
RESEARCH ARTICLE

Developing machine learning models to

predict multi-class functional outcomes and

death three months after stroke in Sweden

Josline Adhiambo OtienoID
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Abstract

Globally, stroke is the third-leading cause of mortality and disability combined, and one of

the costliest diseases in society. More accurate predictions of stroke outcomes can guide

healthcare organizations in allocating appropriate resources to improve care and reduce

both the economic and social burden of the disease. We aim to develop and evaluate the

performance and explainability of three supervised machine learning models and the tradi-

tional multinomial logistic regression (mLR) in predicting functional dependence and death

three months after stroke, using routinely-collected data. This prognostic study included

adult patients, registered in the Swedish Stroke Registry (Riksstroke) from 2015 to 2020.

Riksstroke contains information on stroke care and outcomes among patients treated in

hospitals in Sweden. Prognostic factors (features) included demographic characteristics,

pre-stroke functional status, cardiovascular risk factors, medications, acute care, stroke

type, and severity. The outcome was measured using the modified Rankin Scale at three

months after stroke (a scale of 0–2 indicates independent, 3–5 dependent, and 6 dead).

Outcome prediction models included support vector machines, artificial neural networks

(ANN), eXtreme Gradient Boosting (XGBoost), and mLR. The models were trained and

evaluated on 75% and 25% of the dataset, respectively. Model predictions were explained

using SHAP values. The study included 102,135 patients (85.8% ischemic stroke, 53.3%

male, mean age 75.8 years, and median NIHSS of 3). All models demonstrated similar

overall accuracy (69%–70%). The ANN and XGBoost models performed significantly bet-

ter than the mLR in classifying dependence with F1-scores of 0.603 (95% CI; 0.594–

0.611) and 0.577 (95% CI; 0.568–0.586), versus 0.544 (95% CI; 0.545–0.563) for the mLR

model. The factors that contributed most to the predictions were expectedly similar in the

models, based on clinical knowledge. Our ANN and XGBoost models showed a modest

improvement in prediction performance and explainability compared to mLR using rou-

tinely-collected data. Their improved ability to predict functional dependence may be of

particular importance for the planning and organization of acute stroke care and

rehabilitation.
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Introduction

Stroke is the third-leading cause of death and disability worldwide [1]. Functional disabilities,

cognitive deficits, and emotional problems are common after stroke [1, 2]. In addition to

severe consequences to the patient, stroke is one of the costliest diseases, and more accurate

predictions of stroke outcomes can guide healthcare organizations in allocating appropriate

resources to reduce both the economic and social burden of the disease. Also, clinicians and

other healthcare providers are guided on different policies that involve treatment and rehabili-

tation care for stroke patients.

Recently, models based on modern machine learning (ML) algorithms have shown poten-

tial in predicting stroke [3–6], and cardiovascular diseases [7]. Compared to traditional regres-

sion models, these algorithms can learn from data by exploring flexible relationships between

a high number of predictive features and the outcome variable to achieve high prediction accu-

racy [8, 9]. Previous studies on stroke outcome prediction have focused on ‘unfavorable’ or

‘favorable’ functional outcomes, using 30-day mortality [5, 6] or different cut-offs [4–6, 10,

11]. For instance, some studies have used a binary version of modified Rankin Scale (mRS)

with two classes: good (mRS�2) and poor (mRS>2) outcomes [12–14]. Ordinal analysis of

the three-month mRS is more useful, since it better captures the spectrum of outcomes after

stroke [10, 15].

In health care applications, a lack of studies using ML to predict death and disability as a

multi-class outcome after stroke, and the black-box nature of ML models leading to difficulties

in interpreting the decision process are challenges [16, 17]. However, modern ML models may

provide explainability that is comparable to traditional models and domain knowledge inter-

pretation [18]. One study suggested that explainability can help patients to make informed

decisions together with clinicians, and contributes to fair distribution of available resources,

while a lack of “explainability in clinical decision support systems poses a threat to core ethical

values in medicine” [19].

The main aim of this study was to develop and evaluate the performance of ML models—

compared to traditional multinomial logistic regression (mLR) in predicting death and func-

tional outcomes three months after stroke—using mRS as a multi-class outcome and based on

information from a nationwide stroke registry. Another aim was to assess the explainability of

these models.

Methods

Design and setting

This study was based on data from the Swedish Stroke Registry (Riksstroke), which was estab-

lished in 1994 (www.riksstroke.org). It consists of all 72 hospitals in Sweden providing special-

ist care for acute stroke patients and includes over 90% of all stroke patients treated in

hospitals [20]. The registry includes key patients’ characteristics and information from the

entire chain of stroke care, such as primary prevention, acute care, rehabilitation measures,

secondary prevention, and family and community support. Patient-reported outcomes,

including functional status, are collected via a questionnaire three months after stroke.

This study was observational with no risk for the study participants. To optimize model

performances, adult patients who had a stroke, that is, intracerebral hemorrhage based on the

International Classification of Diseases, Tenth Revision (ICD10: I61), ischemic stroke (I63), or

an unspecified stroke (I64) between January 2015 and December 2020 were included. This

provided a very large sample allowing outcome proportions to be estimated with high preci-

sion (low margin of error), global shrinkage factor close to 1, and small absolute difference in
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the apparent and adjusted Nagelkerke R2 [21, 22]. Data was accessed for the study on February

17, 2022. Excluded were all patients <18 years of age and those lost to follow-up three months

after stroke, leaving a total of 102,135 patients for inclusion in the analyses (Fig 1).

This study was approved by the Swedish Ethical Review Authority (reference number 2021-

06152-01). Data was pseudonymized by Riksstroke before it was submitted for the study.

Patients are informed about registration in the quality registry Riksstroke that the registry

aims to support high and consistent quality of care for stroke patients throughout Sweden, and

that data may be used for research purposes. In accordance with the Personal Data Act (Swed-

ish law No. SFS 1998:204), no informed consent is needed to collect data from medical charts

or inpatient records for quality registries. However, patients are informed of their rights to

deny participation (opt-out consent). The study is reported in agreement with both the Trans-

parent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis

(TRIPOD) checklist for prediction model development and validation, and the Strengthening

the Reporting of Observational Studies in Epidemiology (STROBE) checklist for cohort studies

[23, 24].

Variables

The primary outcome for prediction was mRS at three months of stroke, which was catego-

rized into three levels (0–2 independent, 3–5 dependent, and 6 dead). Since mRS is not mea-

sured directly in Riksstroke, a previously-developed algorithm was used where self-reported

Riksstroke outcome questions on dependency, living situation, mobility, dressing, and toilet-

ing have been shown to be translatable into mRS grades with high precision [25]. The outcome

of interest could not be assessed blindly considering that the study was based on information

Fig 1. Flow chart of study sample inclusion/ exclusion criteria.

https://doi.org/10.1371/journal.pone.0303287.g001

PLOS ONE Machine learning models to predict multi-class functional outcomes and death three months after stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0303287 May 13, 2024 3 / 16

https://doi.org/10.1371/journal.pone.0303287.g001
https://doi.org/10.1371/journal.pone.0303287


already collected in Riksstroke. Besides, the expected proportions of death and dependency are

well known.

Different prognostic factors (features) for prediction included age (years), sex, cardiovascu-

lar risk factors (atrial fibrillation (AF), diabetes, previous stroke or transient ischaemic attack

(TIA), and smoking status), medications before stroke (treatment for high blood pressure,

lipid-lowering drugs, and anticoagulants), modified Rankin Scale (mRS) prior to the stroke

(levels: 0–2, 3, 4, 5) [25], stroke severity at admission (measured by the National Institutes of

Health Stroke Scale (NIHSS) (levels: 0–42)), type of stroke (ischemic, hemorrhage, unspeci-

fied), wake-up stroke, arriving at the hospital by ambulance, stroke alert activation (prehospital

notifications from ambulances and alerts at the emergency department for patients presenting

with stroke symptoms), inpatient at the time of stroke, the hour of admission (band by 4), and

day of the week [26, 27] the patient was admitted to the hospital. These features were selected

based on previous knowledge and availability in the registry.

Data analysis

Data preprocessing was conducted using R 4.1.1 [28], and all other analyses were performed in

Python 3.7.4 [29]. The same features were included in all models.

Label encoding. Age and NIHSS were analyzed as continuous variables. To improve pre-

dictions and performance, nominal variables were transformed using one-hot encoding where

each level of the nominal variable was converted into a new binary variable [30]. Binary vari-

ables were coded as 1 (Yes) if they matched the level and 0 (No) otherwise (reference

category).

Missing data. NIHSS had a large proportion of missing data, and multivariate imputation

by chained equations (MICE) algorithm was implemented [31, 32]. A single imputed dataset

(m = 1) was considered due to the challenge of pooling results from a ML model. For instance,

the process of training a ML model on several imputed datasets could be computationally too

expensive. Level of consciousness at hospital admission (alert, drowsy, unconscious), together

with the variables included in this study, were used to impute NIHSS. Level of consciousness

was then excluded from further analysis considering that it was part of the NIHSS scores as a

measure of stroke severity [33, 34]. The imputation was evaluated by density plots comparing

the distribution of NIHSS in imputed and observed data. For all other variables, which had

low proportions of missingness, a separate category was assigned to the missing values.

Feature scaling. Features with larger numeric ranges (e.g., continuous variables) com-

pared to others, may either dominate the prediction algorithm or cause computational prob-

lems. To equalize the feature contribution to the model training, an interval scaling method

known as Min–Max scaling was used to transform the feature values to a range of [0, 1] [35,

36].

Classification models. The ML models (SVM, ANN, and eXtreme Gradient Boosting

(XGBoost)) were developed and compared to both main effects mLR and mLR with the addi-

tion of all possible 2-way interaction terms in terms of their predictive performances on the

mRS. These models were chosen due to their widespread application in medicine and previ-

ously demonstrated performances in classification [11, 37, 38]. A brief outline of these algo-

rithms is provided in S1 Method.

Model training process. Models were trained and evaluated on the data which was ran-

domly split into 75% training and 25% test sets, maintaining the same outcome proportions in

both sets. The very large sample and random split, ensures minimal differences between train-

ing and test set (data not shown). The reference model was fitted using the ‘LogisticRegression’

classifier from the Sklearn library [39]. For the ML models, an initial set of values for some
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hyperparameters (e.g., maximum depth of trees, kernel, size of hidden layers among others)

were explicitly specified while others were set to default values because their default values

were either appropriate (e.g., booster, activation function, initial learning rate) or were less sus-

ceptible to hyperparameter space (e.g., size of the kernel cache, maximum number of itera-

tions) [40]. We then implemented a grid search algorithm using 5-fold cross-validations (CVs)

based on f1_weighted score. The algorithm performs an exhaustive search on these hyperpara-

meters to estimate an optimal combination of the parameters, thus improving the model’s pre-

diction accuracy as well as preventing model overfit [41]. In the end, the optimal model was

evaluated on the reserved 25% test set to obtain its prediction performance.

Model performance metrics. After model development, we evaluated their predictive

performances using different performance metrics for multi-class outcomes such as recall, pre-

cision, accuracy, Cohen’s Kappa, Matthew’s correlation coefficient (MCC), F1 score, and area

under the receiver operating characteristic curve (AUC–ROC) [42]. All these measures are

based on the confusion matrix (S2 Method and S2 Fig).

The estimates of these metrics were reported together with their 95% confidence intervals

(CIs). A non-parametric bootstrap resampling method was applied to compute the CIs, where

a total of 1000 patient-wise resampling of size 25,534 (test set sample size) was carried out on

both the true outcome and predicted values obtained from the test dataset with replacement.

The performance metric for each bootstrap sample was calculated and the percentile with 95%

confidence intervals for the estimates obtained. All the metrics have been implemented in

Sklearn [39].

Model explainability. In general, modern ML models do not provide measures to quan-

tify or describe the contribution of each covariate on the outcome, and this could be a draw-

back in terms of clinical utility compared to e.g., LR [43]. To increase explainability and

interpretability, we obtained SHAPley Additive exPlanations (SHAP) values of each feature, as

implemented in the SHAP Python library [44]. The values are calculated based on the formula

in S3 Method. In this study, the results are presented using two graphical methods, including a

force plot that explains the feature importance at a patient level (local explainability), and a

beeswarm plot that illustrates a visual representation of feature-specific SHAP values across all

patients (global explainability) (S3 Method).

Results

Summary statistics

Of the 102,135 eligible patients, 87,594 (85.8%) had an ischemic stroke. The mean [standard

deviation (SD)] age at stroke onset was 75.8 [12.0] years, a median NIHSS score [Q1-Q3] of 3

[1–8], and 54,473 (53.3%) were males (Table 1). Missing data accounted for 1.3% of the whole

dataset, with the highest level of missingness in the NIHSS variable (42.6%), while missing

data for other features ranged between 0% to 18.3%. The imputed NIHSS values had a distri-

bution similar to the observed data (S1 Fig), which indicate that the MICE imputation worked

well. Patients lost to follow-up were on average 3 years younger, were more often males (55.3%

vs. 53.3%), and had a similar stroke severity, despite a slightly worse risk factor profile (S1

Table).

Tuning model hyperparameters

S2 Table displays the selected hyperparameters that were tuned with their grid search ranges to

achieve the best parameter combination.
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Model prediction performance

Overall, all models were able to correctly predict the mRS levels in more than 68% of the

patients (Fig 2 and S3A Table). There were no significant differences in the performance met-

ric values between mLR and mLR with 2-way interaction terms. Accuracy gives relatively

Table 1. Summary of patient characteristics (demography, cardiovascular risk factors, primary preventive medication, and stroke characteristics) categorized by

mRS. Reported descriptive statistics including mean, standard deviation (SD), median, quartiles (Q1, Q3), and frequencies (number of patients) (%). The last column

shows the proportion of missing cases in each of the variables (features).

Outcomes 3 months after stroke Missing (%)

All patients mRS 0–2 mRS 3–5 mRS 6

Number of patients (%) 102,135 (100) 43,361 (42.5) 36,687 (35.9) 22,087 (21.6)

Age (mean [SD]) 75.8 [12.0] 70.4 [11.6] 78.7 [10.8] 81.8 [10.3] -

Male (%) 54,473 (53.3) 26,797 (61.8) 17,328 (47.2) 10,348 (46.9) -

Atrial Fibrillation (%) 30,195 (29.6) 8,315 (19.2) 12,234 (33.3) 9,646 (43.7) 152 (0.2)

Diabetes (%) 22,355 (21.9) 7,759 (17.9) 9,358 (25.5) 5,238 (23.7) 214 (0.2)

Previous Stroke or TIA (%) 27,787 (27.2) 8,505 (19.6) 12,013 (32.7) 7,269 (32.9) 186 (0.2)

Smoking (%) 11,394 (11.2) 5,852 (13.5) 4,020 (11.0) 1,522 (6.9) 14,252 (14.0)

Blood pressure (BP) lowering medication (%) 65,004 (63.6) 24,938 (57.5) 25,076 (68.4) 14,990 (67.9) 395 (0.4)

Lipid-lowering drugs (%) 32,616 (31.9) 13,473 (31.1) 12,638 (34.4) 6,505 (29.5) 441 (0.4)

Prior anticoagulation (%) 15,824 (15.5) 4,526 (10.4) 6,423 (17.5) 4,875 (22.1) 318 (0.3)

Pre-stroke mRS (%) 5,199 (5.1)

0–2 (Reference) 69,795 (68.3) 41,484 (95.7) 19,977 (54.5) 8,334 (37.7)

3 14,772 (14.4) 1,416 (3.3) 9,233 (25.2) 4,123 (18.7)

4 9,352 (9.2) 200 (0.5) 4,857 (13.2) 4,295 (19.4)

5 3,017 (3.0) 2 (0.0) 1,102 (3.0) 1,913 (8.7)

Inpatient at time of stroke (%) 6,184 (6.1) 1,426 (3.3) 2,211 (6.0) 2,547 (11.5) 2 (0.0)

NIHSS at arrival (median [Q1-Q3]) 3.0 [1.0–8.0] 2.0 [0.0–4.0] 4.0 [2.0–9.0] 13.0 [6.0–20.0] 43,474 (42.6%)

Type of stroke (%)

Ischemic (Reference) 87,594 (85.8) 39,720 (91.6) 31,905 (87.0) 15,969 (72.3) -

Hemorrhagic 13,511 (13.2) 3,282 (7.6) 4,492 (12.2) 5,737 (26.0) -

Unspecified 1,030 (1.0) 359 (0.8) 290 (0.8) 381 (1.7) -

Wake-up stroke (%) 18,635 (18.2) 8,683 (20.0) 6,495 (17.7) 3,457 (15.7) 18,729 (18.3)

Stroke alert activation (%) 35,277 (34.5) 14,014 (32.3) 12,883 (35.1) 8,380 (37.9) 1,319 (1.3)

Ambulance service to the hospital (%) 70,786 (69.3) 24,349 (56.2) 28,180 (76.8) 18,257 (82.7) 8,469 (8.3)

Hour of Admission (%) 4,021 (3.9)

00–04 (Reference) 4,332 (4.2) 1,723 (4.0) 1,508 (4.1) 1,101 (5.0)

04–08 5,852 (5.7) 2,553 (5.9) 1,891 (5.2) 1,408 (6.4)

08–12 29,094 (28.5) 12,591 (29.0) 10,127 (27.6) 6,376 (28.9)

12–16 27,870 (27.3) 12,371 (28.5) 10,317 (28.1) 5,182 (23.5)

16–20 19,396 (19.0) 8,204 (18.9) 7,190 (19.6) 4,002 (18.1)

20–24 11,570 (11.3) 4,632 (10.7) 4,219 (11.5) 2,719 (12.3)

Day of week of admission (%) 44 (0.04)

Sunday (Reference) 13,214 (12.9) 5,290 (12.2) 4,951 (13.5) 2,973 (13.5)

Monday 16,255 (15.9) 7,126 (16.4) 5,806 (15.8) 3,323 (15.0)

Tuesday 15,377 (15.1) 6,712 (15.5) 5,435 (14.8) 3,230 (14.6)

Wednesday 15,147 (14.8) 6,511 (15.0) 5,446 (14.8) 3,190 (14.4)

Thursday 14,740 (14.4) 6,348 (14.6) 5,263 (14.3) 3,129 (14.2)

Friday 14,446 (14.1) 6,149 (14.2) 5,105 (13.9) 3,192 (14.5)

Saturday 12,912 (12.6) 5,210 (12.0) 4,652 (12.7) 3,050 (13.8)

https://doi.org/10.1371/journal.pone.0303287.t001

PLOS ONE Machine learning models to predict multi-class functional outcomes and death three months after stroke

PLOS ONE | https://doi.org/10.1371/journal.pone.0303287 May 13, 2024 6 / 16

https://doi.org/10.1371/journal.pone.0303287.t001
https://doi.org/10.1371/journal.pone.0303287


higher weights to the predictive performance of the most frequent outcome category (i.e.,

independence). On the other hand, the F1 scores give similar or higher weights to smaller-

sized categories (independence and death). The performance of the ANN model compared to

mLR showed a significant improvement with a weighted average F1 score of 0.696 (95% CI;

0.690–0.702) versus 0.681 (95% CI; 0.675–0.687), and a macro average precision of 0.695 (95%

CI; 0.689–0.701). Similarly, both ANN and XGBoost models demonstrated significantly better

Fig 2. Performance metric values with their corresponding 95% confidence intervals for each classifier multinomial logistic regression (mLR),

mLR with 2-way interaction terms, XGBoost, SVM, and ANN). The x-axis shows different performance metrics with their corresponding values on

the y-axis. Each dot is the estimated value of the metric while the lines denote the 95% confidence intervals within which the value lies.

https://doi.org/10.1371/journal.pone.0303287.g002
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performances compared to the mLR in correctly classifying the functional dependence group

with respective F1 scores of 0.603 (95% CI; 0.594–0.611) and 0.577 (95% CI; 0.568–0.586), ver-

sus 0.554 (95% CI; 0.545–0.563).

The accuracy values ranged between 0.68–0.70 with overlapping confidence intervals in

both the training and test sets. This shows a low degree of overfitting in the training data (S3A

and S3B Table).

S3 Fig displays AUC-ROC curves based on a one-versus-rest strategy for mRS categories.

On average, all the ML models performed better than the mLR in classifying patients into the

mRS categories, and an improvement of more than 10% is observed in both ANN and

XGBoost versus mLR in classifying the functional dependent group.

Model explainability

Since Odds Ratios (ORs) of LR are interpretable, we present their estimates in S4 Table. The

ORs from mLR express the ratio of the odds of the covariate among patients in the corre-

sponding mRS level to the odds of the covariate among patients in the other two mRS levels,

holding all other covariates constant. For instance, a one-year increase in age is associated with

a decrease in the odds of belonging to the functional independent group by 4.2%, and the

same change in age increases the odds of dying by 4.0% (S4 Table).

Fig 3 illustrates local explainability by a SHAP force plot for a typical patient with the fol-

lowing features: female sex, aged 80 years, ischemic stroke, NIHSS score of 7, functionally

independent before stroke, received blood pressure lowering drugs, had atrial fibrillation, a

smoker, had stroke alert activation, arrived at hospital by ambulance, and was admitted on a

Wednesday between 8–11.59 a.m. The colors show whether the feature increases (red) or

decreases (blue) the probability of predicting that outcome class. Bar size denotes the SHAP

value. The longer the bar the greater the influence on prediction. The base value indicates the

average prediction of the model (log odds) based on the training data, while f(x) is the final

Fig 3. SHAP force plot of predictions from mLR and ANN classifiers for death at a patient level. The colors show whether the feature

increases (red) or decreases (blue) the probability of death for this patient. Bar size denotes the SHAP value. The longer the bar the greater

the influence on prediction. The base value indicates the average prediction (with no feature in the model) of the model (log odds) based on

the training data, while f(x) is the final predicted probability of the mentioned patient to belong to this outcome class (death).

https://doi.org/10.1371/journal.pone.0303287.g003
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predicted probability (given in log odds) of the patient belonging to that outcome class. It is

observed that for this specific patient’s prediction, smoking, arriving at the hospital by ambu-

lance, age, and atrial fibrillation, among others increased the risk of death, while stroke alert

activation and functional independence before the stroke among others reduced the risk of

death.

Fig 4 displays global explainability by SHAP plots for each mRS class obtained from the ref-

erence LR model and the ANN model (plots for other models are shown in S4 Fig). The fea-

tures are given in order of importance (descending mean absolute SHAP values). Points are

distributed horizontally along the x-axis based on the patient’s SHAP values, with overlapping

points jittered in the y-axis direction. The red and blue points are the high (male sex or yes for

other binary features) and low (female sex or no for other binary features) feature values,

respectively. The horizontal axis indicates the feature effect on prediction (either decreases or

increases the probability of being in an outcome class). We observed that predictions of inde-

pendence in functional outcome were related to male sex, lipid-lowering drugs, and activation

alerts. While NIHSS, age, ambulance usage, stroke type hemorrhage, pre-stroke mRS, inpatient

at time of stroke, atrial fibrillation, diabetes, and male sex increase the risk of death. Level of

NIHSS contributed the most to all predictions of all mRS groups in all models except when

mLR was used to model dependency.

Discussion

In this prognostic study based on nationwide registry data, we developed three ML prediction

models and compared their performance to that of the traditional mLR model. Overall, our

models that were based on ANN and XGBoost demonstrated a modest improvement in pre-

dicting multi-class outcomes (independence, dependence, or death) three months after stroke

compared to mLR. Also, the former models were significantly better than mLR in predicting

functional dependence, which was the most difficult outcome to predict. This could be of rele-

vance for continued care, rehabilitation planning, and estimation of cost-efficiency, among

others.

Furthermore, this study demonstrated how existing methods (like SHAP values) can be

used to interpret and explain predictions of stroke outcomes made by complex machine learn-

ing models. As expected from previous studies [14, 45, 46], NIHSS was the most important

predictor of outcomes.

Past studies on ML and stroke outcomes have mainly focused on binary outcomes [5, 10,

12, 13, 47, 48] whereas our study has an outcome with three classes. In agreement with our

findings, ML (deep neural network and XGBoost in particular) have been shown to improve

the prediction of long-term (mainly binary) outcomes in ischemic stroke patients [12, 15, 47].

In a registry-based study, ANN showed an accuracy of 80.15%, which was significantly better

than binary LR in predicting poor prognosis (mRS >2) after acute stroke [47]. Similarly, deep

neural networks (ANN with many hidden layers) achieved a ROC-AUC value of 0.888 versus

that of binary LR (AUC 0.849) in classifying outcomes (mRS�2 versus mRS>2) in acute

ischemic stroke [12]. When restricted to features available at admission, machine learning pre-

dictions have shown limited improvements to that of scores designed by medical experts to

predict functional outcomes after stroke [13]. However, for all the mentioned studies, a binary

classification cannot fully capture the outcome after stroke. Also, compared to our study, the

studies referenced above included relatively small sample sizes, they were single centered, and

only included ischemic stroke patients. This may make it difficult to generalize these models to

other settings. On a further note, a recent study demonstrated that XGBoost (AUC 0.895) per-

formed relatively better than binary LR and a regularized binary LR with or without
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interaction terms in classifying all-cause 30-day in-hospital mortality after stroke in the UK

[5]. Although this was based on a binary outcome and considered only one ML-based model,

the findings are consistent to our study. The study included a large sample size and was based

on high quality clinical registry data. An external validation of the models showed that the

developed model could be generalized to the Swedish setting [6].

Fig 4. SHAP plots for mLR and ANN classification models for each mRS category. The features are given in order

of importance together with the corresponding mean absolute SHAP value. For each feature, a patient is represented

by a point (dot) distributed horizontally along the x-axis based on the SHAP value. Red and blue points are the high

(male sex or yes for other binary features) and low (female sex or no for other binary features) feature values,

respectively. The horizontal axis indicates the feature effect on prediction (either increasing or decreasing the

probability of belonging to that outcome class).

https://doi.org/10.1371/journal.pone.0303287.g004
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We extended the measure of outcome to predict a multi-class outcome including inde-

pendence, dependence, and death, based on the mRS, a highly clinically relevant and com-

mon measure of functional outcome in stroke studies [49]. ANN also showed good

performance in classifying the dependent functional outcome which is an important end-

point in stroke care.

We also accounted for the types of strokes in all the models. Ischemic and hemorrhagic

strokes have different pathophysiology and treatment strategies. However, they also share sev-

eral risk factors, treatment and rehabilitation measures, and outcome factors. With traditional

modeling (e.g., mLR), there is a need to include high-order interactions to fully account for

these similarities and differences. Flexible machine learning models allowed us to develop a

prediction model that can use all data, taking into consideration factors that may or may not

have the same effect on outcome after ischemic and hemorrhagic stroke. This would increase

the power and can provide more accurate predictions.

A recent review of ML models for stroke outcome prediction reports limitations in study

sample size, reporting standards, model transparency, and interpretation [11]. Our models

were based on information from Riksstroke, which is estimated to include more than 90% of

all stroke patients treated in hospitals in Sweden, with high validity and reliability of recorded

information [20]. Due to hospital crowding, stroke patients may occasionally be treated in

wards where stroke patients are not normally expected to be found. Those patients are more

likely to miss registration. We built and reported our models using robust approaches includ-

ing cross-validation, train–test split evaluation, use of SHAP values, and adherence to TRI-

POD guidelines [23]. In addition, the developed models are available to researchers in the

GitHub repository [https://github.com/Josline90/-Machine-Learning-Prediction-Model-of-

mRS-levels.git], providing transparency and facilitating external validations of the ML models

in other regions and healthcare settings.

In our study, the features underlying the predictions were limited to information that is

routinely collected in electronic health records at hospital admission. On a group level, the ML

prediction models developed in this study can be used to predict outcome for a patient popula-

tion with a given case-mix without underlying model assumptions, hence allowing fair com-

parisons of outcome between treatment regimens, hospitals and regions. Machine learning

models, including an extension of the mLR model to include regularization and interaction

terms, provide an opportunity to include more detailed information and thereby improve pre-

dictions [13]. Including more detailed information on patient frailty, imaging results, and

acute care could further improve predictions. A vision for the future could be to implement

systems utilizing machine learning models in the hospitals to help predict outcomes in real-

time, which could serve as a guide for clinicians when deciding on acute treatments and reha-

bilitation measures on the individual level.

Limitations

This study also has some limitations. We only included information available in routine care,

recorded in the Riksstroke register. Hence, the data used for analyses did not include informa-

tion on some features such as imaging or congestive heart failure, among others which may

also be important risk factors for predicting functional outcomes of stroke. This information is

not recorded in the Riksstroke registry. Patients lost to follow-up were excluded, which may

cause selection bias. Since patients who were still alive three months after stroke and did not

answer the three-month follow-up questionnaire were excluded and as death is robustly

reported, the analysis datasets include a higher proportion of deaths than that observed in the

general stroke population. A comparison of background characteristics of patients with
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complete outcome at 3-months follow-up versus those who were still alive but lost to follow-

up, showed minor differences, which are unlikely to have a major impact on model perfor-

mance or explainability.

Stroke severity, measured by NIHSS included a high proportion of missing, and MICE was

used for imputation. The distribution of imputed and observed data were similar, which sug-

gest that the imputed values were plausible [50]. This is in agreement with the previous finding

that MICE performs better compared to deep learning imputation methods such as generative

adversarial imputation network (GAIN), and multiple imputation using denoising autoenco-

ders (MIDA) [51, 52]. Comparisons of model performance include several aspects. Here, we

chose to impute missing NIHSS values prior to model training and testing. This allowed more

straightforward comparisons, but does not incorporate an evaluation on how e.g., several ML

approaches can handle missing data by themselves.

The training process of the ML algorithms was computationally intensive. We decided to

tune a limited number of parameters with a smaller range of values based on 5-fold CVs. How-

ever, these models are known to be robust for misspecifications [53]. A previous study showed

that a model predicting all-cause 30-day in-hospital mortality after stroke that was developed

in the UK could be generalized to Swedish stroke patients [6]. However, the models in the cur-

rent study were not externally validated and should be validated before applications to other

countries and regions, in particular if they have different demographic and health care charac-

teristics. We therefore provide open access to the developed models [https://github.com/

Josline90/-Machine-Learning-Prediction-Model-of-mRS-levels.git], allowing reproducibility

to be tested in other countries and healthcare settings.

Conclusions

ML models, that allow flexible relationships between predictive features and the outcome, can

be developed and show potential to improve predictions of multi-class outcomes after stroke

using routinely-collected data. Despite the lack of explicit parameter estimates, SHAP values

contribute to an explainability that is comparable to that of traditional regression models. To

ensure generalizability, the developed prediction models should be evaluated further in an

independent stroke dataset.
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