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Abstract
Diabetic nephropathy (DN) is the main cause of end-stage renal disease worldwide. It is reported that the en-
dothelial-to-mesenchymal transition (EndMT) in glomerular endothelial cells plays an important role in DN. As a
specific form of epithelial-to-mesenchymal transition, EndMT may involve common regulators of epithelial-to-
mesenchymal transition. Fascin has been shown to mediate epithelial-to-mesenchymal transition. In addition, SirT7
has been confir med to contribute to inflammation in hyperglycemic endothelial cells via the modulation of gene
transcription. In this study, we speculate that SirT7 modulates fascin transcription and is thus involved in EndMT in
hyperglycemic glomerular endothelial cells. Our data indicate that α-smooth muscle actin (α-SMA) and fascin levels
are increased, while CD31 levels are decreased in the kidneys of DN rats. Consistently, our cellular experiments
reveal that high glucose treatment elevates fascin levels and induces EndMT in human glomerular endothelial cells
(HGECs). Moreover, silencing of fascin inhibits EndMT in hyperglycaemic HGECs. In addition, SirT7 is found to be
decreased in hyperglycemic cells and in the kidneys of DN mice. Moreover, the inhibition of SirT7 increases fascin
level and mediates EndMT. An increase in SirtT7 expression decreases fascin expression, inhibits EndMT, and
improves renal function in hyperglycemic cells and DN mice. SirT7 is found to bind to the promoter region of fascin.
In summary, the present study indicates that SirT7 transcribes fascin to contribute to hyperglycemia-induced
EndMT in DN patients.
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Introduction
Diabetic nephropathy (DN), which is the main cause of end-stage
renal disease, is the most serious complication of diabetes [1,2].
Once the disease progresses to end-stage renal disease, the mortality
increases and the cost of treatment increases [3,4]. Moreover,
current treatments can delay the progression of DN, and effective
treatment approaches are limited. Therefore, studies to explore the
potential mechanisms of DN are urgently needed.
DN is characterized by impaired glomerular filtration capacity.

The glomerular filtration barrier is constructed by human glomer-
ular endothelial cells (HGECs), the glomerular basement membrane
and podocytes. Damage to any part of the glomerular filtration
barrier enhances glomerular permeability and leads to proteinuria
[5]. Glomerular endothelial-to-mesenchymal transition (EndMT)
was shown to play an important role in DN [6]. EndMT is defined as
a reduction in the endothelial phenotype and an increase of
mesenchymal phenotype [7]. EndMT in HGECs is considered the
initial process of HGEC injury and is the origin of collagen-
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generating myofibroblasts contributing to fibrosis in DN [8,9]. In
addition, blocking EndMT relieves fibrosis and improves renal
dysfunction in DN [10].
As a specific form of epithelial-to-mesenchymal transition,

EndMT may involve common regulators of epithelial-to-mesench-
ymal transition [11]. Fascin was reported to play a crucial role in
epithelial-to-mesenchymal transition [12] and renal fibrosis [13].
However, whether fascin participates in EndMT in DN is still
unknown.
Epigenetic modifications play important roles in DN [14], and

histone modifications play the most important role in DN [15].
Histone modification performs physiological functions by regulat-
ing downstream gene transcription. Our previous studies indicated
that histone methylation participates in the occurrence and
progression of DN via the modulation of alpha-enolase, perforin-2,
protein tyrosine phosphatase 1B and phosphatase and tensin
homologous transcription [16‒19]. Moreover, SirT7-mediated his-
tone acetylation is involved in hyperglycemia-mediated endothelial
inflammation via modulation of death-associated protein kinase 3
transcription [20]. However, whether SirT7 also participates in
EndMT in DN is still not well known.
In the present study, we explored the underlying mechanism by

which SirT7 participates in EndMT in DN. Our results indicated that
SirT7 participates in EndMT in DN via modulation of fascin
transcription.

Materials and Methods
Rat model
The present study complied with the Guidelines for the Care and
Use of Laboratory Animals issued by the Committee on the
Management and Use of Laboratory Animals of Fudan University
Shanghai Cancer Center (license number: FUSCC-IACUC-
S20210456). Male Sprague Dawley rats weighing 300‒400 g were
used in the present study. The rats were raised under a 12/12-h
light/dark cycle and in a temperature-controlled environment
(22‒25°C). The animals underwent unilateral nephrectomy under
anesthesia (isoflurane 3%–4% induction and 1.5%‒2.5% main-
tenance). After unilateral nephrectomy, the rats were raised for 9
weeks. The animals that received a single intraperitoneal injection
of citrate buffer (0.1 M, pH 4.5) three weeks after unilateral
nephrectomy were defined as the control group (Con). Animals
that received a high-sugar and high-fat diet after unilateral
nephrectomy and an intraperitoneal injection of streptozotocin
(STZ, 50 mg/kg) three weeks after unilateral nephrectomy were
defined as the DN group. To determine the therapeutic effect of
SirT7 against DN, control vector- or AAV-SirT7-treated animals
were injected into the contralateral kidney at the time of unilateral
nephrectomy.

Immunohistochemistry (IHC)
Rat kidney tissue samples were paraffin-embedded, and IHC was
subsequently performed using standard protocols. Briefly, the
paraffin sections were incubated with primary antibodies at 4°C
overnight. After incubation with secondary antibody at room
temperature for 1.5 h, the paraffin sections were stained with a
DAB Detection kit (GeneTech, Shanghai, China) and counterstained
with haematoxylin. Finally, sections were examine under an optical
microscope. Antibodies used in the present study are shown in
Table 1.

Cell culture and treatment
HGECs were obtained from Procell (Wuhan, China) and cultured in
DMEM supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin‒streptomycin solution (PS) at 37°C in a 5% CO2 atmo-
sphere. HGECs were cultured in 25 mM glucose (high glucose)
DMEM for 3 days to establish a cell model of DN. Mannitol was
added to normal medium (5 mM) DMEM to achieve the same
osmotic pressure as the high glucose medium to exclude the effect
of osmotic pressure.

shRNA and plasmid treatments
After the HGECs were inoculated and reached 70%‒80%
confluence, they were transfected with the SirT7 overexpression
plasmid (SirT7-OE), SirT7 shRNA or fascin1 shRNA using Lipofec-
tamine 2000 (Invitrogen, Carlsbad, USA). The ratio of plasmid or
shRNA to Lipofectamine 2000 reagent was 1 mg/1.2 mL. The
sequences of shRNA used in this study are shown in Table 2.

qPCR analysis
Total RNA was extracted using an EZ-press RNA Purification
kit (EZBioscience, Roswell, USA). Hifair® II 1st Strand cDNA
Synthesis SuperMix (Yeasen, Shanghai, China) was used to
synthesize cDNA for qPCR. Then, qPCR was performed with Hieff
UNICON® qPCR TaqMan Probe Master Mix (Yeasen) on an ABI7500
Real-Time PCR system (Applied Biosystems, Foster City, USA). The
sequences of the qPCR primers used in this study are shown in
Table 3.

Hematoxylin and eosin (HE) staining
The paraffin sections were placed in an oven at 60°C for 1‒2 h and
dewaxed with xylene (National Pharmaceutical Group, Beijing,
China) and ethanol. Hematoxylin (Sigma-Aldrich, St Louis, USA)
was used to stain the nuclei for about 10 min and eosin (Sigma-
Aldrich) was used to stain the cytoplasm for 30 s. Finally, the
sections were sealed with neutral balsam (National Pharmaceutical
Group), dried at room temperature, and observed under an optical
microscope (Nikon, Tokyo, Japan).

Table 1. Information of antibodies used in this study

Antibody Information

SirT7 Cell Signaling Technology, USA

Fascin1 ProteinTech, Wuhan, China

α-SMA ProteinTech

CD31 ProteinTech

Vimentin ProteinTech

HRP-anti-mouse ProteinTech

HRP-anti-rabbit ProteinTech

Table 2. The sequences of shRNAs used in this study

Name Sequence (5′→3′)

shRNA-SirT7-a CCAAATACTTGGTCGTCTA

shRNA-SirT7-b GAAAGGGAGAAGCGTTAGT

shRNA-fascin1-a GCCTGAAGAAGAAGCAGATCT

shRNA-fascin1-b GCTGGTCGCTGCAGTCCGAGG

shRNA-fascin1-c GCAAGTTTGTGACCTCCAAGA

shRNA-control CAACAAGATGAAGAGCACCAA
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Masson trichrome staining
After paraffin sections were dewaxed, weigert iron hematoxylin (1:1
mixture of liquid A and liquid B) (National Pharmaceutical Group)
was first stained for 10 min, rinsed with running water,
and differentiated by 1% hydrochloric acid alcohol (National
Pharmaceutical Group). Then the tissues were stained with acid
fuhong-ponceau solution (National Pharmaceutical Group) for
about 8 min. After washing again, phosphomolybdate solution
(OKA Biotechnology, Beijing, China) was used to differentiate and
stain the sections for 3‒5 min. Until the tissues were observed under
the microscope with varying degrees of red, they were dyed with
aniline blue solution (National Pharmaceutical Group) for 5 min.
After the last washing, dehydrated with anhydrous alcohol,
transparent with xylene, sections were sealed for microscopic
examination.

Western blot analysis
Whole-cell extracts from different groups of HGECs were prepared
using cell lysis buffer (Cell Signaling Technology, Danvers, USA).
The protein samples (50 μg) were boiled in loading buffer at 100°C
for 10 min, separated by 8%‒10% SDS-PAGE, and transferred to
PVDF membranes. The membranes were blocked with protein-free
rapid blocking buffer (Beyotime Biotechnology, Shanghai, China)
for 1 h, after which all the membranes were incubated with specific
primary antibodies at 4°C overnight. After washing 5 times, the
membranes were incubated with secondary antibodies at room
temperature for 1 h. The membranes were subsequently washed
with PBST for 5 additional times. An ECL system (Beyotime
Biotechnology) was used to detect the protein signals. The mean
densities of the protein bands were analyzed using ImageJ.

Chromatin immunoprecipitation (ChIP) assay
ChIP assays were performed with a Simple ChIP kit (17-371RE; EMD
Millipore, Billerica,USA) according to the manufacturer’s direc-
tions. Briefly, the cells (1×107) were fixed with 1% formaldehyde
for 10 min at room temperature to crosslink the DNA and the
proteins. The cross-linking reaction was then stopped with the use of
2.5 mM glycine. Chromatin was sheared with the use of ultrasound.
After centrifugation, the supernatant was incubated with specific
primary antibodies or IgG at 4°C overnight. Agarose beads (17-
371RE; EMD Millipore) were applied to immunoprecipitate the
proteins. The mixture was incubated at 65°C for 4‒5 h to reverse
cross-linking DNA with proteins. Finally, the DNA was purified by
centrifugation and verified by electrophoresis. The oligonucleotide
sequences of primers used for fascin1 are listed in Table 4.

Statistical analysis
Data are shown as the mean±standard deviation. The comparison
of the means of two groups was conducted by two-tailed unpaired t
tests. One-way ANOVA followed by Bonferroni-corrected pairwise
comparison was employed to compare the means of more than 2
groups. P<0.05 was considered statistically significant.

Results
Occurrence of EndMT and augmentation of fascin level
in vivo
The characteristics of the rats in this study are shown in Table 5.
Hematoxylin and eosin (HE) staining and Masson trichrome
staining revealed renal damage and interstitial fibrosis in the
glomeruli of DN rats (Figure 1A). Moreover, IHC staining of renal
biopsy specimens from DN rats indicated that the expression of α-
smooth muscle actin (α-SMA) was increased, while the expression
of CD31 was decreased (Figure 1A). Fascin has been reported to
play an important role in renal fibrosis [13]; therefore, we examined
the level of fascin in the renal biopsy specimens of DN animals. IHC
staining revealed that fascin expression was increased in the
kidneys of DN animals (Figure 1A). Consistently, western blot
analysis and qPCR results indicated that the levels of α-SMA and
fascin were increased, while the level of CD31 was decreased in DN
rats (Figure 1B‒E). Our results demonstrated that fascin may
regulate EndMT in DN.

High glucose induces EndMT in hyperglycemic HGECs
via upregulation of fascin levels
To further determine whether fascin participates in EndMT in DN,
we constructed a cell model in this study with the use of HGECs. Our
data indicated that high glucose treatment increased α-SMA and
fascin expressions but decreased CD31 expression at both the
protein (Figure 2A‒D) and mRNA levels (Figure 2E‒G). These data
were quite similar to those obtained for DN rats. Next, we
downregulated fascin expression in hyperglycaemic HGECs, and
the effect of sh-fascin was confirmed via western blot analysis
(Figure 3A) and qPCR (Figure 3B). Our results indicated that
inhibition of fascin expression increased CD31 expression but
decreased α-SMA level in hyperglycemic HGECs (Figure 3). Our
data revealed that high glucose induces EndMT via an increase in
fascin level in HGECs.

SirT7 expression is reduced in DN animals and
hyperglycemic HGECs
Histone modification reportedly plays an important role in DN
[14,15]. Our previous studies demonstrated that histone methyla-
tion participates in the occurrence and progression of DN [16‒19].

Table 3. Sequences of primers used for the real-time RT-PCR analysis

Gene Sequence (5′→3′)

SirT7
F: TGGAGTGTGGACACTGCTTCAG
R: CCGTCACAGTTCTGAGACACCA

Fascin1
F: GCTGCTACTTTGACATCGAGTGG
R: CTTCTTGGAGGTCACAAACTTGC

α-SMA F: CCACCCCGCAGTCACTTTC
R: ATGTATGTACACGTTATAAACACTGTG

CD31
F: AAGTGGAGTCCAGCCGCATATC
R: ATGGAGCAGGACAGGTTCAGTC

Vimentin
F: AGGCAAAGCAGGAGTCCACTGA
R: ATCTGGCGTTCCAGGGACTCAT

Table 4. Sequences of primers used for fascin1 promoters

Gene Sequence (5′→3′)

Fascin1-ChIP1
(‒1764~‒1885)

F: CTCACATCTGTACCCAATCTAGAGC
R: AATAGACGATAGAAAATGCCTTGG

Fascin1-ChIP2
(‒1417~‒1556)

F: GGAATCCTCTTTCCTCAGCCTC
R: CTCAACCGCAAGCCAACATG

Fascin1-ChIP3
(‒433~‒586)

F: GCCTCAAGGAACCACATCTCTG
R: GAGGCAGACGAGGGAAAGAGG

Fascin1-ChIP4
(‒288~‒396)

F: CCTCCAGGCAGCCCTCAGA
R: CCTCGCTAGGAGCAAGGACGA
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Moreover, SirT7-mediated histone acetylation participates in
hyperglycemia-mediated endothelial inflammation [20]. However,

whether SirT7 participates in EndMT in DN is still unknown. The
present study demonstrated that high glucose treatment decreased

Figure 1. EndMT and fascin levels in control and DN rats (A) HE staining, Masson staining, and IHC staining of α-SMA, CD31 and fascin in the
kidneys of DN animals. (B) Western blot analysis results showing the expressions of α-SMA, CD31 and fascin in the kidneys of DN animals.
(C) qPCR results indicated that the mRNA level of α-SMA was increased in the kidneys of DN rats. (D) qPCR results indicated that the mRNA level of
CD31 increased in the kidneys of DN rats. (E) qPCR results indicating that the mRNA level of fascin increased in the kidneys of DN rats (*P<0.05 vs
Con; **P<0.01 vs Con, ***P<0.001 vs Con, ****P<0.0001 vs Con; n=5).

Table 5. Characteristics of rats in control (Con), diabetic nephropathy (DN), DN with empty vector (SirT7+AVV), and DN with SirT7
overexpression (DN+AVV-SirT7) groups

Rat variables Con DN DN+AVV DN+AVV-SirT7

Weight (g) 372.6±39.5 530.0±68.9*** 538.9±30.4 414.8±40.0###

Weight of kidney (g) 1.65±0.15 2.89±0.68** 2.92±0.57 2.28±0.30#

FBS (mM) 4.65±1.19 10.33±2.51*** 10.1±1.40 5.46±1.38###

HbA1c (%) 4.87±1.05 11.92±1.54*** 11.7±1.95 6.23±1.65###

TG (mM) 0.961±0.25 4.36±1.46** 4.14±1.32 3.23±1.15

UA (μM) 232.5 (196.8, 256.2) 316.9 (312.3, 365.8)*** 319.1 (289.1,386.6) 280.8 (279.7,284.4)#

Scr (μM) 50.39±4.28 52.78±7.17 54.4±10.1 51.0±8.36

BUN (mM) 6.88±0.98 9.32±0.70*** 10.0±1.29 8.16±1.14##

TC (mM 1.30 (1.25, 1.45) 3.10 (2.69, 3.88)*** 3.11 (2.73,3.32) 2.12 (1.72,2.46)##

LDL (mM) 0.485 (0.460, 0.555) 1.195 (0.945,1.320)*** 1.06 (0.81,1.15) 0.700 (0.61,0.72)###

HDL (mM) 0.625±0.58 1.023±0.21** 1.04±0.16 0.79±0.96##

Data are expressed as the mean±SD and compared using an independent sample T test. Data that are not normally distributed were expressed as median (IQR) and
compared using the MannWhitney U test. *Compared to the control (Con) group; #Compared to the DN with SirT7 empty vector (SirT7+AVV) group. *P<0.05, **P<0.01,
***P<0.001; n=8 per group. FBS, fasting blood sugar; HbA1c, glycosylated hemoglobin; TG, triglyceride; UA, uric acid; Scr, serum creatinine; BUN, blood urea nitrogen;
TC, total cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein.
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SirT7 protein (Figure 4A,B) and mRNA (Figure 4C) levels in HGECs.
Consistently, SirT7 expression was also inhibited in the kidneys of
DN animals (Figure 4D‒F). These data indicated that the level of
SirT7 decreased in DN rats and hyperglycemic HGECs and SirT7
may participate in EndMT in DN patients.

SirT7 participates in EndMT in hyperglycaemic HGECs
via modulation of fascin transcription
To determine whether SirT7 modulates EndMT via modulation of

fascin transcription, both loss-of-function and gain-of-function
approaches were used in this study. Our data indicated that SirT7
overexpression decreased α-SMA and fascin levels but increased
CD31 expression at the protein (Figure 5A‒E) and mRNA (Figure
5F‒I) levels. Moreover, ChIP assay revealed that SirT7 bound to the
promoter of fascin (Figure 5J). Furthermore, SirT7 silencing
decreased CD31 expression and increased fascin and α-SMA protein
(Figure 6A‒E) and mRNA (Figure 6F‒I) levels. These data
demonstrated that SirT7 participates in EndMT in hyperglycaemic

Figure 2. High glucose concentration upregulated fascin expression and induces EndMT in HGECs (A) Western blot analysis results showed
that high glucose treatment increased α-SMA and fascin levels and decreased CD31 expression. (B) Quantification of the α-SMA band density. (C)
Quantification of the CD31 band density. (D) Quantification of fascin band density. (E) qPCR analysis showed that high glucose treatment enhanced
α-SMA expression. (F) qPCR analysis indicated that high glucose treatment reduced CD31 level. (G) qPCR analysis showed that high glucose
treatment augmented fascin expression (*P<0.05 vs Con; **P<0.01 vs Con; n=5).
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HGECs via modulation of fascin transcription.

SirT7 overexpression inhibits EndMT and improves
renal dysfunction in DN animals
To determine the inhibitory effect of SirT7 overexpression on
EndMT in vivo, we used AAV-SirT7 in this study. The effectiveness

of AAV-SirT7 is shown in Figure 7A‒C. Our results demonstrated
that Sirt7 upregulation reduced renal injury and fibrosis (Figure
7A). Moreover, IHC assay revealed that SirT7 overexpression
reduced fascin (Figure 7C) and α-SMA levels but increased CD31
expression in the kidneys of DN rats (Figure 7A). Consistently,
Western blot analysis and qPCR results indicated that an increase in

Figure 3. Fascin silencing inhibited EndMT in hyperglycaemic HGECs (A) Western blot analysis indicated that fascin silencing decreased α-SMA
level and increased CD31 level in hyperglycemic HGECs. (B) Quantification of the α-SMA band density. (C) Quantification of the CD31 band density.
(D) Quantification of fascin band density. (E) The effectiveness of the combinations was verified via qPCR analysis. (F) qPCR analysis showed that
fascin silencing decreased α-SMA level in hyperglycaemic HGECs. (G) qPCR analysis showed that fascin silencing increased CD31 expression in
hyperglycaemic HGECs (*P<0.05; **P<0.01, ***P<0.001; n=5).
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SirT7 expression decreased fascin expression and inhibited EndMT
in DN rats (Figure 7B‒F). In addition, SirT7 upregulation improved
renal dysfunction in DN animals (Table 5). These results suggested
that SirT7 augments the inhibition of EndMT in DN rats, thus
improving renal dysfunction. The mechanism diagram of SirT7-
mediated transcription of fascin contributes to EndMT in diabetic
nephropathy is shown in Figure 8.

Discussion
The core findings of the present study were that hyperglycemia is
involved in the modulation of EndMT via an increase in fascin
expression, thus contributing to the occurrence and progression of DN.
Moreover, SirT7 was decreased in hyperglycemic HGECs and in the
kidneys of DN rats. Mechanistic studies indicated that SirT7 regulates
fascin transcription to induce EndMT in hyperglycemic HGECs.
The epithelial-to-mesenchymal transition, which involves intri-

cate cell phenotypic reconstruction, plays an important role in
tissue and organ damage [21]. Previous studies have demonstrated
that epithelial-to-mesenchymal transition (EMT) of renal epithelial
cells plays an important role in kidney fibrosis [22]. Recently,
glomerular EndMT was indicated to be involved in DN [5,6]. The
present study revealed that CD31 expression was reduced and that
α-SMA expression was augmented in the kidneys of DN rats and
hyperglycemic HGECs. The present study was quite similar to a
recent study which indicated that EndMT plays a crucial role in DN
[23]. It was deduced that epithelial-to-mesenchymal transition and
the EndMT may be associated with other factors [11]. Fascin acts as
an actin-binding protein that is enriched in the actin bundles of
spikes and filopodia [24,25]. Moreover, fascin is involved in
filopodia construction to increase cell migration [26]. In addition,

fascin promotes epithelial-to-mesenchymal transition [27,28]. In
the present study, fascin was found to be augmented in the kidneys
of DN rats and hyperglycemic HGECs. Additionally, fascin silencing
enhanced CD31 level and reduced α-SMA level, thus suppressing
EndMT in hyperglycemic HGECs. These data indicated that fascin
plays a crucial role in the modulation of EndMT in DN patients.
Epigenetic modifications have been found to play an important

role in DN [14], and histone modifications play the most important
role in DN [15]. Our previous studies indicated that lysine
methyltransferase 5A-mediated histone methylation regulates en-
olase 1 [16] and perforin-2 [17], thus playing a crucial role in
EndMT in DN. Moreover, SET domain containing lysine methyl-
transferase 8-mediated histone methylation modulates protein
tyrosine phosphatase 1B [18] and phosphatase and tensin homolog
[26] transcription to induce endothelial inflammation in diabetes.
Furthermore, our study indicated that SirT7-mediated histone
acetylation participates in endothelial inflammation via modulation
of death-associated protein kinase 3 expression [20]. In the present
study, we found that SirT7 overexpression inhibited α-SMA
expression but elevated CD31 expression in hyperglycaemic
HGECs. Moreover, silencing of SirT7 upregulated α-SMA expression
and decreased CD31 expression. Furthermore, AAV-SirT7 increased
CD31 expression, decreased α-SMA level, and improved renal
function in DN rats. These data indicated that SirT7 is involved in
the regulation of EndMT in DN patients. In addition, SirT7 bound to
the promoter of fascin, which indicated that SirT7 modulates
EndMT via the regulation of fascin transcription. Our research and
that of other scholars indicated that SirT7 participates in endothelial
inflammation [20], Podulus apoptosis [29], and EndMT in DN.
Therefore, SirT7 plays an important role in DN.

Figure 4. SirT7 level was reduced in hyperglycemic HGECs and in the kidneys of DN rats (A) Western blot analysis results indicated that SirT7
expression was decreased in hyperglycaemic HGECs. (B) Quantification of SirT7 band density. (C) qPCR analsyis indicated that SirT7 expression
was decreased in hyperglycaemic HGECs. (D) Immunostaining data indicating that SirT7 expression was decreased in the kidneys of DN rats. (E)
Western blot analysis results indicating that SirT7 expression was decreased in the kidneys of DN rats. (F) qPCR results indicating that SirT7
expression was decreased in the kidneys of DN rats (*P<0.05, **P<0.01, ****P<0.0001; n=5).
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Nevertheless, this study has several limitations. First, HGECs
were used to construct a cellular model, and other primary

endothelial cells should be used to confirm the results of the
present study. Second, the potential mechanism by which fascin

Figure 5. SirT7 overexpression decreased fascin expression and inhibited EndMT in hyperglycemic HGECs (A) Western blot analysis results
indicated that SirT7 overexpression inhibited fascin and α-SMA levels, and increased CD31 expression in hyperglycaemic HGECs. (B)
Quantification of SirT7 band density. (C) Quantification of fascin band density. (D) Quantification of the α-SMA band density. (E) Quantification of
the CD31 band density. (F) The effectiveness of SirT7 overexpression was confirmed via qPCR analysis. (G) qPCR analysis indicated that SirT7
overexpression decreased fascin level in hyperglycaemic HGECs. (H) qPCR analysis was used to determine whether SirT7 overexpression
decreased α-SMA level in hyperglycaemic HGECs. (I) qPCR analysis showed that SirT7 overexpression enhanced CD31 level in hyperglycaemic
HGECs. (J) ChIP assay showed that SirT7 binds to the promoter of fascin (*P<0.05, **P<0.01, ***P<0.001; n=5).
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induces EndMT in hyperglycaemic HGECs is still not well known
and deserves further research.
In conclusion, this study demonstrated that SirT7 expression

decreased, fascin expression increased, and that EndMT occurred in
DN rats. In addition, this study indicated that high concentration of

glucose induces EndMT via an increase in fascin level in
hyperglycemic HGECs. Moreover, SirT7 was found to negatively
regulate fascin transcription to participate in the modulation of
EndMT in DN. However, upregulation of SirT7 expression
decreased fascin transcription, thus inhibiting EndMT and improv-

Figure 6. SirT7 silencing increased fascin expression and induced EndMT in HGECs (A) Western blot analysis indicated that SirT7 silencing
increased fascin and α-SMA levels and decreased CD31 expression in HGECs. (B) Quantification of SirT7 band density. (C) Quantification of fascin
band density. (D) Quantification of the α-SMA band density. (E) Quantification of the CD31 band density. (F) The effectiveness of SirT7 silencing
was confirmed via qPCR. (G) qPCR analysis indicated that SirT7 silencing increased fascin expression in HGECs. (H) qPCR analysis showed that
SirT7 silencing enhanced α-SMA expression in HGECs. (I) qPCR analysis showed that SirT7 silencing reduced CD31 expression in HGECs (*P<0.05,
**P<0.01, ***P<0.001; n=5).
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ing renal function in hyperglycemic HGECs and DNmice. Our study
revealed that SirT7 may be an underlying therapeutic target for
DN.
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SirT7 expression in the kidneys of the rats after the corresponding treatment. (D) qPCR results of fascin in the kidneys of the rats with the
corresponding treatment. (E) qPCR results showing CD31 expression in the kidneys of the rats with the corresponding treatment. (F) qPCR analysis
of α-SMA expression in the kidneys of the rats with the corresponding treatment (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; n=5).
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