥ 4 copies of chromosome 19, ≥ 50 Salmonella genomes, and ≥ 25,000 SARS-CoV2

genomes). Although ropebwt2 uses less memory than pfpebwt on large input, pfpebwt

is 7x more efficient in terms of wall clock time, and 2.8x in terms of CPU time. Moreover,

pfpebwt is capable of reporting SA samples in addition to the eBWT with a negligible

increase in time and memory [24], whereas ropebwt2 does not have that ability. If we

Boucher et al. Page 3

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

compare pfpebwt only with methods that are able to report SA samples in addition to the

eBWT (e.g., egap and gsufsort), we obtain a 57.1x improvement in peak memory.

2 Preliminaries

A string T = T[1..n] is a sequence of characters T[1] · · · T[n] drawn from an ordered

alphabet Σ of size σ. We denote by |T| the length n of T, and by ε the empty string, the only

string of length 0. Given two integers 1 ≤ i, j ≤ n, we denote by T[i..j] the string T[i] · · · T[j],
if i ≤ j, while T[i..j] = ε if i > j. We refer to T[i..j] as a substring (or factor) of T, to T[1..j] as

the j-th prefix of T, and to T[i..n] = T[i..] as the i-th suffix of T. A substring S of T is called

proper if T ≠ S. Given two strings S and T, we denote by lcp(S, T) the length of the longest
common prefix of S and T, i.e., lcp(S, T) = max{i | S[1..i] = T[1..i]).

Given a string T = T[1..n] and an integer k, we denote by Tk the kn-length string TT · · · T
(k-fold concatenation of T), and by Tω the infinite string TT · · · obtained by concatenating

an infinite number of copies of T. A string T is called primitive if T = Sk implies T = S and k
= 1. For any string T, there exists a unique primitive word S and a unique integer k such that

T = Sk. We refer to S = S 1.. n
k as root(T) and to k as exp(T). Thus, T = root(T)exp(T).

We denote by <lex the lexicographic order: for two strings S[1..n] and T[1..m], S <lex T if S
is a proper prefix of T, or there exists an index 1 ≤ i ≤ n, m such that S[1..i − 1] = T[1..i −

1] and S[i] < T[i]. Given a string T[1..n], the suffix array [29], denoted by SA = SAT, is the

permutation of {1, . . . , n} such that T[SA[i]..] is the i-th lexicographically smallest suffix of

T.

We denote by ≺ω the ω-order [16, 30], defined as follows: for two strings S and T, S ≺ω T
if root(S) = root(T) and exp(S) < exp(T), or Sω <lex Tω (this implies root(S) ≠ root(T)). One

can verify that the ω-order relation is different from the lexicographic one. For instance, CG
<lex CGA but CGA ≺ω CG.

The string S is a conjugate of the string T if S = T[i..n]T[1..i − 1], for some i ∈ {1, . . . ,

n} (also called the i-th rotation of T). The conjugate S is also denoted conji(T). It is easy

to see that T is primitive if and only if it has n distinct conjugates. A Lyndon word is a

primitive string which is lexicographically smaller than all of its conjugates. For a string T,

the conjugate array1 CA = CAT of T is the permutation of {1, . . . , n} such that CA[i] = j
if conjj(T) is the i-th conjugate of T with respect to the lexicographic order, with ties broken

according to string order, i.e. if CA[i] = j and CA[i′] = j′ for some i < i′, then either conjj(T)

<lex conj′, (T), or conj′ (T) = conj′, (T) and j < j′. Note that if T is a Lyndon word, then

CA[i] = SA[i] for all 1 ≤ i ≤ n [17].

Given a string T, U a circular or cyclic substring of T if it is a factor of TT of length at most

|T|, or equivalently, if it is the prefix of some conjugate of T. For instance, ATA is a cyclic

1Our conjugate array CA is called circular suffix array and denoted SAo in [20, 2], and BW-array in [23, 35], but in both cases defined
for primitive strings only.

Boucher et al. Page 4

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

substring of AGCAT. It is sometimes also convenient to regard a given string T[1..n] itself as

circular (or cyclic); in this case we set T[0] = T[n] and T[n + 1] = T[1].

2.1 Burrows-Wheeler-Transform

The Burrows-Wheeler Transform [9] of T, denoted BWT, is a reversible transformation

extensively used in data compression. Given a string T, BWT(T) is a permutation of the

letters of T which equals the last column of the matrix of the lexicographically sorted

conjugates of T. The mapping T ↦ BWT(T) is reversible, up to rotation. It can be

made uniquely reversible by adding to BWT(T) and index indicating the rank of T in the

lexicographic order of all of its conjugates. Given BWT(T) and an index i, the original string

T can be computed in linear time [9]. The BWT itself can be computed from the conjugate

array, since for all i = 1, . . . , n, BWT(T)[i] = T[CA[i] − 1], where T is considered to be

cyclic.

It should be noted that in many applications, it is assumed that an end-of-string-character

(usually denoted $), which is not element of Σ, is appended to the string; this character is

assumed to be smaller than all characters from Σ. Since T$ has exactly one occurrence of $,

BWT(T$) is now uniquely reversible, without the need for the additional index i, since T$

is the unique conjugate ending in $. Moreover, adding a final $ makes the string primitive,

and $T is a Lyndon word. Therefore, computing the conjugate array becomes equivalent to

computing the suffix array, since CAT$ [i] = SAT$ [i]. Thus, applying one of the linear-time

suffix-array computation algorithms [32] leads to linear-time computation of the BWT.

When no $-character is appended to the string, the situation is slightly more complex. For

primitive strings T, first the Lyndon conjugate of T has to be computed (in linear time, [39])

and then a linear-time suffix array algorithm can be employed [17]. For strings T which are

not primitive, one can take advantage of the following well-known property of the BWT: let

T = Sk and BWT(S) = U[1..m], then BWT(T) = U[1]kU[2]k · · · U[m]k (Prop. 2 in [31]).

Thus, it suffices to compute the BWT of root(T). The root of T can be found by computing

the border array b of T: T is a power if and only if n/(n − b[n]) is an integer, which is

then also the length of root(T). The border array can be computed, for example, by the

preprocessing phase of the KMP-algorithm for pattern matching [21], in linear time in the

length of T.

2.2 Generalized Conjugate Array and Extended Burrows-Wheeler Transform

Given a multiset of strings ℳ = T1 1..n1 , …, Tm 1..nm , the generalized conjugate array of ℳ,

denoted by GCAℳ or just by GCA, contains the list of the conjugates of all strings in ℳ,

sorted according to the ω-order relation. More formally, GCA[i] = (j, d) if conjj(Td) is the

i-th string in the ⪯ω-sorted list of the conjugates of all strings of ℳ, with ties broken first

w.r.t. the index of the string (in case of identical strings), and then w.r.t. the index in the

string itself.

The extended Burrows-Wheeler Transform (eBWT) is an extension of the BWT to a

multiset of strings [30]. It is a bijective transformation that, given a multiset of strings

ℳ = T1, …, Tm , produces a permutation of the characters on the strings in the multiset ℳ.

Boucher et al. Page 5

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Formally, eBWT(ℳ) can be computed by sorting all the conjugates of the strings in the

multiset according to the ⪯ω-order, and the output is the string obtained by concatenating

the last character of each conjugate in the sorted list, together with the set of indices

representing the positions of the original strings of ℳ in the list. Similarly to the BWT, the

eBWT is thus uniquely reversible. The eBWT(ℳ) can be computed from the generalized

conjugate array of ℳ in linear time, since eBWT(ℳ)[i] = Td[j − 1] if GCA[i] = (j, d), where

again, the strings in ℳ are considered to be cyclic. It is easy to see that when ℳ consists of

only one string, i.e. ℳ = T , then eBWT(ℳ) = BWT(T).

Example 1.—Let ℳ = GTACAACG, CGGCACACACGT, C . Then GCA(ℳ) is as follows,

where we give the pair (j, d) vertically, i.e. the first row contains the position in the string,

and the second row the index of the string:

5 3 5 7 6 9 4 4 6 8 1 1 7 10 3 2 8 1 11 2 12
1 1 2 2 1 2 1 2 2 2 3 2 1 2 2 2 1 1 2 1 2

From the GCA we can compute eBWT(ℳ) = CTCCACAGAACTAAGCCGCGG, with index

set {11, 12, 18}. Note that e.g. the conjugate conj8(T2) comes before conj1(T3), since

CACGTCGGCACA ≺ω C, because (CACGTCGGCACA)ω <lex Cω = CCCC . . . holds. The

full list of conjugates is in Appendix A.

Remark 2.—Note that if end-of-string symbols are appended to

the string of the collection the output of eBWT could be

quite different. For instance, if ℳ = GTACAACG$1, CGGCACACACGT$2, C$3 ,

eBWT(ℳ) = GTCCTCCAC$3AGAAA$2ACGCC$1GG.

Note that while in the original definition of eBWT [30], the multiset ℳ was assumed

to contain only primitive strings, our definition is more general and allows also for non-

primitive strings. For example, eBWT({ATA, TATA}) = TATTAAA, with index set {2, 6},

while eBWT({ATA, TA, TA}) = TATTAAA, with index set {2, 6, 7}. Also the linear-time

algorithm for recovering the original multiset can be straightforwardly extended.

The following lemma shows how to construct the generalized conjugate array GCAℳ of a

multiset ℳ of strings (not necessarily primitive), once we know the generalized conjugate

array GCAℛ of the multiset ℛ of the roots of the strings in ℳ. It follows straightforwardly

from the fact that equal conjugates will end up consecutively in the GCA.

Lemma 3.—Let ℳ = T1, …, Tm be a multiset of strings and let ℛ the multiset of the roots

of the strings in ℳ, i.e. ℛ = S1, …, Sm , where T i = Si
ri , with ri ≥ 1 for 1 ≤ i ≤ m. Let

GCAℛ[1…K] = j1, i1 , j2, i2 , …, jK, iK , where K = ∑i = 1
m Si . The generalized conjugate array

is then given by

Boucher et al. Page 6

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

GCAℳ[1..N] = [j1, i1 , j1 + Si1 , i1 , …, j1 + ri1 − 1 ⋅ Si1 , i1 ,
j2, i2 , j2 + Si2 , i2 , …, j2 + ri2 − 1 ⋅ Si2 , i2 ,

…
jK, iK , jK + SiK , iK , …, jK + riK − 1 ⋅ SiK , iK],

with N = ∑i = 1
m Si ⋅ ri.

From now on we will assume that the multiset ℳ = T1, …, Tm consists of m primitive

strings.

3 A simpler algorithm for computing the eBWT and GCA

In this section, we describe our algorithm to compute the eBWT of a multiset of strings

ℳ. We will assume that all strings in ℳ are primitive, since we can use Lemma 3 to

compute the eBWT of ℳ otherwise. Our algorithm is an adaptation of the well-known SAIS

algorithm of Nong et al. [33], which computes the suffix array of a single string T ending

with an end-of-string character $. Our adaptation is similar to that of Bannai et al. [2] for

computing the BBWT, which can also be used for computing the eBWT. Even though our

algorithm does not improve the latter asymptotically (both are linear time), it is significantly

simpler, since it does not require first computing and sorting the Lyndon rotations of the

input strings.

In the following, we assume some familiarity with the SAIS algorithm, focusing on the

differences between our algorithm and the original SAIS. Detailed explanations of SAIS can

be found in the original paper [33], or in the books [34, 26].

The main differences between our algorithm and the original SAIS algorithm are: (1) we are

comparing conjugates rather than suffixes, (2) we have a multiset of strings rather than just

one string, (3) the comparison is done w.r.t. the omega-order rather than the lexicographic

order, and (4) the strings are not terminated by an end-of-string symbol.

We need the following definition, which is the cyclic version of the definition in [33] (where

S stands for smaller, L for larger, and LMS for leftmost-S):

Definition 4 (Cyclic types, LMS-substrings).

Let T be a primitive string of length at least 2, and 1 ≤ i ≤ |T|. Position i of T is called
(cyclic) S-type if conji(T) <lex conji+1(T), and (cyclic) L-type if conji(T) >lex conji+1(T).

An S-type position i is called (cyclic) LMS if i − 1 is L-type (where we view T as a
cyclic string). An LMS-substring is a cyclic substring T[i, j] of T such that both i and j are
LMS-positions, but there is no LMS-position between i and j. Given a conjugate conji(T),
its LMS-prefix is the cyclic substring from i to the first LMS-position strictly greater than i
(viewed cyclically).

Since T is primitive, no two conjugates are equal, and in particular, no two adjacent

conjugates are equal. Therefore, the type of every position of T is defined.

Boucher et al. Page 7

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 5.

Continuing Example 1,

G T A C A A C G C G G C A C A C A C G T
S L S L S S S S S L L L S L S L S S S L

* * * * * *

where we mark LMS-positions with a *. The LMS-substrings are ACA, AACGGTA,

CGGCA, and ACGTC. The LMS-prefix of the conjugate conj7(T1) = CGGTACAA is

CGGTA.

Lemma 6 (Cyclic type properties).

Let T be primitive string of length at least 2. Let a1 be the smallest and aσ the largest
character of the alphabet. Then the following hold, where T is viewed cyclically:

1. if T[i] < T[i + 1], then i is of type S, and if T[i] > T[i + 1], then i is of type L,

2. if T[i] = T[i + 1], then the type of i is the same as the type of i + 1,

3. i is of type S iff T[i′] > T[i], where i′ = min{j | T[j] ≠ T[i]},

4. if T[i] = a1 then i is of type S, and if T[i] = aσ, then i is of type L.

Proof.—1. follows from the fact that for all b, c Σ ∈, if b < c then for all U, V ∈ Σ*, bU ≺ω
cV; 2. follows by induction from the fact that for all U, V ∈ Σ*, if U ≺ω V, then cU ≺ω cV;

3. and 4. follow from 2. by induction.

Corollary 7 (Linear-time cyclic type assignment).

Let T be a primitive string of length at least 2. Then all positions can be assigned a type in
altogether at most 2|T| steps.

Proof.—Once the type of one position is known, then the assignment can be done in one

cyclic pass over T from right to left, by Lemma 6. Therefore, it suffices to find the type of

one single position. Any position of character a1 or of character aσ will do; alternatively, any

position i such that T[i + 1] ≠ T[i], again by Lemma 6. Since T is primitive and has length at

least 2, the latter must exist and can be found in at most one pass over T.

Let N be the total length of the strings in ℳ. The algorithm constructs an initially empty

array A of size N, which, at termination, will contain the GCA of ℳ. The algorithm also

returns the set ℐ containing the set of indices in A representing the positions of the strings

of ℳ. The overall procedure consists of the following steps:

Algorithm SAIS-for-eBWT

Step 1 remove strings of length 1 from ℳ (these will be added back at the end)

Step 2 assign cyclic types to all positions of strings from ℳ

Boucher et al. Page 8

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Step 3 use procedure Induced Sorting to sort cyclic LMS-substrings

Step 4 assign names to cyclic LMS-substrings; if all distinct, go to Step 6

Step 5 recurse on new string multiset ℳ′, returning array A′, map A′ back to A

Step 6 use procedure Induced Sorting to sort all positions in ℳ, add length-1 strings in their respective
positions, return (A, ℐ)

At the heart of the algorithm is the procedure Induced Sorting of [33] (Algorithms

3.3 and 3.4), which is used once to sort the LMS-substrings (Step 3), and once to induce

the order of all conjugates from the correct order of the LMS-positions (Step 6), as in the

original SAIS. Before sketching this procedure, we need to define the order according to

which the LMS-substrings are sorted in Step 2. Note that our definition of LMS-order is an

extension of the LMS-order defined in [33], to LMS-prefixes. It can be proved that these

definitions coincide for LMS-substrings.

Definition 8 (LMS-order).

Given two strings S and T, let U resp. V be their LMS-prefixes. We define U <LMS V if
either V is a proper prefix of U, or neither is a proper prefix of the other and U <lex V.

The procedure Induced Sorting for the conjugates of the multiset is analogous to the

original one, except that strings are viewed cyclically. First, the array A is subdivided

into so-called buckets, one for each character. For c ∈ Σ, let nc denote the total number

of occurrences of the character c in the strings in ℳ. Then the buckets are 1, na1 ,

na1 + 1, na1 + na2 , …, N − naσ + 1, N , i.e., the k-th bucket will contain all conjugates starting

with character ak. The procedure Induced Sorting first inserts all LMS-positions at the

end of their respective buckets, then induces the L-type positions in a left-to-right scan of

A, and finally, induces the S-type positions in a right-to-left scan of A, possibly overwriting

previously inserted positions. We need two pointers for each bucket b, head(b) and tail(b),

pointing to the current first resp. last free position of the bucket.

Procedure Induced Sorting [33]

1. insert all LMS-positions at the end of their respective buckets; initialize head(b),

tail(b) to the first resp. last position of the bucket, for all buckets b

2. induce the L-type positions in a left-to-right scan of A: for i from 1 to N −

1, if A[i] = (j, d) then A[head(bucket(Td[j − 1]))] ⟵ (j − 1, d); increment

head(bucket(Td[j − 1]))

3. induce the S-type positions in a right-to-left scan of A: for i from N to 2, if A[i] =
(j, d) then A[tail(bucket(Td[j − 1]))] ⟵ (j − 1, d); decrement tail(bucket(Td[j −

1]))

At the end of this procedure, the LMS-substrings are listed in correct relative LMS-order

(see Lemma 10), and they can be named according to their rank. For the recursive step, we

define, for i = 1, . . . , m, a new string T i
′, where each LMS-substring of Ti is replaced by its

rank. The algorithm is called recursively on ℳ′ = T1
′ , …, Tm

′ (Step 5).

Boucher et al. Page 9

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finally (Step 6), the array A′ = GCA ℳ′ from the recursive step is mapped back into the

original array, resulting in the placement of the LMS-substrings in their correct relative

order. This is then used to induce the full array A. All length-1 strings Ti which were

removed in Step 1 can now be inserted between the L- and S-type positions in their bucket

(Lemma 9). See Figure 1 for a full example.

3.1 Correctness and running time

The following lemma shows that the individual steps of Induced Sorting are applicable for

the ω-order on conjugates of a multiset (part 1), that L-type conjugates (of all strings) come

before the S-type conjugates within the same bucket (part 2), and that length-1 strings are

placed between S-type and L-type conjugates (part 3). The second property was originally

proved for the lexicographic order between suffixes in [22]:

Lemma 9 (Induced sorting for multisets).—Let U,V ∈ Σ*.

1. If U ≺ω V, then for all c ∈ Σ, cU ≺ω cV.

2. If U[i] = V[j], i is an L-type position, and j an S-type position, then conji(U) ≺ω
conjj(V).

3. If U[i] = V[j] = c, i is an L-type position, and j an S-type position, then conji(U)

≺ω c ≺ω conjj(V).

Proof.: 1. follows directly from the definition of ω-order. 3. implies 2. For 3., let i′ be the

nearest character following i in U such that U [i′] ≠ c. By Lemma 6, U [i′] < c, and thus

conji(U) <lex c|U|, and therefore, conji(U) ≺ω c. Analogously, if j′ is the next character in V
s.t. V[j′] ≠ c, then by Lemma 6, V[j′] > c, and therefore, c ≺ω conjj(V).

Next, we show that after applying procedure Induced Sorting, the conjugates will appear in

A such that they are correctly sorted w.r.t. to the LMS-order of their LMS-prefixes, while

the order in which conjugates with identical LMS-prefixes appear in A is determined by the

input order of the LMS-positions.

Lemma 10 (Extension of Thm. 3.12 of [33]).—Let T1, T2 ∈ ℳ, let U be the LMS-

prefix of conji(T1), with i′ the last position of U; let V be the LMS-prefix of conjj(T2), and
j′ the last position of V. Let k1 be the position of conji(T1) in array A after the procedure
Induced Sorting, and k2 that of conjj(T2).

1. If U <LMS V, then k1 < k2.

2. If U = V, then k1 < k2 if and only if conji′, (T1) was placed before conjj′(T2) at
the start of the procedure.

Proof.: Both claims follow from Lemma 9, and the fact that from one LMS-position to the

previous one, there is exactly one run of L-type positions, preceded by one run of S-type

positions.

The next lemma shows that the LMS-order of the LMS-prefixes respects the ω-order.

Boucher et al. Page 10

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 11.—Let S, T ∈ Σ*, let U be the LMS-prefix of S and V the LMS-prefix of T. If U

<lms V then S ≺ω T.

Proof.: If neither U nor V is a proper prefix one of the other, then there exists an index i s.t.

S[i] = U[i] < V[i] = T[i], and therefore, S ≺ω T. Otherwise, V is a proper prefix of U. Let

i = |V| and c = V[i]. Since both U and V are LMS-prefixes, with i being the last position of

V but not of U, this implies that V[i] = T[i] is of type S, while U[i] = S[i] is of type L. Let

j be the next character in S s.t. S[j] ≠ c, and k be the next character in T s.t. T[k] ≠ c. By

Lemma 6, S[j] < c, T[k] > c, and by definition of j, k all characters inbetween equal c. Then

for i′ = min(j, k), we have S[i′] < T[i′], with i′ being the first position where S and T differ.

Therefore, S ≺ω T.

Theorem 12.—Algorithm SAIS-for-eBWT correctly computes the GCA and eBWT of a
multiset of strings ℳ in time O(N), where N is the total length of the strings in ℳ.

Proof.: By Lemma 6, Step 2 correctly assigns the types. Step 3 correctly sorts the LMS-

substrings by Lemma 10. It follows from Lemma 11 that the order of the conjugates of

the new strings T i
′ coincides with the relative order of the LMS-conjugates. In Step 6, the

LMS-conjugates are placed in A in correct relative order from the recursion; by Lemmas 10

and 11, this results in the correct placement of all conjugates of strings of length > 1, while

the positioning of the length-1 strings is given by Lemma 9.

For the running time, note that Step 1 takes time at most 2N. The Induced Sorting procedure

also runs in linear time O(N). Finally, since no two LMS-positions are consecutive, and we

remove strings of length 1, the problem size in the recursion step is reduced to at most N/2.

3.2 Computing the BWT for one single string

The special case where ℳ consists of one single string leads to a new algorithm for

computing the BWT, since for a singleton set, the eBWT coincides with the BWT. To the

best of our knowledge, this is the first linear-time algorithm for computing the BWT of a
string without an end-of-string character that uses neither Lyndon rotations nor end-of-string

characters.

We demonstrate the algorithm on a well-known example, T = banana. We get the following

types, from left to right: LSLSLS, and all three S-type positions are LMS. We insert 2, 4, 6

into the array A; after the left-to-right pass, indices are in the order 2, 4, 6, 1, 3, 5, and after

the right-to-left pass, in the order 6, 2, 4, 1, 3, 5. The LMS-substring aba (pos. 6) gets the

name A, and the LMS-substring ana (pos. 2,4) gets the name B. In the recursive step, the

new string T′ = ABB, with types SLL and only one LMS-position 1, the GCA gets induced

in just one pass: 1, 3, 2. This maps back to the original string: 6, 2, 4, and one more pass

over the array A results in 6, 4, 2, 1, 5, 3 and the BWT nnbaaa. See Figure 2.

4 eBWT and prefix-free parsing

In this section, we show how to extend the prefix-free parsing to build the eBWT. We define

the cyclic prefix-free parse for a multiset of strings ℳ = T1, T2, …, Tm (with |Ti| = ni, 1 ≤ i

Boucher et al. Page 11

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

≤ m) as the multiset of parses P = P1, P2, …, Pm with dictionary D, where we consider Ti as

circular, and Pi is the parse of Ti. We denote by pi the length of the parse Pi.

Next, given a positive integer w, let E be a set of strings of length w called trigger strings.

We assume that each string Tℎ ∈ ℳ has length at least w and at least one cyclic factor in E.

We divide each string Tℎ ∈ ℳ into overlapping phrases as follows: a phrase is a circular

factor of Th of length > w that starts and ends with a trigger string and has no internal

occurrences of a trigger string. The set of phrases obtained from strings in ℳ is the

dictionary D. The parse Ph can be computed from the string Th by replacing each occurrence

of a phrase in Th with its lexicographic rank in D.

Example 13.

Let ℳ = T1:CACGTGCTAT, T2:CCACTTGCTAGA, T3:CACTTGCTAT and let E = {AC,

GC}. The dictionary D of the multiset of parses P of ℳ is D = {ACCAC, ACGTGC,
ACTTGC, GCTAGAC, GCTATCAC} and P = 2 5 , 3 4 1 , 3 5 , where P2 = 2 5 means that

the parsing of T2 is given by the second and fifth phrases of the dictionary. Note that the

string T2 has a trigger string AC that spans the first position of T2.

We denote by S the set of suffixes of D having length greater than w. The first important

property of the dictionary D is that the set S prefix-free, i.e., no string in S is prefix of

another string of S. This follows directly from [8].

Example 14.

Continuing Example 13, we have that

S = {ACCAC, ACGTGC, ACTTGC, AGAC, ATCAC, CAC, CCAC, CGTGC,
CTAGAC, CTATCAC, CTTGC, GAC, GCTAGAC, GCTATCAC, GTGC,
TAGAC, TATCAC, TCAC, TGC, TTGC}

The computation of eBWT from the prefix-free parse consists of three steps: computing

the cyclic prefix-free parse of ℳ (denoted as P), computing the eBWT of P by using the

algorithm described in Section 3; and lastly, computing the eBWT of ℳ from the eBWT of

P using the lexicographically sorted dictionary D = {D1, D2, . . . , D|D|} and its prefix-free

suffix set S. We now describe the last step as follows. We define δ as the function that

uniquely maps each character of Th[j] to the pair (i, k), where with 1 ≤ i ≤ ph, k > w,
and Th[j] corresponds to the k-th character of the Ph[i]-th phrase of D. We call i and k the

position and the offset of Th[j], respectively. Furthermore, we define α as the function that

uniquely associates to each conjugate conjj(Th) the element s ∈ S such that s is the k-th

suffix of the Ph[i]-th element of D, where (i, k) = δ(Th[j]). By extension, i and k are also

called the position and the offset of the suffix α(conjj(Th)).

Example 15.—In Example 13, δ(T2[4]) = (1, 2) since T2[4] is the second character

(offset 2) of the phrase ACTTGC, which is the first phrase (position 1) of P2. Moreover,

Boucher et al. Page 12

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

α(conj4(T2)) = CTTGC since CTTGC is the suffix of D3, which is prefix of conj4(T2) =

CTTGCTAGACCA.

Lemma 16.—Given two strings Tg, Tℎ ∈ ℳ if α(conji(Tg)) <lex α(conji(Th)) it follows that

conji(Tg) ≺ω. conjj(Th).

Proof.: It follows from the definition of a that α(conji(Tg)) and α(conji(Th)) are prefixes of

conji(Tg) and conjj(Th), respectively.

Proposition 17.—Given two strings Tg, Tℎ ∈ ℳ. Let conji(Tg) and conjj(Th) be the i-th

and j-th conjugates of Tg and Th, respectively, and let (i′, g′) = δ(Tg[i]) and (j′, h′) =
δ(Th[j]). Then conji(Tg) ≺ω. Conjj(Th) if and only if either αconji(Tg)) <lex α(conjj(Th)), or
conji′+1(Pg) ≺ω conjj′+1(Ph), i.e., Pg[i′] precedes Ph[j′] in eBWT(P).

Proof.: By definition of α, conji(Tg) = α(conji(Tg))Tg [i + g″]Tg [i + g″ + 1] . . .Tg [i − 1]

and conjj(Th) = α(conjj(Th))Th[j + h″]Th[j + h″ + 1] . . .Th[j − 1] where g″ = |α(canji(Tg))|

and h″ = |α(conjj(Th))|, respectively. Moreover, conji(Tg) ≺ω conjj(Th) if and only if either

α(conjj(Th)) <lex α(Conjj(Th)) or conji+g″−w(Tg) ≺ω Conjj+h″−w (Th), where w is the length

of trigger strings. It is easy to verify that the position of Tg[i + g″ − w] and Th[j + h″ −

w] is i′ + 1 and j′ + 1, respectively. Moreover, since Tg[i + g″ − w] and Th[j + h″ − w]

are the first character of a phrase, we have that conji+g″− w(Tg) conjj+h″-w(Th) if and only if

conji′+1(Pg) conjj′+1(Ph).

Next, using Proposition 17, we define how to build the eBWT of the multiset of strings

ℳ from P and D. First, we note that we will iterate through all the suffixes in S in

lexicographic order, and build the eBWT of ℳ in blocks corresponding to the suffixes in S.

Hence, it follows that we only need to describe how to build an eBWT block corresponding

to a suffix s ∈ S. Given s ∈ S, we let Ss be the set of the lexicographic ranks of the phrases

of D that have s as a suffix, i.e., Ss = i |1 ≤ i ≤ |D| , s is a suffix of Di ∈ D , s is a suffix of Di

∈ D}. Moreover, given the string Tℎ ∈ ℳ, we let conji(Th) be the i-th conjugate of Th, let j

and k be the position and offset of Th[i], and lastly, let p be the position of Ph[j] in eBWT(P).
We define f(p, k) = DPℎ[j][k − 1] if k > 1, otherwise f(p, k) = DPℎ[j − 1] DPℎ[j − 1] − w where we

view Ph as a cyclic string.

Example 18.—In Example 13, eBWT(P) = 4 5 1 5 3 2 3. Let us consider conj4(T2) and

conj3(T3) that are both mapped to the suffix CTT by the function α. By using Example 15,

the position and the offset of T2[4] are 1 and 2, respectively. The position of P2[1] = 3 in

eBWT(P) is 5, because conj2(P2) ≺ω conj2(P3). This implies that conj4(T2) ≺ω conj3(T3) by

Proposition 17. Furthermore, f(5, 2) = T2[3] = A.

Finally, we let Os be the set of pairs (p, c) such that for all d ∈ Ss, p is the position of

an occurrence of d in eBWT(P), and c is the character resulting the application of the f
function considering as k the offset of s in Dd, i.e., c = f(p, |Dd| − |s| + 1). Formally,

Os = (p, f p, DeBWT(P)[p] − |s | + 1 ∣ eBWT(P)[p] ∈ Ss .

Boucher et al. Page 13

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 19.—In Example 13, if s = CAC ∈ S and Ss = 1, 5 , where 1 : ACCAC and 5 :

GCTATCAC, then it follows that Os = (3, C), (2, T), (4, T) since the phrase 1 is in position

3 in the eBWT(P) and the suffix CAC starts in position 3 of D1, the character preceding

the occurrences of CAC corresponding to the phrase 1 is C. Analogously, the phrase 5 is in

positions 2 and 4 in the eBWT(P) and the suffix CAC starts in position 6 of D5, hence the

character preceding the occurrences of CAC corresponding to the phrase 5 is T.

To build the eBWT block corresponding to s ∈ S, we scan the set Os in increasing order of

the first element of the pair, i.e., the position of the occurrence in eBWT(P), and concatenate

the values of the second element of the pair, i.e., the character preceding the occurrence of s
in Th. Note that if all the occurrences in Os are preceded by the same character c, we do not

need to iterate through all the occurrences but rather concatenate Os copies of the character

c.

Example 20.—In Example 13,

eBWT(ℳ) = GCCCTTTTCTAAGGGAAATTTCCCCAATGTCC, where the block of

the eBWT corresponding to the suffix s = CAC ∈ S is underlined. Given

Os = (3, C), (2, T), (4, T) , we generate the block by sorting Os by the first element of each

pair – resulting in Os = (2, T), (3, C), (4, T) – and concatenating the second element of each

pair obtaining TCT.

Keeping track of the first rotations.

So far, we showed how to compute the first component of the eBWT. Now we show how to

compute the second component of the eBWT i.e., the set of indices marking the first rotation

of each string. The idea is to keep track of the starting positions of each text in the parse, by

marking the offset of the first position of each string in the last phrase of the corresponding

parse. We propagate this information during the computation of the eBWT of the parse.

When scanning the suffixes of S, we check if one of the phrases sharing the same suffix

s ∈ S is marked as a phrase containing a starting position, and if the offset of the starting

position coincides with the offset of the suffix. If so, when generating the elements of Os,

we mark the element corresponding to the occurrence of the first rotation of a string, and we

output the index of the eBWT when that element is processed.

Implementation notes.

In practice, as in [8], we implicitly select the set of trigger strings E, by rolling a Karp-Rabin

hash over consecutive windows of size w and take as a trigger strings of length w all

windows such that their hash value is congruent 0 modulo a parameter p. In our version of

the PFP, we also need to ensure that there is at least one trigger string on each sequence of

the collection. Hence, we change the way we select the trigger strings as follows. We define

a set D of remainders and we select a window of length w as a trigger string with hash value

congruent d modulo p if d ∈ D. Note that if we set D = 0 we obtain the same set of trigger

strings as in the original definition. We choose the set D in a greedy way. We start with

D = 0 by scanning the set of sequences and checking if the current sequence has a trigger

string according to the current D. As soon as we find one, we move to the next sequence. If

Boucher et al. Page 14

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

we don’t find any trigger string, we take the reminder of the last window we checked, and

we include it in the set D.

We note that we consider S to be the set of suffixes of the phrases of D such that s ∈ S
is not a phrase in D nor it has length smaller than w in the implementation. This allows

us to compute f more efficiently since we can compute the preceding character of all the

occurrences of a suffix in S from its corresponding phrase in D. Moreover, as in [8], for each

phrase in D, we keep an ordered list of their occurrences in the eBWT of the parse. For a

given suffix s ∈ S, we do not generate Os all at once and sort it – but rather, we visit the

elements of Os in order using a min-heap as we merge the ordered lists of the occurrences in

the eBWT of the parse of the phrases that share the same suffix s.

5 Experimental results

We implemented the algorithm for building the eBWT and measured its performance on real

biological data. We performed the experiments on a server with Intel(R) Xeon(R) CPU E5–

2620 v4 @ 2.10GHz with 16 cores and 62 gigabytes of RAM running Ubuntu 16.04 (64bit,

kernel 4.4.0). The compiler was g++ version 9.4.0 with -O3 -DNDEBUG -funroll-loops

-msse4.2 options. We recorded the runtime and memory usage using the wall clock time,

CPU time, and maximum resident set size from /usr/bin/time. The source code is

available online at: https://github.com/davidecenzato/PFP-eBWT.

We compared our method (pfpebwt) with the BCR algorithm implementation of [25]

(ropebwt2), gsufsort [27], and egap [14]. We did not compare against G2BWT [13],

lba [6], and BCR [4] since they are currently implemented only for short reads2. We did

not compare against egsa [28] since it is the predecessor of egap or against methods that

construct the BWT of a multiset of strings using one of the methods we evaluated against,

i.e., LiME [18], BEETL [11], metaBEETL [1], and ebwt2snp [36, 37].

5.1 Datasets

We evaluated our method using 2,048 copies of human chromosomes 19 from the 1000

Genomes Project [42]; 10,000 Salmonella genomes taken from the GenomeTrakr project

[41], and 400,000 SARS-CoV2 genomes from EBI’s COVID-19 data portal [12]. The

sequence data for the Salmonella genomes were assembled, and the assembled sequences

that had length less than 500 bp were removed. In addition, we note that we replaced all

degenerate bases in the SARS-CoV2 genomes with N’s and filtered all sequences with

more than 95% N’s. A brief description of the datasets is reported in Table 1. We used

12 sets of variants of human chromosome 19 (chr19), containing 2i variants for i = 0, . . .,

11 respectively. We used 6 collections of Salmonella genomes (salmonella) containing

50, 100, 500, 1,000, 5,000, and 10,000 genomes respectively. We used 5 sets of SARS-

CoV2 genomes (sars-cov2) containing 25,000, 50,000, 100,000, 200,000, 400,000 genomes

respectively. Each collection is a superset of the previous one.

2G2BWT crashed and BCR did not terminate within 48 hours with the smallest of each dataset; lba works only with sequences of
length up to 255

Boucher et al. Page 15

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/davidecenzato/PFP-eBWT

5.2 Setup

We run pfpebwt and ropebwt2 with 16 threads, and gsufsort and egap with a single

thread since they do not support multi-threading. Using pfpebwt, we set w = 10 and p =

100. Furthermore, for pfpebwt on the salmonella dataset, we used up to three different

remainders to build the eBWT. We used ropebwt2 with the −R flag to exclude the reverse

complement of the sequences from the computation of the BWT. All other methods were run

with default parameters.

We repeated each experiment five times, and report the average CPU time and peak memory

for the set of chromosomes 19 up to 64 distinct variants, for Salmonella up to 1,000

sequences, and for all SARS-CoV2. The experiments that exceeded 48 hours of wall clock

time or exceeded 62 GB of memory were omitted for further consideration, e.g., 128

sequences of chr19, 5000 sequences of salmonella and 400,000 sequences of sars-cov2

for egap. Furthermore, gsufsort failed to successfully build the eBWT for 256 sequences

of chr19, 5000 sequences of salmonella, and 400,000 sequences of sars-cov2 or more,

because it exceeded the 62GB memory limit.

5.3 Results

In Figures 3, 4, and 5 we illustrate the construction time and memory usage to build the

eBWT and the BWT of collections of strings for the chromosome 19 dataset, the Salmonella
dataset, and the SARS-CoV2 dataset, respectively.

pfpebwt was the fastest method to build the eBWT of 4 or more sequences of chromosome

19, with a maximum speedup of 7.6x of wall-clock time and 2.9x of CPU time over

ropebwt2 on 256 sequences of chromosomes 19, 2.7x of CPU time over egap on 64

sequences, and 3.8x of CPU time over gsufsort on 128 sequences. On Salmonella
sequences, pfpebwt was always the fastest method, except for 10,000 sequences where

ropebwt2 was the fastest method on wall-clock time. pfpebwt had a maximum speedup

of 3.0x of wall-clock time over ropebwt2 on 100 sequences of salmonella. Considering the

CPU time, pfpebwt was the fastest for ≥ 500 sequences with a maximum speedup of 1.7x

over ropebwt2 on 100 sequences and 1.2x over gsufsort and egap on 1,000 sequences.

On SARS-CoV2 sequences, pfpebwt was always the fastest method, with a maximum

speedup of 2.4x of wall-clock time over ropebwt2 while a maximum speedup of 1.3x of

CPU time over ropebwt2 on 400,000 sequences, 2.9x over gsufsort and 2.7x over egap

on 200,000 sequences of SARS-CoV2.

Considering the peak memory, on the chromosomes 19 dataset, ropebwt2 used the smallest

amount of memory for 1, 2, 4, 8, and 2,048 sequences, while pfpebwt used the smallest

amount of memory in all other cases. pfpebwt used a maximum of 5.6x less memory than

ropebwt2 on 256 sequences of chromosomes 19, 28.0x less than egap on 64 sequences,

and 45.3x less than gsufsort on 128 sequences. On Salmonella sequences, pfpebwt used

more memory than ropebwt2 for 50, 100, and 10,000 sequences, while pfpebwt used

the smallest amount of memory on all other cases. The largest gap between ropebwt2

and pfpebwt memory peak is of 1.7x on 50 sequences. On the other hand, pfpebwt

used a maximum of 17.0x less memory than egap and gsufsort on 1,000 sequences.

Boucher et al. Page 16

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

On SARS-CoV2 sequences, pfpebwt always used the smallest amount of memory, with a

maximum of 6.4x less memory than ropebwt2 on 25,000 sequences of SARS-CoV2, 57.1x

over gsufsort and egap on 200,000 sequences.

The memory peak of ropebwt2 is given by the default buffer size of 10 GB, and the size

of the run-length encoded BWT stored in the rope data structure. This explains the memory

plateau on 10.5 GB of ropebwt2 on the chromosomes 19 dataset. However, ropebwt2

is able only to produce the BWT of the input sequence collection, while pfpebwt can be

trivially extended to produce also the samples of the conjugate array at the run boundaries

with negligible additional costs in terms of time and peak memory.

6 Conclusion

We described the first linear-time algorithm for building the eBWT of a collection of strings

that does not require the manipulation of the input sequence, i.e., neither the addition of

an end-of-string character, nor computing and sorting the Lyndon rotations of the input

strings. We also combined our algorithm with an extension of the prefix-free parsing to

enable scalable construction of the eBWT. We demonstrated pfpebwt was efficient with

respect to both memory and time when the input is highly repetitive. Lastly, we curated a

novel dataset of 400,000 SARS-CoV2 genomes from EBI’s COVID-19 data portal, which

we believe will be important for future benchmarking of data structures that have potential

use in bioinformatics.

A: eBWT missing examples

Full conjugate table for Example 1: ℳ = {GTACAACG,CGGCACACACGT,C}.

GCA ⪯ω-sorted conjugates

1 (5,1) AACGGTAC

2 (3,1) ACAACGGT

3 (5,2) ACACACGTCGGC

4 (7,2) ACACGTCGGCAC

5 (6,1) ACGGTACA

6 (9,2) ACGTCGGCACAC

7 (4,1) CAACGGTA

8 (4,2) CACACACGTCGG

9 (6,2) CACACGTCGGCA

10 (8,2) CACGTCGGCACA

→ 11 (1,3) C

→ 12 (1,2) CGGCACACACGT

13 (7,1) CGGTACAA

14 (10,2) CGTCGGCACACA

15 (3,2) GCACACACGTCG

16 (2,2) GGCACACACGTC

Boucher et al. Page 17

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

17 (8,1) GGTACAAC

→ 18 (1,1) GTACAACG

19 (11,2) GTCGGCACACAC

20 (2,1) TACAACGG

21 (12,2) TCGGCACACACG

eBWT({GTACAACG,CGGCACACACGT,C}) = CTCCACAGAACTAAGCCGCGG

References

1. Ander C, Schulz-Trieglaff OB, Stoye J, and Cox AJ. metaBEETL: high-throughput analysis of
heterogeneous microbial populations from shotgun DNA sequences. BMC Bioinf, 14(5):S2, 2013.

2. Bannai H, Kärkkäinen J, Köppl D, and Piatkowski M. Constructing the bijective and the extended
Burrows-Wheeler-Transform in linear time. In Proc. of CPM, 2021.

3. Barwell JB, O’Sullivan RBG, Mansbridge LK, Lowry JM, and Dorkins HR. Challenges in
implementing genomic medicine: the 100,000 Genomes Project. J Transl Genet Genome, 2(13),
2018.

4. Bauer MJ, Cox AJ, and Rosone G. Lightweight algorithms for constructing and inverting the BWT
of string collections. Theor Comput Sci, 483:134–148, 2013.

5. Berner AM, Morrissey GJ, and Murugaesu N. Clinical analysis of whole genome sequencing in
cancer patients. Curr Genet Med Rep, 7:136–143, 2019.

6. Bonizzoni Paola, Gianluca Della Vedova Yuri Pirola, Previtali Marco, and Rizzi Raffaella.
Computing the multi-string BWT and LCP array in external memory. Theor. Comput. Sci, 862:42–
58, 2021.

7. Boucher Christina, Cvacho Ondrej, Gagie Travis, Holub Jan, Manzini Giovanni, Navarro Gonzalo,
and Rossi Massimiliano. PFP compressed suffix trees. In Proc. of the Symposium on Algorithm
Engineering and Experiments (ALENEX 2021), pages 60–72. SIAM, 2021.

8. Boucher Christina, Gagie Travis, Kuhnle Alan, Langmead Ben, Manzini Giovanni, and Mun Taher.
Prefix-free parsing for building big bwts. Algorithms Mol. Biol, 14(1):13:1–13:15, 2019. [PubMed:
31149025]

9. Burrows M and Wheeler DJ. A block sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation, 1994.

10. Cenzato Davide and Liptak Zsuzsanna. On different variants of the extended Burrows-Wheeler-
Transform. Unpublished manuscript, 2021.

11. Cox AJ, Bauer MJ, Jakobi T, and Rosone G. Large-scale compression of genomic sequence
databases with the Burrows-Wheeler transform. Bioinformatics, 28(11):1415–1419, 2012.
[PubMed: 22556365]

12. The COVID-19 Data Portal. Available at https://www.covid19dataportal.org/. Accessed
17-05-2021.

13. Diaz-Dominguez Diego and Navarro Gonzalo. Efficient construction of the extended BWT from
grammar-compressed DNA sequencing reads. CoRR, abs/2102.03961, 2021.

14. Egidi L, Louza F, Manzini G, and Telles GP. External memory BWT and LCP computation
for sequence collections with applications. Algorithms Mol Biol, 14(1):1–15, 2019. [PubMed:
30839948]

15. Gagie Travis, Tomohiro I Giovanni Manzini, Navarro Gonzalo, Sakamoto Hiroshi, and Takabatake
Yoshimasa. Rpair: Rescaling repair with rsync. In Brisaboa Nieves R. and Puglisi Simon J.,
editors, 26th International Symposium on String Processing and Information Retrieval (SPIRE
2019), volume 11811 of Lecture Notes in Computer Science, pages 35–44. Springer, 2019.

16. Gessel IM and Reutenauer C. Counting permutations with given cycle structure and descent set. J
Combin Theory Ser A, 64(2):189–215, 1993.

Boucher et al. Page 18

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.covid19dataportal.org/

17. Giancarlo R, Restivo A, and Sciortino M. From first principles to the Burrows and Wheeler
transform and beyond, via combinatorial optimization. Theor Comput Sci, 387:236 – 248, 2007.

18. Guerrini V, Louza FA, and Rosone G. Metagenomic analysis through the extended Burrows-
Wheeler transform. BMC Bioinfo, 21(299), 2020.

19. Guerrini V and Rosone G. Lightweight Metagenomic Classification via eBWT. In Proc of WABI,
pages 112–124, 2019.

20. Hon Wing-Kai, Ku Tsung-Han, Lu Chen-Hua, Shah Rahul, and Thankachan Sharma V.. Efficient
Algorithm for Circular Burrows-Wheeler Transform. In Kärkkäinen Juha and Stoye Jens, editors,
Combinatorial Pattern Matching - 23rd Annual Symposium, CPM 2012, Helsinki, Finland, July
3–5, 2012. Proceedings, volume 7354 of Lecture Notes in Computer Science, pages 257–268.
Springer, 2012.

21. Knuth D, Morris JH, and Pratt V. Fast pattern matching in strings. SIAM J Comput, 6(2):323–350,
1977.

22. Ko Pang and Aluru Srinivas. Space efficient linear time construction of suffix arrays. Journal of
Discrete Algorithms, 3(2):143–156, 2005.

23. Kucherov G, Tothmeresz L, and Vialette S. On the combinatorics of suffix arrays. Inf Process Lett,
113(22–24):915–920, 2013.

24. Kuhnle A et al. Efficient construction of a complete index for pan-genomics read alignment. In
Proc. of RECOMB, pages 158–173, 2019.

25. Li H. Fast construction of FM-index for long sequence reads. Bioinformatics, 30(22):3274–3275,
2014. [PubMed: 25107872]

26. Louza F, Gog S, and Telles GP. Construction of Fundamental Data Structures for Strings. Springer
International Publishing, 2020.

27. Louza FA, Telles GP, Gog S, Prezza N, and Rosone G. gsufsort: constructing suffix arrays,
LCP arrays and BWTs for string collections. Algorithms Mol Biol, 15(1):1–5, 2020. [PubMed:
31911812]

28. Louza Felipe A., Telles Guilherme P., Hoffmann Steve, and Cristina Dutra de Aguiar Ciferri.
Generalized enhanced suffix array construction in external memory. Algorithms Mol. Biol,
12(1):26:1–26:16, 2017. [PubMed: 29234460]

29. Manber U and Myers GW. Suffix arrays: a new method for on-line string searches. SIAM J
Comput, 22(5):935–948, 1993.

30. Mantaci S, Restivo A, Rosone G, and Sciortino M. An extension of the Burrows-Wheeler
Transform. Theor Comput Sci, 387(3):298–312, 2007.

31. Mantaci S, Restivo A, and Sciortino M. Burrows-Wheeler transform and Sturmian words. Inf
Process Lett, 86(5):241–246, 2003.

32. Navarro G. Compact Data Structures: A Practical Approach. Cambridge University Press, 2016.

33. Nong G, Zhang S, and Chan WH. Two efficient algorithms for linear time suffix array
construction. IEEE Trans Comput, 60(10):1471–1484, 2011.

34. Ohlebusch E. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and
Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

35. Perrin D and Restivo A. Enumerative combinatorics on words. In Handbook of Enumerative
Combinatorics, ed. by Miklos Bona. 2015.

36. Prezza N, Pisanti N, Sciortino M, and Rosone G. SNPs detection by eBWT positional clustering.
Algorithms Mol Biol, 14(1): 1–13, 2019. [PubMed: 30839948]

37. Prezza N, Pisanti N, Sciortino M, and Rosone G. Variable-order reference-free variant discovery
with the Burrows-Wheeler Transform. BMC Bioinform, 21-S(8):260, 2020.

38. Rhie A et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature,
592:737–0746, 2021. [PubMed: 33911273]

39. Shiloach Y. Fast canonization of circular strings. J. Algorithms, 2(2):107–121, 1981.

40. Stephens ZD et al. Big Data: Astronomical or Genomical? PLOS Biology, 13(7):e1002195, 2015.
[PubMed: 26151137]

41. Stevens EL et al. The public health impact of a publically available, environmental database of
microbial genomes. Front Microbiol, 8:808, 2017. [PubMed: 28536563]

Boucher et al. Page 19

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

42. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature,
526:68–74, 2015. [PubMed: 26432245]

43. Turnbull C et al. The 100,000 genomes project: bringing whole genome sequencing to the NHS. Br
Med J, 361, 2018.

44. Yang L, Zhang X, and Wang T. The Burrows–Wheeler similarity distribution between biological
sequences based on Burrows–Wheeler transform. J Theor Biol, 262(4):742–749, 2010. [PubMed:
19903487]

Boucher et al. Page 20

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
The algorithm SAIS-for-eBWT on Example 1. Start positions of input strings are marked in

bold.

Boucher et al. Page 21

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Example for computing the BWT for one string, start index marked in bold.

Boucher et al. Page 22

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Chromosome 19 dataset construction CPU time and peak memory usage. We compare

pfpebwt with ropebwt2, gsufsort, and egap.

Boucher et al. Page 23

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Salmonella dataset construction CPU time and peak memory usage. We compare pfpebwt

with ropebwt2, gsufsort, and egap.

Boucher et al. Page 24

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
SARS-CoV2 dataset construction CPU time and peak memory usage. We compare pfpebwt

with ropebwt2, gsufsort, and egap.

Boucher et al. Page 25

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Boucher et al. Page 26

Table 1

Datasets used in the experiments. We give the alphabet size in column 3. We report the length of the file and

the ratio of the length to the number of runs in the eBWT in columns 4 and 5, respectively.

Name Description σ n/106 n/r

chr19 Human chromosome 19 5 121,086.62 2199.21

salmonella Salmonella genomes 4 48,791.75 112.72

sars-cov2 SARS-CoV2 genomes 5 11,930.96 1424.65

Int Symp String Process Inf Retr. Author manuscript; available in PMC 2024 May 13.

	Abstract
	Introduction
	Preliminaries
	Burrows-Wheeler-Transform
	Generalized Conjugate Array and Extended Burrows-Wheeler Transform
	Example 1.
	Remark 2.
	Lemma 3.

	A simpler algorithm for computing the eBWT and GCA
	Definition 4 (Cyclic types, LMS-substrings).
	Example 5.
	Lemma 6 (Cyclic type properties).
	Proof.

	Corollary 7 (Linear-time cyclic type assignment).
	Proof.

	Table T2
	Definition 8 (LMS-order).
	Correctness and running time
	Lemma 9 (Induced sorting for multisets).
	Proof.

	Lemma 10 (Extension of Thm. 3.12 of [33]).
	Proof.

	Lemma 11.
	Proof.

	Theorem 12.
	Proof.

	Computing the BWT for one single string

	eBWT and prefix-free parsing
	Example 13.
	Example 14.
	Example 15.
	Lemma 16.
	Proof.

	Proposition 17.
	Proof.

	Example 18.
	Example 19.
	Example 20.

	Keeping track of the first rotations.
	Implementation notes.

	Experimental results
	Datasets
	Setup
	Results

	Conclusion
	eBWT missing examples
	Table T3
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1

