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Abstract

The search for biomarkers that quantify biological aging (particularly ‘omics’-based biomarkers) 

has intensified in recent years. Such biomarkers could predict aging-related outcomes and could 

serve as surrogate endpoints for the evaluation of interventions promoting healthy aging and 

longevity. However, no consensus exists on how biomarkers of aging should be validated prior 

to their translation to the clinic. Here, we review current efforts to evaluate the predictive 

validity of omics biomarkers of aging in population studies, discuss challenges in comparability 

and generalizability, and provide recommendations to facilitate future validation of biomarkers 

of aging. Finally, we discuss how systematic validation can accelerate clinical translation of 

biomarkers of aging and their use in gerotherapeutic clinical trials.

Introduction

Aging is the strongest risk factor for most chronic diseases, physical and cognitive 

impairment, and death. Despite this, our approach to understanding and treating aging-

associated diseases has largely overlooked the biology underlying the aging process. The 

geroscience hypothesis posits that targeting aging itself has the potential to forestall multiple 

aging-associated disease processes simultaneously. As the aging population continues to 

grow across the globe, the promise of therapeutic targeting of aging to extend healthy 

lifespan has come into ever-sharper focus. To achieve this goal, there is growing interest 

in biomarkers that can quantitatively assess biological age and may ultimately serve as 

surrogate endpoints for aging-associated outcomes in clinical studies.

Many existing biomarkers of aging were initially developed to predict chronological age, 

although it was found that the deviation between their predicted and the true chronological 

age (‘AgeDev’) was associated with age-related outcomes and disease. More recent 

biomarkers of aging focus instead on prediction of biological age – that is, the level of 

age-dependent molecular and cellular damage accumulation and their consequences at a 

certain point in time – and/or health outcomes, rather than chronological age. Of note, in 
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practical use, biological age is often summarized as a number (in units of time), just like 

chronological age. Regardless of the development strategy, most current biomarkers of aging 

predict aging-related outcomes and identify factors associated with the pace of aging, in 

retrospective epidemiological studies 1-7. In addition, they have started to provide clues on 

the biological mechanisms of aging. Despite these advances, the validity and usefulness 

of biomarkers of aging is still not widely acknowledged by biomedical scientists 1. In 

contrast to biomarkers of various specific diseases, there are currently no recommended 

guidelines for standardizing development, measurement, or validation of biomarkers of 

aging by regulatory bodies such as the Food and Drug Administration (FDA) or European 

Medicines Agency (EMA).

Validation is the multistep process by which the characteristics of biomarkers are defined, 

including the conditions under which they prove reliable and accurate, and their ability to 

predict relevant outcomes 8-10. In the context of aging biomarkers, this process requires 

a wide range of expertise in areas such as the biological mechanisms of aging, including 

conserved pathways and mechanisms in model systems and in humans; the design and 

construction of composite biomarkers, the design, execution and analysis of epidemiological 

studies that collect and store biological specimens and assess age-related predictors and 

outcomes in representative populations (including biobanks and cohorts), and the validation 

of biomarkers across multiple, diverse population samples. Thus, collaboration between 

basic scientists and clinical investigators is essential for successfully navigating this process.

We previously proposed a consensus framework for classification and evaluation of aging 

biomarkers 1. Now, we address biomarker validation as the next step in the clinical 

translation process. First, we review current efforts to validate predictive biomarkers of 

aging using population-based cohort studies and discuss challenges encountered during 

this process. We primarily focus on biomarkers that are: (1) blood-based, as blood is non-

invasively obtained, widely accessible, and in constant contact with other tissues, potentially 

providing information about the biological age of the entire organism (although this is 

still under active exploration 11-13 ); (2) composite, as panels of molecular biomarkers 

are more likely to capture systemic effects of the complex aging process than single 

(molecule) biomarkers12-16; and (3) based on omic assays, as the rapid expansion of 

high-throughput omic technologies and artificial intelligence (Al) methods are expected 

to substantially advance the performance and translational value of the next generation of 

aging biomarkers 15.To facilitate and enhance rigor in the validation process 17, we provide 

guidelines for standardization and harmonization of biomarkers across populations with 

unique characteristics, and we make recommendations on the metrics that should be used to 

report their predictive performance.

Current status of validation efforts

Ideally, a biomarker measure should be robust against random and systematic sources 

of variability arising from technical and pre-analytical sources or application to different 

populations. Also, extensive information should be available on covariates to be considered 

to optimize their performance. We briefly outline some important types of conceptual and 

technical considerations and terminology important for biomarker validation in Box 1. 
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Overall, a comprehensive process that encompasses multiple types of validation is desirable 

to establish reliability, accuracy, and clinical utility of a biomarker of aging.

To date, predictive validation of aging biomarkers (for their association with age-related 

outcomes) has mostly relied on data previously collected in observational cohort studies. 

This process is currently the most active area of research in the aging biomarker validation 

space as an important prerequisite to further validation and ultimate clinical use. Cohort 

studies typically collect samples and clinical data on health and functional status at multiple 

points in time and allow assessment of association and predictivity of biomarkers for 

multiple health outcomes across different populations, as well as the identification of 

relevant covariates. We focus on cross-population validation (that is, validation in more 

than one cohort) because it is the most robust approach for validation of blood-based 

biomarkers of aging in observational studies. To contextualize recommendations outlined 

in later sections, we first outline the current state biomarker validation efforts (including 

different data sources) and discuss challenges to progress in this field.

Application of different data sources and study designs

The development of early biomarkers of aging was facilitated by open-access availability 

of large datasets (such as those stored within the Gene Expression Omnibus [GEO] 18), 

many of which are derived from cross-sectional studies. Cross-sectional studies provide 

a snapshot in time of variable measurements and corresponding phenotypic data (Figure 

1a). Such studies identified many biomarkers that correlate with chronological age. These 

include several soluble biomarkers of inflammation (e.g., IL-6 or C-Reactive Proteins) or 

hormonal status (such as fasting insulin and dehydroepiandrosterone sulfate). Early ‘first 

generation’ epigenetic biomarkers were also used to predict chronological age. However, 

cross-sectional age-associations can be biased by secular trends and selective attrition to 

study participation, which can preclude assessment of the predictive value of the marker in 

relation to future age-relevant outcomes. Furthermore, cross-sectional studies do not allow 

assessment of within-individual changes in response to interventions (sensitivity to change), 

a key requirement for the use of biomarkers of aging in clinical trials.

In contrast to cross-sectional studies, longitudinal studies collect biological measures (omics 

or other biomarkers), phenotypes (clinical characteristics), and adverse age-related health 

outcomes serially over time in the same individuals (Figure 1b). Most longitudinal studies 

also include data on genetic variants and through Mendelian randomization studies, they 

may help determine whether specific biomarkers are causally related to health outcomes 

or rather reflect the activation of mechanisms aimed at counteracting the pathologic 

processes that lead to those adverse health outcomes (generally defined as “resilience” 

mechanisms). Most studies collect longitudinal information on participant demographics 

(e.g., age, sex), physiological measurements (e.g., body mass index, blood pressure), and 

routine laboratory results (e.g., complete blood count/hemograms or blood biochemistry) 

— and may additionally collect data on mortality and cause of death, as well as other aging-

associated outcomes including multimorbidity, performance-based measures of physical 

and cognitive function, and frailty. Measures of disability in activities of daily living 
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and instrumental activities of daily living provide information on a participant’s level of 

independence but also health deterioration over time.

Analytically, biomarkers are often considered at one point in time and related prospectively 

to future outcomes, such as disease onset, change in physical and cognitive function 

over time, or mortality. A more informative approach is to consider repeated measures 

obtained from the same participants at regular intervals. This approach allows the study 

of the relationship between biomarkers and the time-trajectories of clinical outcomes, 

which provide the best approximation of the ‘pace of aging’19. Therefore, longitudinal 

cohort data can uniquely support the development and validation of biomarkers of aging, 

such as prospective validation against multiple different outcomes and across independent 

populations. Additional approaches focus on resilience, healthy aging 20,21, or other aging-

related outcomes 22-24. Moreover, outcomes related to healthcare resource utilization, such 

as the rate of hospital admissions and use of emergency rooms, may also be highly 

relevant. The prioritization of aging-associated outcomes and information on (functional) 

aging trajectories separate from mortality could make such biomarkers even more appealing 

for translation to clinical studies.

Many cohort studies establish biobanks that safely store biospecimens that can then be 

accessed in the future to test new hypotheses or employ newly available technology for 

analysis. Biobanks are invaluable resources for biomarkers research, especially if associated 

clinical and/or omic data and follow-up samples/data are available, particularly when it 

comes to testing and validation. In addition to the samples collected as part of a standard 

cohort study with specific research questions, other large-scale, general-purpose biobanks 

exist that can be used for biomarker development. For example, the UK Biobank contains 

in-depth genetic and health information and holds biological samples from half a million 

UK participants. Multiple studies have already evaluated omic-based predictors of various 

aging-related outcomes in the UK Biobank25-27. With the decreasing costs of measuring 

biomarkers, this and other biobanks are currently expanding their range of available omics 

data 28. The Finnish FinnGen cohort (n=~500,000 29), BioBank Japan (n=~260,000,30), and 

the Mass General Brigham Biobank (n=~135,000 31) have also recently generated large 

multi-omic datasets, which are expected to be used to validate multiple biomarkers for 

various aging-related outcomes. Some repositories are taking steps to organize their data in 

well documented and accessible databases: for instance, the US National Institute on Aging 

has launched complementary translational longevity initiatives to generate large-scale, cross-

species, multi-omic datasets.

The current state of cross-population validation studies

Even with existing cohort studies and biobanks, systematic cross-population validation 

remains limited. Nevertheless, several biomarkers of aging have been tested across multiple 

cohorts, with the most commonly-examined outcome being all-cause mortality. Although 

there are issues surrounding mortality as an endpoint, it has the advantage of being clearly 

defined. We discuss endpoints beyond mortality below.

A representative list of studies validating blood-based composite biomarkers for prediction 

of future mortality is listed in Table 1. Many of these studies were conducted by researchers 
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who developed the biomarker and validated that specific biomarker across multiple cohorts, 

or researchers who used biomarkers developed by others and compared multiple biomarkers 

within one cohort, with differences between the two approaches illustrated in Figure 2. In 

addition, a representative list of biomarkers of aging that have been tested across multiple 

cohorts is shown in Extended Data Table 1 (cohorts are described in Extended Data Table 

2). Our intention here is not to systematically review previous studies or perform a meta-

analysis; rather, the studies considered were selected to illustrate the challenges of validating 

biomarkers of aging in a reliable, comparable, and generalizable manner.

In studies validating blood-based biomarkers, most reported HRs for prediction of mortality 

risk are in the moderate range; however, a few studies have reported impressive metrics 

that render those biomarkers good potential candidates for use in preclinical and clinical 

studies. For example, Huan et. al 32,33 and Deelen et al 34 reported increased mortality 

risk (HRs of 1.85 and 2.73) for their epigenetic and metabolomic biomarkers, respectively. 

These values should be considered with caution because they rely on different units of 

measure, need to be further substantiated by independent validation in a different cohort, 

and their performance should be compared with other biomarkers using consistent reporting 

measures. So far, relatively few studies have compared individual (composite) biomarkers 

across multiple cohorts, or multiple biomarkers across the same cohort using standardized 

and equivalent measurement units that make them fully comparable 32,35,36. We argue 

that studies featuring systematic and comprehensive benchmarking of diverse biomarkers 

of aging across many large cohorts with extended follow-ups (>10 years) are needed to 

substantially advance the field (Figure 2a).

Challenges for validation of biomarkers of aging

Despite ongoing progress, comparing the predictive strength of biomarkers of aging remains 

challenging. Even for a well-defined outcome such as mortality, studies evaluating predictive 

performance of omic biomarkers have provided heterogeneous results. Potential reasons 

for this inconsistency include different study populations with different characteristics; 

differences in recording, formatting, and coding of molecular and outcome data; differences 

in preprocessing and biomarker formulation; and different approaches to validation analyses 

and reporting (Figure 2b, Table 2). In the following sections, we focus on each one of these 

problems.

Population-specific characteristics.

Predictive performance of a biomarker of aging may vary by characteristics of the 

underlying population, including age demographics, ethnicity, health and disease status, 

or physical and cognitive function. For instance, in a population with high exposure 

to pollution or environmental contaminants, cancer biomarkers will appear to be highly 

predictive of all-cause mortality even if they are not in the general population. A 

related challenge is the lack of participant diversity in many large cohort studies and 

biobanks that suffer from heavy overrepresentation of European ancestry and predominantly 

white participants. Results from these studies may not apply to nonwhite, ethnically 

diverse individuals, which limits their external validity. Exceptions featuring more diverse 
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populations exist, such as the Jackson Heart Study (https://www.jacksonheartstudy.org/) or 

Healthy Aging in Neighborhoods of Diversity across the Life Span 37, but many more 

studies are needed to understand similarities and difference in biomarkers of aging across 

diverse individuals. Notably, aging biomarkers that are reproducible across population 

groups likely reflect fundamental mechanisms of aging biology. Such biomarkers would 

be broadly useful for both clinical and basic research applications.

Molecular and outcome data.

Cohort studies are generally designed to address specific sets of scientific questions. 

Therefore, each cohort or biobank features unique content, collected, and recorded 

in a unique manner to address these questions. Even studies carrying out similar 

analyses may use different approaches. For example, epigenetic data could be collected 

using different microarray assays (27K, 450K, 850K) or isolating DNA with different 

methods, which produce slightly different estimates even for (epi)genetic targets shared 

between platforms 38. Similarly, metabolomic or proteomic data could be collected from 

plasma or serum, leading to different data distributions 34; measured using different 

technologies (e.g. mass spectrometry or aptamer-based assays); or tagged using different 

nomenclature39. Unfortunately, no harmonization standards currently exist for molecular 

data and aging-associated outcomes for the purpose of validating biomarkers of aging. 

Existing programs and consortia, such as RefMet (Reference Set of Metabolite Name 
40, COMETS (Consortium of Metabolomics Studies 41), CHARGE (Cohorts for Heart 

and Aging Research in Genomic Epidemiology42), CINECA (Common Infrastructure 

for National Cohorts in Europe, Canada, and Africa 43), TOPMed (Trans Omics for 

Precision Medicine program 44), UK LLC (UK Longitudinal Linkage Collaboration, 

https://ukllc.ac.uk/), UBiLim (University Biobank Limburg 45), BioSHaRE-EU (Biobank 

Standardisation and Harmonisation for Research Excellence in the European Union 46), and 

BBMRI-NL (Biobanking and Biomolecular Resources Research Infrastructure Netherlands, 

https://www.bbmri.nl/), are developing standards for organization of specific data types to 

facilitate large-scale collaborations in other fields, but no such efforts have been initiated in 

geroscience.

Mortality is the most frequently used outcome for biomarker validation. Biomarkers 

constructed with time to mortality as a reference outcome also tend to predict chronic 

diseases as well as functional and cognitive outcomes independent of chronological age 

— suggesting that they capture a dimension related to overall health 1,35. However, the 

direct use of non-mortality aging-related outcomes, such as multimorbidity, poor mobility, 

and frailty, may better capture information on the pace of aging and may be more useful 

for clinical applications. These could include internationally recognized scoring systems 

multimorbidity, frailty, disability, cognition 47 or quality of life measures, as well as more 

health-focused metrics, such as vitality, resilience, and healthspan, although no consensus 

yet exists on how to quantify the latter two48. Beyond cohort-specific challenges, access 

to cohort data remains a general ongoing issue: applying for access to many government-

funded datasets often requires lengthy paperwork and review processes, and can often span 

several months or years.
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Biomarker procedures and formulations.

Statistical and machine learning models used to identify or learn the relation between 

biomarkers and aging outcomes are still in early stages of development and validation, and 

many modeling challenges remain to be addressed. For example, many existing models 

assume a linear relation between biomarkers of aging and the likelihood of aging outcomes 

throughout the lifespan, while recent studies have discovered multiple examples of non-

linearity5,12,49. Technical considerations surrounding data preparation also pose challenges. 

For instance, recent work has demonstrated that calculating principal components from 

CpG-level data as input for biological age prediction can improve test-retest reliability 

of epigenetic biomarkers. 50. These and other unique transformations of individual 

measurements make cross-comparison of composite biomarkers challenging. Moreover, 

biomarkers or their components may be sensitive to underlying sample composition. For 

example, there is evidence that age-related methylation varies across different circulating 

immune cells 51. Therefore, comparative or validation studies should always carefully adjust 

for the proportions of different types of circulating cells. Studies may also treat missing data 

or repeated measurements for biomarkers or outcomes differently, potentially influencing 

power or skewing performance estimates. This issue is particularly important for proteomic 

assays that tend to generate many values ‘below the threshold of detection’, which may not 

be random but rather convey important information. Finally, there is currently no guidance 

on how to best integrate longitudinal repeated measures from the same individual, and 

whether trajectories or unique values should be considered.

Study design and reporting.

Several aspects of study design, such as follow-up time, number of events, and bias 

in mortality reporting may introduce variability across studies. Differences in statistical 

approaches are also a notable source of variation. For example, different validation studies 

often account for distinct potential effect modifiers by controlling, adjusting, or stratifying 

for them. These factors are expected to affect the magnitude of the relationship between 

the omic biomarkers and aging-associated outcomes, representing another challenge for 

comparison of biomarkers in (and across) validation studies. Additionally, studies can 

report performance metrics such as HRs in different ways (e.g., per standard deviation, 

compared to a reference group, or per unit increase), using different adjustment strategies for 

covariates (see Table 1). For example, in Cox proportional hazards regression, biomarkers 

can be coded as continuous variables (standardized or not), or as ordinal variables that 

capture quantiles of biomarker level or even as time-dependent covariates. The former 

approach provides information on risk estimates per one unit difference biomarker level 

(e.g., per standard deviation), while the second considers one level (typically the lowest 

quantile) as a reference group. These inconsistencies, which also plague other fields, 

have hindered reliable cross-comparison, benchmarking, and meta-analysis of evaluated 

biomarkers of aging.
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Recommendations for validation of biomarkers of aging

Cross-population validation of multiple biomarkers across several cohorts on a larger scale 

is necessary but challenging and will require considerable coordinated effort and increased 

funding. Based on the current state of the field and the challenges outlined above, we 

provide the following recommendations (summarized in Table 2) for benchmarking and 

reporting of validation studies, grouped by target stakeholders.

Recommendations for biomarker developers

Before composite or algorithmic biomarkers are validated across populations, the underlying 

statistical or machine learning models capturing the biological relation between biomarkers 

and outcomes need to be verified. It is important to examine the extent to which an 

association could be reasonably attributed to the underlying biology. We recommend that 

biomarker developers verify that the statistical assumptions of their models reflect the 

expected biological phenomena, to the extent of our current knowledge. For example, as 

recent studies reveal unique age-dependent epigenetic changes during different phases of 

life, it is becoming clear that non-linear or piecewise epigenetic biomarkers might represent 

the whole human lifespan more accurately than those that assume a linear relationship with 

age across the life course 52,53.

Successful validation of biomarkers requires full transparency of the methods used for their 

development, computational pre-processing and analysis, and verification of their predictive 

validity in multiple independent populations. Hence, preprocessing pipelines should follow 

best practice guidelines that ultimately enable data harmonization 54. For example, the 

treatment of missing or repeated measurements (e.g., using imputation or machine learning 

methods 55,56), data normalization, and quality control influence predictive performance 

results, so it is important to establish and follow standards and best practices for these 

steps 57. Similarly, fully specified computational procedures (formulations) for composite 

biomarkers should be made available publicly (as recommended for all omic tests by 

US National Academy of Science, Institute of Medicine 17) to allow for computation 

of biomarker scores independently by other researchers (without the need to upload or 

transfer data to biomarker developers). In addition, biomarker formulation should allow 

for simple implementation across new datasets. For example, most omic biomarkers 

could be formulated in standardized mathematical terms (see harmonization efforts by 

e.g., ClockBase19 epigenetic biomarkers, and MiMIR metabolomic biomarkers 58) and 

standardized software packages, which enable streamlined calculation of various biomarkers 

including blood biochemistry (e.g., BioAge 59) and epigenetics (e.g., Biolearn at https://

bio-learn.github.io and methylCIPHER 60). We believe that such a process of validation 

and implementation would provide even stronger results if it was undertaken according to 

guidelines that are widely discussed and adopted by the scientific community.

To support future validation studies, we recommend that developers consider methods 

and data sources that improve the likelihood of future generalizability, cross-population 

validity, and potential clinical validity of their biomarkers. Currently, epigenetic markers 

are the most commonly proposed and investigated type of composite biomarkers 1. We 

recommend developing methods to address many widely acknowledged challenges with 
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these and other biomarkers, including interpretability 2,61 and technical robustness 19,50. 

Studies involving longitudinal sample collection may be particularly useful for this purpose, 

as the resulting data can enhance our understanding of the dynamic properties of these 

biomarkers. In addition, we recommend the use of other complementary omic data, 

including metabolomics, proteomics, transcriptomics, and lipidomics, whose biological 

interpretation is often less complex, to develop biomarkers capable of capturing aspects 

of aging that may not be best reflected by epigenetic data 62. As the costs of many omic 

assays are decreasing and cohorts/biobanks are increasingly incorporating multiple data 

modalities (Table 3), we expect multi-omic biomarkers to become common in the near 

future., emphasizing the need for accessible and standardized approaches.

Recommendations for data maintainers

Successful validation of biomarkers depends on access to data and harmonization of 

aging-related phenotypic and molecular data across relevant cohorts. Procedures for easy 

data-sharing that enable more timely and broader access, while maintaining privacy of 

individual human data (such as NHLBI BioData Catalyst 63), should be widely adopted. 

Data repositories can and should provide transparent information on available data and data 

formats, as well as the data access criteria and review processes — including expected 

review time based on historical statistics. In addition, synthetic datasets (with the same data 

structures and distributions), data safe havens (that is, secure storage and computing for 

sensitive data), and federated access (unified central access) would ideally be provided 

to facilitate broader access to the data. Providing one or more of the above should 

be incentivized by funding agencies and other financial supporters. For sensitive data 

with controlled-access, federated analysis – whereby data remains decentralized on host 

institution servers but is made available for analysis in a privacy-preserving manner64 – may 

offer a suitable compromise, especially using cloud-based methods. Rather than requesting 

transfer of sensitive data, individuals aiming to validate a biomarker could provide the 

formulation of the biomarker to data owners and/or conduct their analysis in a secure 

environment, with access to only summary or synthetic data.

Many initiatives (e.g., RefMet, CHARGE, TOPMed, UBiLim, BBMRI, BioSHaRE-EU) 

have taken steps to standardize biomarker nomenclatures or cohort or biobank data to 

facilitate crosspopulation studies, often following rigorous guidelines for retrospective data 

harmonization (e.g., Maelstrom65). While these post-hoc efforts are needed to improve 

existing data, cohort or biobank data maintainers may facilitate this process by following 

best practices in recording and reporting biomarkers and aging outcome measures from 

the inception of their biobanks or cohort studies. In particular, data owners should aim for 

alignment with FAIR data principles (ensuring data is Findable, Accessible, Interoperable 

and Reusable 66), provide machine-readable metadata and data dictionaries that allow for 

harmonization, and make available records of data structure in data description publications. 

Especially for older or ongoing longitudinal studies with long followup, the above steps 

represent a considerable challenge that requires increased support from the aging research 

community. Success with the above efforts would increase data utility, particularly for 

federated learning and analysis across populations, which require standardized data.
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Recommendations for cross-population validation study teams

Biomarkers of aging should be evaluated across multiple diverse populations to account for 

differences across genetic ancestries, sex, geographic contexts, environmental or lifestyle 

factors, life stages, and health or disease states. This step is critical because even seemingly 

established biomarkers may not be valid in all human populations. For example, the ApoE4 

allele is the strongest risk factor for Alzheimer’s disease risk in white populations, but 

the association is substantially weaker in African American and Hispanic populations 67. 

Moreover, in Tsimane horticulturalists (a subsistence population in Brazil), ApoE4 appears 

to be protective against cognitive decline 68. As mentioned above, many existing composite 

biomarkers of aging have been trained in cohorts of predominantly white, European 

ancestry. A similar bias in the design of genetic studies has resulted in the development 

of polygenic risk scores that have diminished predictive accuracy in populations with non-

European ancestry69.

While many composite biomarkers of aging have shown some evidence of comparable 

predictive accuracy across genetic ancestry populations 24 70 71, establishing diverse cohorts 

with non-European ancestries to validate new composite biomarkers of aging remains 

a priority. Other key axes for cross-validation could include climate zones, country or 

continent, and exposure levels to various chemical or biological risk factors. This will 

require efforts to establish resources and research capacity in various geographical regions 

and minority populations. In addition to commonly used cohorts, many other cohort studies 

or biobanks (many of which are focused on recruiting diverse or minority populations) may 

be suitable for validation studies of biomarkers of aging. Some of these have already added 

or are in the process of adding (multi)omic data (Table 3), which will help to further improve 

development or validation of biomarkers of aging.

Efforts by developers to standardize various aspects of biomarker validation, including 

biomarker formulation and statistical analyses (described above), will allow for a reliable 

comparison across studies. For instance, biomarker formulations should be established 

“a priori” and not be further modified during validation (i.e. formulation “lock down” 
17). Additionally, the result of statistical analysis, such as HRs, should be reported for 

unadjusted, chronological age- and sex-adjusted, and fully adjusted models, permitting a 

broader cross-comparison of studies. Studies may additionally account for other factors 

mentioned above, including sample composition. To ensure comparability of performance, 

the community needs to take steps to agree on the minimal set of covariates to be included 

in the analysis and the use of stratified analyses by subgroups, such as age, sex, and/or race. 

Finally, reporting HRs per standard deviation and the absolute unit differences in biomarker 

levels (e.g., one standard deviation and one unit of increase in the biomarker) allows for 

easier comparison of different biomarkers and meta-analysis. While perfect standardization 

may not be realistically achievable, moving in the direction of standardization will at least 

enable the qualitative assessment of the extent to which results in different populations 

converge.

Correct reporting of study results is vital to enable cross-population validation. We 

recommend investigators follow established guidelines for reporting of observational 

studies, such as STROBE 72, to enhance transparency and reproducibility of findings. 
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All populations should be sufficiently described, either in summary or individually, when 

including multiple cohorts in one study. When focusing on mortality as a key aging-

associated outcome, studies should report allcause mortality based on reliable information, 

and where possible, cause-specific mortality, which may differ based on underlying 

population characteristics. Several multi-omic datasets offer information on aging-related 

outcomes separate from mortality (Table 3) that may be utilized instead of, or in addition 

to, mortality. Analysis in subgroups with certain (chronic) conditions that lead to accelerated 

aging (e.g., HIV infection 73) will inform whether these changes in aging biomarker levels 

are associated with increased morbidity or mortality, or whether bespoke biomarkers may 

be required in those groups of individuals to predict clinical outcomes. At minimum, results 

should be stratified and reported separately by age group and sex, given the clear sexual 

dimorphism in aging. Additionally, extended reporting of stratified analyses by various 

demographics (e.g., ethnicity, country, or pre-existing health status) is recommended to 

evaluate generalizability, since models that perform well across distinct strata are more 

likely to have good external validity 74. Reporting highly stratified results will also facilitate 

meta-analyses.

Outlook

The past decade has seen substantial progress in the development of new blood-based 

biomarkers of aging. Despite the tremendous promise of these tools for use in trials 

for longevity interventions, major roadblocks persist in translating them to clinical use. 

Our article highlights challenges encountered in the validation of these biomarkers and 

proposes efforts to overcome these barriers. Addressing these relatively simple challenges, 

such as standardization of effect size reporting, stands to greatly benefit the comparison 

and validation of biomarkers of aging. We anticipate that studies benchmarking multiple 

biomarkers of aging, especially those using different technologies (e.g., metabolomics, 

proteomics, epigenetics, and multi-omic approaches), across multiple populations will 

provide a more comprehensive understanding of their performance and robustness. 

Performing such large-scale comparative studies is a key priority to progress in this field but 

will require increasing cooperation between research groups and creation of incentives for 

transparent sharing of biomarker formulations and data. Efforts toward harmonization will 

require endorsement across diverse stakeholder groups, including biomarker developers, data 

owners, and epidemiological researchers, and may ultimately enable the goal of identifying 

the most promising biomarker candidates for clinical prioritization.

We further recommend that future work should aim to incorporate more clinically 

relevant and potentially actionable outcomes instead of, or in addition to, mortality. Many 

cohort studies provide alternative health outcome data (Table 3) which may support 

this goal, including data on specific chronic diseases, multi-morbidity, organ specific 

physiological integrity as well as physical and cognitive function. However, agreement 

of standard definition and operationalization of these outcomes would be highly desirable 

and ensure true comparability. Prospective studies that develop individual, longitudinal 

profiles of biomarkers will add a dimension that is strongly needed in the field. Such 

studies will be critical particularly with respect to assessing whether biomarkers are 
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sensitive to physiological changes such as those induced by longevity interventions and 

gerotherapeutics, or other preventive measures.

We anticipate that the ideal biomarkers of aging shall have moderate to strong associations 

with chronological age and predict multiple aging-related outcomes beyond mortality, 

such as functional decline, frailty, chronic diseases and disability, and (multi)morbidity. 

They should be sensitive to upstream factors thought to influence aging such as stress, 

adverse events, environment, genetics, and lifestyle, and they should mediate the relationship 

between these factors and aging outcomes. They should do so in many, diverse populations, 

and should do so relatively similarly across populations. Ideal biomarkers of aging 

meeting these requirements should be prioritized for validation as screening and diagnostic 

biomarkers, and eventually as surrogate endpoints in clinical trials. While a clear roadmap 

to realize this long-term goal does not yet exist, harmonization and standardization of 

biomarkers and population data across the field will greatly enhance our ability to identify, 

characterize, and validate the most promising biomarker candidates.

As biomarkers of aging move toward clinical implementation, several key questions remain 

to be addressed. First, there is no widespread agreement on the extent to which biological 

age may be captured by a single biomarker. Further validation of aging biomarkers through 

their use in clinical and epidemiological studies will help establish whether a single 

biomarker or multiple complementary biomarkers may be most useful. A looming question 

is whether biomarkers of aging should be integrated into the current disease-centric and 

disease-specific approach to healthcare. A shift towards holistic prevention, in line with the 

geroscience hypothesis, has the potential to substantially change public health and expand 

the portion of life free of diseases and disability, but will require endorsement across diverse 

stakeholder groups, particularly in the clinical realm. Next, the clinical utility of biomarkers 

of aging remains to be validated using prospective clinical trials to demonstrate that they 

can indeed improve how patients feel, function, and survive. Finally, while we focused 

on blood-based biomarkers of aging, more studies investigating aging across diverse organ 

systems and individuals are warranted to enhance our understanding and clinical potential of 

biomarkers of aging.

Conclusion

The translation of the science of aging to clinical applications holds substantial promises for 

the improvement of healthcare and the expansion of health expectancy, with the potential 

to both reduce health care expenditure and improve population health 75. An important 

prerequisite to accomplish this goal is the availability of solid and validated biomarkers of 

aging, which requires a process of validation to advance them into clinically valuable and 

actionable tools. It is our hope that the challenges we highlight and the recommendations we 

offer will aid in advancing biomarkers of aging to more robust tools that empower the action 

of health planners and health care providers.
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Extended Data

Extended Data Table 1.

Blood-based* biomarkers of aging validated in cross-population studies.

Biomarker Type Assay Variable selection
method

Biomarker 
components

Panel “Phenotypic 
aging”11

Blood 
biomarkers

Blood biochemistry 
and hematology

Penalized Cox 
regression model, 

42 variables

9 blood measures

“Agglomerative 
algorithm”12

Blood 
biomarkers

Blood biochemistry 
and hematology

Hierarchical 
clustering, 40 

variables

19 blood measures

BloodAge 13 Blood 
biomarkers

Blood biochemistry 
and hematology

Deep Neural 
Networks

45 blood measures

Omic DNAmRS 14 Epigenetics DNAm microarray EWAS on 
mortality, ∼450K 

CpGs

Weighted DNAm 
levels at 10 CpGs

PhenoAge11 Epigenetics DNAm microarray EN regression 
model with 20169 

CpGs

Weighted DNAm 
levels at 513 CpGs

GrimAge 15 Epigenetics DNAm microarray EN Cox regression 
model with ∼450K 

CpGs

Weighted DNAm 
levels at 1030 

CpGs

GrimAge2 16 Epigenetics DNAm microarray EN Cox regression 
model of time-to-
death, 1030 CpGs

Weighted DNAm 
levels at 1030 

CpGs

DunedinPACE 17 Epigenetics DNAm microarray EN regression 
model on 81239 
CpGs with high 

test-retest 
reliability

Weighted DNAm 
levels at 173 CpGs

bAge 18 Epigenetics DNAm microarray EN Cox regression 
model of time-to-

death, ~ 370K 
CpGs

35 EpiScores 
based on weighted 

DNAm levels

MetaboHealth 
score 19

Metabolomic Nuclear magnetic 
resonance

Stepwise Cox 
proportional 

hazards model, 226 
variables

Concentration of 
14 metabolites

MetaboAge score 
20

Metabolomic Nuclear magnetic 
resonance

Linear model 
trained on 

chronological age, 
56 variables

Concentration of 
56 metabolites

M-metabo-score 
21

Metabolomic Liquid 
chromatography-
mass spectrometry

Cox proportional 
hazards model, 470 

variables

Concentration of 
17 metabolites

“Proteomic 
signature” 22

Proteomic SOMAscan 1.3K Cox proportional 
hazard model, 1301 

variables

Concentration of 
76 proteins

Integrative “Integrative 
biomarker” 23

Clinical + 
Epigenetics

clinical 
measurements and 
DNAm microarray

EWAS and Elastic-
coxph

12 clinical 
measurements and 
DNAm levels at 

76 CpGs

*
Biomarker selection: Biomarkers were selected based on the following criteria 1) we reviewed biomarkers compiled by 

Justice et al. 14 10, Rutledge et al.24, and Kudryashova et al.25 which, to the best of our knowledge, collectively provide 
the most comprehensive list of blood-based and omic biomarkers of aging in the geroscience field; 2) we consulted a 
recent systematic ranking and scoring of biomarkers of aging performed by Hartmann et al. in 2021 to select the most 
cited biomarkers 26; and 3) we queried the literature using search terms [“epigenetic”, “metabolomic”, “proteomic”, 
“transcriptomic”], [“mortality”, “death”], and [“validation”] to identify additional omic biomarkers that have been validated 
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in cohort studies. Genomic biomarkers of aging (e.g., genetic variants) were not included in this work, as we focused on 
biomarkers potentially responsive to interventions. All included biomarkers/studies met the following inclusion criteria: 1) 
studies that propose new ways to quantify biological aging (predicting aging outcomes better than chronological age 27); 
2) biomarkers measured entirely or primarily in blood; 3) biomarkers that are applicable to the general population and not 
specific to certain subpopulations with specific diseases; 4) biomarkers that underwent validation in an independent cohort 
(cross-population validation) with at least 10 years of follow-up data on aging outcomes, including mortality (e.g., time to 
death); and 5) biomarkers whose predictive performance is reported in terms of hazard ratio (HR). As these strict inclusion 
criteria resulted in omission of numerous studies and biomarkers (see Extended Data Table 3 below for examples).

Abbreviations: SBP: Systolic blood pressure; FEV1: forced expiratory volume at 1 second; FVC: forced vital capacity; 
CRP: C-reactive protein; ALP: Alkaline phosphatase; WBC: White blood cell count, CN: Creatinine; ALB: Albumin; 
EWAS: epigenome-wide association studies; EN: Elastic Net; 10F CV: 10 fold cross validation; RFU: relative fluorescence 
units

Extended Data Table 2.

Cohorts for validation studies of biomarkers of aging described in this study.

Abbreviation Cohort Location Focus Website

ARIC Atherosclerosis 
Risk in 
Communities 
Study

USA Risk for 
atherosclerosis

https://sites.cscc.unc.edu/aric/
Cohort_Description

FHS Framingham Heart 
Study

USA Cardiovascular, lung, 
and blood diseases

https://
www.framinahamheartstudy.org

FINRISK FINRISK Finland Risk factors 
on chronic, 
noncommunicable 
diseases

https://thl.fi/en/web/thlfi-en/research-
and-development/research-and-
proiects/the-national-finrisk-study

FITSA Finnish Twin Study 
on Aging

Finland Genetic and 
environmental 
influence on aging

https://www.gerec.fi/en/research/
health/the-finnish-twin-study-on-
ageing-fitsa-taina-rantanen/

GS Generation 
Scotland

UK Health and wellbeing 
across lifetime

https://www.ed.ac.uk/generation-
scotland/for-researchers/generation-
scotland

InCHIANTI InCHIANTI Italy Older persons https://www.nia.nih.gov/inchianti-
study

JHS Jackson Heart 
Study

USA Cardiovascular disease 
in African Americans

https://www.jacksonheartstudy.org/

KORA Cooperative Health 
Research in the 
Augsburg Region

Germany Risk factors for 
cardiovascular disease

https://www.maelstrom-research.org/
study/kora

LBC Lothian Birth 
Cohorts

UK Longitudinal changes 
in brain aging

https://www.ed.ac.uk/lothian-birth-
cohorts/history

LLS Leiden Longevity 
Study

NL Long-lived family 
members and controls

https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC6132126/

NAS Normative Aging 
Study

USA Aging and disease 
development

https://www.vacsp.research.va.gov/
CSPEC/Studies/INVESTD-R/
CSP-710-VA-Normative-Aging-
Study.asp

NHANES National Health 
and Nutrition 
Examination 
Survey

USA Health and nutritional 
status

https://www.cdc.gov/nchs/nhanes/
index.htm

SATSA Swedish Adoption/
Twin Study of 
Aging

Sweden Genetic and 
environmental 
influence on aging

httDs://www.icpsr.umich.edu/web/
NACDA/studies/3843/summary

TILDA The Irish 
LongituDinal 
Study on Ageing

Ireland Aging https://tilda.tcd.je/participants/
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Abbreviation Cohort Location Focus Website

WHI Women’s Health 
Initiative

USA Heart disease, breast 
and colorectal cancer, 
and osteoporosis

https://www.whi.org

Extended Data Table 3.

Summary of additional studies not included in Table 1.

Biomarker Reason for exclusion Cohort Cross-
validation

Study

Adiponectin Single molecule, follow-
up < 10 years, no cross-
population validation

Health ABC n/a Poehls et al. 2009 28

Cystatin C Single molecule, follow-
up < 10 years, no cross-
population validation

Health ABC n/a Shlipak et al. 2009 29

Telomere length Single molecule, no cross-
population validation

UKB n/a Schneider et al. 2022 30

“Protein Biomarker” no cross-population 
validation

FHS n/a Ho et al. 2018 31

"Biological Age" no cross-population 
validation

FHS n/a Murabito et al. 2018 32

DM17 follow-up <10 years BLSA, 
InChianti, 
NHANES

WHAS Li et al. 2022 1

Wang et al. follow-up <10 years n/a KORA F4 
cohort excluded

Wang et al. 2021 33

Plasma proteomic 
biomarker

no cross-population 
validation, follow-up <10 
years

LonGenity LonGenity 
(∼50%)

Sathyan et al. 2020 8

Proteomics no cross-population 
validation

ICP+VSP1 ICP+VSP1 
(30%)

Eiriksdottir et al. 2021 34

DNAm clocks follow-up <10 years n/a 4 cohorts Marioni et al. 2015 2

Integrated proteomic 
and metabolomic 
biomarker

follow-up <10 years ARIC AASK Zhou et al. 2022 35

Multi-domain 
phenotypic panel

no cross-population 
validation, follow-up <10 
years

BLSA n/a Kuo et al. 2022 9

Heterogenous organ 
aging

no cross-population 
validation

UKB n/a Tian et al. 2023 4

Integrative clinical 
and DNAm model

follow up <10 years FHS ARIC Huan et al. 2022 23

"Proteomic 
Biomarker"

no cross-population 
validation

Health ABC n/a Orwoll et al. 2020 7

DNAm clocks weighted median follow-
up <10

n/a 13 cohorts Chen et al. 2016 36

DNAm Skin and 
Blood Clock

follow-up ? y, details not 
clear

n/a WHI, FHS, ... Horvath et al. 2018 37
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Summary of additional studies not included in Table 1

The criteria we defined for our overview resulted in exclusion of several studies. 

Exclusion was primarily due to follow-up times below 10 years (Mahalanobis distance, 
1; Cross-cohort evaluation of DNAm biomarkers,2), a lack of cross-validation in 

independent cohorts (miRNA biomarkers, 3; advanced biological aging predictor,4), a 

lack of evaluation of association with mortality (GlycanAge, 5; transcriptomic clock, 6), 

or a combination of the above (Plasma proteomic biomarker panels, 7,8; Multi-domain 

phenotypic panel, 9). We provide an overview of example studies not included in 

Extended Data Table 3 below. We also note that single molecule biomarkers are not 

covered in this study as the focus is on composite biomarkers. For a detailed overview 

and comparison of blood-based single molecule biomarkers of aging please refer to 10.
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Box 1.

Types of biomarker validation relevant to biomarkers of aging

Biological validation evaluates the extent to which the measurement reflects the 

fundamental knowledge about the biology of aging. Biomarkers can be particularly 

insightful if they lie within a pathway that is causal to, rather than merely associated with, 

aging.

Cross-species validation involves assessing the functionality of a biomarker in multiple 

species. If a pathway associated with a biomarker is phylogenetically conserved, it is 

more likely to be connected with aging as a universal phenomenon1,87

Predictive validation involves unbiased testing of the performance of the predictive 

model underlying the biomarker to predict a future aging-associated outcome. For 

instance, hazard ratios or time-to-event may be evaluated. Ideally, a true external 

predictive validation is carried out using independent data that was not used to train 

the model (often using machine learning or statistical methods). In the context of aging 

biomarkers, most predictive validation has been performed using retrospective analysis, 

but future studies should consider performing predictive validation by tracking aging-

associated outcomes prospectively.

Analytical validation assesses the accuracy and reliability of the methods used to 

measure the biomarker, including sample collection and storage methods, analytical 

assays, and covariates considered. This process aims to establish standard measurement 

practices and determine the precision, sensitivity, specificity, and reproducibility of the 

assay.

Clinical validation aims to determine the clinical utility of a biomarker, i.e., whether 

using that biomarker in a given setting allows for a better understanding of the ongoing 

disease or process that may contribute to better health outcomes. For instance, clinical 

validation of an aging biomarker may involve establishing that the biomarker has better 

predictive power for aging-associated outcomes than does chronological age.
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Figure 1. Different approaches to cohort study design in the context of biomarkers of aging.
Biomarkers of aging are commonly validated using cross-sectional or longitudinal study 

designs. Cross-sectional studies involve measurement of biomarkers and chronological age 

or aging-related outcome data at a single time point. These data can only support association 

of these measures at that time point. Longitudinal designs, on the other hand, allow for 

assessment of predictive validity of biomarkers measured at one time point and future 

aging-related outcomes.
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Figure 2. Validation of biomarkers of aging with different numbers of cohorts or biomarkers.
a) Most existing biomarkers have been developed using data from a single cohort and 

some have been validated in a second external cohort. Analysis of multiple biomarkers 

across multiple cohorts allows for a meta-analysis comparison across multiple cohorts. 

b) Biomarker validation studies need to consider different sources of variation, such as 

heterogeneity in population characteristics, sample collections, data preprocessing, analyses, 

and reporting.
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