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Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due
to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has
been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in
subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating
bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the
homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell
signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling
pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral
bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain.
With increased understanding of bone biology and targeted therapies, researchers have found that the activity and
function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and
mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted
therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical
applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
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Introduction
Osteoarthritis (OA) is one of the most common causes of disability
among elderly individuals worldwide. It is essentially a degenera-
tive disease involving lesions of the cartilage, subchondral bone,
synovium, meniscus, and surrounding tissues [1]. Currently, the
incidence of OA is increasing gradually, and most OA patients are
elderly. It is estimated that one-third of people over the age of 65
suffer from OA, with a higher incidence among women than men
[2]. The causes of OA are complex and varied and are influenced by
a variety of factors, such as sex, age, genetics, diet and obesity;
among them, population aging and obesity are the most important
factors. Moreover, abnormal mechanical cues, such as joint

instability, overuse of joints, and imbalance of muscle strength,
are also important factors in the development of OA, and sports
injuries can lead to structural and weight-bearing abnormalities in
joints, increase the risk of cartilage damage, and contribute to OA
[3]. Osteophytes are a prevalent anatomical manifestation of OA.
They are believed to originate from cells in the periosteum. The
process of osteophyte formation shares similarities with the process
of bone repair observed during fracture healing, where the
periosteum is deemed crucial. Stem cells derived from the
periosteum, known as periosteum-derived cells (PDCs), reside in
the cambium periosteum layer and exhibit pluripotent character-
istics. PDCs play a pivotal role in bone repair and can be mobilized
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in response to inflammatory reactions and mechanical stimuli.
Abnormal mechanical stress not only induces OA but also
accelerates and promotes the production of bone encumbrances,
which exacerbates the pain of OA patients [4,5].
Joint pain and loss of function are the main reasons for treating

OA. Common treatments include nonpharmacological treatments,
such as weight control and physiotherapy. Pharmacological
treatments include nonsteroidal anti-inflammatory drugs (NSAIDs),
glucocorticoids, and hyaluronic acid, whereas surgical treatments
include joint replacement. Due to the numerous pathogenic factors
and complex pathological processes involved, conventional treat-
ments can alleviate only the symptoms of OA but cannot reverse the
progression of OA or restore normal joint structure [6–8].
Traditional therapies are frequently accompanied by serious effects.
NSAIDs can relieve pain and inflammation, but long-term use may
lead to gastrointestinal issues such as gastric ulcers and bleeding,
and long-term use of anti-inflammatory drugs may also increase
cardiovascular risk. Physiotherapy may initially cause some
discomfort and pain but is generally safe; excessive exercise or
improper management may aggravate joint damage. Surgical
treatment may be accompanied by certain surgical risks, such as
infection, bleeding, and anesthesia reactions; in addition, there are
various problems, such as loosening of the artificial joint, joint
durability, difficulty in recovery, and lack of function [9,10].
Therefore, new treatment methods are urgently needed.
Osteoclasts are indispensable in many bone-related diseases,

including osteoporosis, osteosclerosis, bone tumors, rheumatoid
arthritis (RA), and Paget’s disease. These diseases usually involve
abnormalities in bone structure, density, metabolism, or function
[11]. In osteoporosis, overactivated osteoclasts absorb excess
calcium and phosphorus from bone tissue, leading to decreased
bone mineral density and fragility [12,13]. Osteosclerosis, a genetic
disorder characterized by increased bone mass, is caused by defects
in osteoclast formation and function [14,15]. In addition, Scr kinase
deficiency has been reported to affect osteoclast activity, leading to
osteoporosis [16]. Scr kinase deficiency leads to a lack of intact folds
in osteoclasts, which impacts the adequate contact of osteoclasts

with the bone surface and their ability to absorb minerals and
proteins from bone tissue [17,18]. In the case of bone tumors,
surrounding malignant cells may activate osteoclasts, leading to
destruction of the bone structure and irritation of nerve endings.
Patients with bone tumors may experience bone-related pain [19].
Additionally, there are interactions between osteoclasts and
malignant bone tumor cells. Tumor cells may produce chemokines
that attract osteoclasts to migrate around tumors, thereby accel-
erating the destruction of bone tissue around tumors and enhancing
the invasive ability of bone tumors [20,21]. The primary function of
osteoclasts in RA is related mainly to joint destruction and pain.
During RA, inflammatory cells stimulate osteoclasts to release
enzymes and cytokines related to bone resorption, destroy bone
tissues, alter the joint microenvironment, and aggravate inflamma-
tion, resulting in severe joint damage and pain [22–25]. The activity
and number of osteoclasts in Paget’s disease are markedly
increased, which leads to changes in bone mineral density and
greatly increases the risk of fracture; concurrently, altered bone
mineral density greatly increases the risk of fracture due to the
significantly increased activity and number of osteoclasts. More-
over, excessive bone resorption increases the production rate of
new bone tissue, but the new bone is usually arranged unevenly,
resulting in an irregular bone shape and abnormal bone remodeling,
which can cause bone deformity and pain [26–28].
A growing body of evidence indicates that osteoclasts play an

important role in the development of many diseases. However, the
functions and mechanisms of action of subchondral osteoclasts in
OA remain unclear. Therefore, this review summarizes the roles
and mechanisms of subchondral osteoclasts in OA progression and
regulation to provide new targets for treating OA.

Composition of Subchondral Bone
The subchondral bone is located distal to the calcified cartilage. It
usually plays a role in maintaining joint elasticity, supporting
articular cartilage, and influencing cartilage metabolism [29]. It can
generally be divided into two anatomical entities: the subchondral
bone plate and subchondral trabecular bone [30] (Figure 1). The

Figure 1. Many pathological factors, such as smoking, obesity, and aging, are involved in the progression of OA These unfavorable factors
mediate numerous pathological molecular signals within the knee joint, causing imbalances in multiple cellular homeostasis pathways (osteoclast,
osteocyte, osteoblast, etc.) in the bone microenvironment and further exacerbating disease progression.
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subchondral bone plate consists of a thin layer of cortical bone
adjacent to calcified cartilage. The cortical bone plate has distinct
pores and is a permeable structure that provides a direct connecting
channel between the articular cartilage and subchondral trabeculae,
through which many blood vessels and nerves pass. In contrast, the
subchondral trabeculae are composed of cancellous bone close to
the bone marrow cavity; this bone marrow has a sparser structure,
is metabolically active, and is rich in blood vessels and nerves
[31,32]. Subchondral bone contains a variety of cells with different
functions, including osteoclasts, osteocytes, osteoblasts, and
endothelial cells. They collectively influence the microstructure
and histopathological changes in subchondral bone through cell-
mediated remodeling and modeling processes, and the four types of
cells in subchondral bone interfere with each other [33,34]. These
cells are described below:

Osteoclast
Osteoclasts are specialized cells with multiple functions that are
primarily responsible for bone resorption and remodeling to
maintain the normal physiological state of the skeleton. They
control bone growth and renewal by binding to the bone surface and
releasing acids and enzymes from lysosomes to degrade and dissolve
inorganic salts and organic matrices in the bone tissue [35,36].
Osteoclasts are closely associated with the immune system and
secrete cytokines and growth factors in response to proinflammatory
stimuli [37]. Moreover, osteoclasts are essential for bonemetabolism
and angiogenesis. On the one hand, osteoclasts control the
endocrine regulation of calcium and phosphate by regulating their
response to parathyroid hormone and calcitonin; on the other hand,
osteoclasts promote angiogenesis by facilitating endothelial cell
migration and stimulating the paracrine secretion of endothelial cells
to increase vascular endothelial growth factor (VEGF) [38,39]. In
addition, osteoclasts regulate osteoblast maturation and differentia-
tion through RANK/RANKL/OPG, Ephrinb2-Ephb4 signaling, sphin-
golipid signaling, and other membrane-associated proteins [40].
Osteoclasts play an important role in many diseases. However, the
function of subchondral osteoclasts in OA remains unclear.

Osteocyte
Osteocytes are the most abundant cells in bone and account for
90%–95% of bone cells. Osteocytes are responsible for maintaining
bone homeostasis and mechanotransduction. They are the primary
regulators of osteoblasts and osteoclasts. Upon stimulation,
osteocytes maintain bone homeostasis by regulating the signals
generated by mechanical loads and recruiting osteoclasts and
osteoblasts to initiate the repair process [41,42]. Osteocytes also
modulate the extracellular matrix through specific molecular
remodeling mechanisms. As endocrine cells, osteocytes can further
influence bone metabolism by affecting phosphate uptake, insulin
secretion, and skeletal muscle function, thereby regulating bone
size and shape. Previous studies have demonstrated that osteocytes
are crucial for bone aging [43,44]. In addition to these functions,
many other functions of osteocytes, such as interactions with the
immune system [45], influencing hematopoiesis through the
secretion of cytokines [46], and promoting the progression of bone
cancer, are still being investigated [47].

Osteoblast
Osteoblasts are derived from bone marrow mesenchymal stem cells

(BMSCs), and their differentiation is a key step in osteogenesis. There
are three stages of differentiation from BMSCs to osteoblasts:
osteogenitor cells, preosteoblasts, and osteoclasts [48,49]. This
differentiation process is regulated by various transcription factors,
signaling pathways, and genes, such as bone morphogenetic proteins
(Bmp), Runx2 transcription factors, and the Wnt signaling pathway
[50,51]. Osteoblasts play an important role in bone development and
the maintenance of homeostasis. VEGF-derived proteins affect bone
repair and regeneration and contribute to bone defect healing by
stimulating vascular and osteoclast recruitment [52]. Osteoblasts,
which have abundant basophilic cytoplasm, a large number of
mitochondria, and high Golgi capacity, produce a unique extra-
cellular protein assemblage consisting of large amounts of collagen
type I, osteocalcin, alkaline phosphatase, and the extracellular matrix
[53] and simultaneously affect the development and differentiation of
osteoclasts. Previous studies have demonstrated that osteoblasts can
influence the cellular behavior, survival, and differentiation of
osteoclasts through direct contact between osteoblasts and osteo-
clasts through the bidirectional transactivation of activation signals
such as EFNB2-EPHB4 and FASL-FAS or secreted proteins such as
PANKL/OPG, M-CSF, Wnt5a, and Wnt16 [54,55].

Endothelial cell
Subchondral bone endothelial cells are smooth monolayers of cells
tightly arranged in the lining of the vascular lumen that serve
various important physiological functions. Endothelial cells can
regulate angiogenesis and blood flow by secreting vascular and
secretory factors or engaging in molecular crosstalk with osteo-
blasts, playing a crucial role in fracture healing and the maintenance
of bone homeostasis [56,57]. Endothelial cells can participate in the
inflammatory response in the subchondral bone region in various
ways, such as through the calcium signaling pathway, which
produces several immune factors and chemokines that direct
immune cells to the damaged site and promote tissue repair and
regeneration [58]. Simultaneously, endothelial cells produce a
variety of cytokines, such as basic fibroblast growth factor (bFGF)
and ADAMTS, thereby promoting the proliferation and differentia-
tion of BMSCs and maintaining the regenerative capacity of bone
tissue [59,60]. Additionally, endothelial cells partially regulate the
maturation and differentiation of osteoblasts. Endothelial cells can
produce a variety of cytokines and growth factors, such as VEGF, or
through cell crosstalk to influence osteoblasts [61].

Origin of Osteoclasts
Since the end of the 19th century, when osteoclasts were first
discovered and observed under a microscope, the multinucleated
morphology of osteoclasts has given rise to a great deal of
discussion about their origin and function. Since then, various
experiments have been conducted, and many theories have been
proposed to explore and explain the origin of osteoclasts. As
common osteocytes and osteoblasts are involved in the regulation
of bone remodeling, it was initially thought that there was a
commonality between the two in the early 20th century. However, a
growing body of evidence is beginning to support a ‘biphyletic
origin’ theory between the two types of osteocytes, and morpho-
logical similarities have been observed between mature osteoclasts
and macrophage-derived cells [62].
The hematopoietic origin of osteoclasts was confirmed by

Walker’s pioneering experiments in the 1970s, in which cells from
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the spleen and bone marrow of normal mice were transplanted into
mice suffering from hereditary osteosclerosis and osteoclast
deficiency. As a result, bone resorption was restored in the mice,
suggesting that the hematopoietic organs could produce certain
cells to resorb hardened bone tissue [63]. Subsequently, an
increasing number of scholars have shown that osteoclast produc-
tion is inextricably linked to monocyte/macrophage production.
Scheven et al. [64] demonstrated that populations of hematopoietic
stem cells (HSCs) can produce osteoclasts and that the ability to
produce osteoclasts increases with the purity of stem cells. Previous
studies reported that macrophage colony-stimulating factor (M-
CSF) activated the differentiation of HSCs into monocytes/macro-
phages; furthermore, mature cells of the monocyte/macrophage
lineage could form osteoclasts, and immature monocytes and
macrophages could also form osteoclasts when bone marrow
stromal cells provided the appropriate microenvironment [65,66].
In addition, bone and bone marrow contain three distinct

macrophage populations, namely, osteoclasts and bone marrow
macrophages, haematopoietic stem cell macrophages and osteal
macrophages, which also suggests that osteoclasts and macro-
phages may have similar origins. It has been shown that cells from
the monocyte/macrophage system, such as hematopoietic marrow
cells, blood monocytes and peritoneal macrophages, can develop
into bone-resorbing osteoclasts; therefore, the osteoclast population
can be classified within these series of cells. In fact, osteoclasts and
macrophages are two differentiation products of myeloid precursors
that compete with each other [67,68]. Osteoclasts are generated
through a series of processes. The transformation of hematopoietic
stem cells (HSCs) to monocytes/phagocytes initiates the differentia-
tion of osteoclasts, followed by the proliferation and differentiation
of osteoclast precursors and finally maturation into osteoblasts with
bone resorption capacity.

The Role of Subchondral Osteoclasts in OA
Subchondral bone is crucial for OA onset. Under normal physiolo-
gical conditions, the osteochondral unit comprises subchondral
bone and articular cartilage. Articular cartilage provides a smooth
surface for movement, whereas subchondral bone provides stability
and support. Together, they ensure the proper function and health
of joints. A growing body of evidence suggests that abnormal
remodeling of the subchondral bone in OA patients occurs before
and, to some extent, accelerates articular cartilage degeneration.
Additionally, the subchondral bone may be the primary source of
pain in OA patients, making it essential to the pathogenesis of this
disease [69,70]. In the early stages of OA, hyperactivation of
subchondral bone remodeling due to excessive bone resorption has
been proposed as a major pathological hallmark of OA [71]. Bone
remodeling is a highly coordinated process, and under normal
conditions, osteoclast-mediated bone resorption and osteoblast-
mediated bone formation are balanced to ensure the maintenance of
bone homeostasis [72]. However, when OA occurs, the number of
osteoclasts in the subchondral bone significantly increases, leading
to enhanced bone resorption and alterations in the microstructure
and microenvironment of the subchondral bone. Multiple signaling
pathways and molecules are involved in the recruitment of
subchondral osteoclasts. First, RANKL binds to the RANK receptor
on the surface of osteoclasts and activates osteoclasts, which is a
critical step that drives the migration of osteoclasts to bone tissue.
Several chemokines and chemotactic proteins, such as CCL2 and

CX3CL1, can be produced in subchondral bone and attract
osteoclasts to these regions [73,74]. During osteoclast migration,
proteases such as collagenase are involved in the degradation of the
bone matrix, providing a pathway for the movement of osteoclasts.
Adhesion molecules on the cell surface, such as integrins, are also
involved in the migration of osteoclasts through bone [75]. The
periosteal microenvironment in the bone marrow also plays an
important role in the recruitment of osteoclasts, providing a suitable
environment for survival and differentiation. It affects angiogenesis
and the innervation of subchondral bone, thereby accelerating
articular cartilage damage and causing joint pain [76,77]. Hence,
subchondral osteoclasts have extraordinary significance in OA.
The role of subchondral osteoclasts in OA is mainly reflected in

the structural destruction of subchondral bone and articular
cartilage, angiogenesis, and joint pain. In the early stage of OA,
the number and activity of subchondral osteoclasts increase
abnormally, and the rate of bone resorption increases significantly.
This disrupts the balance of bone remodeling, resulting in increased
loss of subchondral bone, enlarged bone marrow cavities, and
decreased bone mineral density. Excessive bone resorption leads to
irregularities in the subchondral bone, which can cause the
formation of bone cysts. In the subchondral bone, these cysts are
liquid or semisolid cysts that can cause bone pain and discomfort.
Moreover, overactive osteoclasts secrete proteases and degrading
enzymes, such as MMPs, and capture enzymes, which degrade the
cartilage matrix and lead to structural destruction of articular
cartilage [78–80].
CD31hiEmcnhi, a specific vascular subtype, is an important feature

of OA and was recently found to be closely associated with
angiogenesis and osteogenesis [81,82]. It is characterized by strong
positive expression of platelet endothelial cell adhesion molecule
(PECAM-1/CD31) and endothelial mucin (EMCN), which can
exacerbate cartilage erosion in OA. Excessive secretion of PDGF-
BB by osteoclast precursors induces the formation of the CD31hi

Emcnhi vascular isoform (Figure 2), and the number of CD31hi

Emcnhi vessels increases significantly in OA. Moreover, vascular-
associated osteoclasts (VAOs), a subtype of osteoclasts, can assist
H-type blood vessels in eliminating cartilage [83–86]. Moreover,
excessive angiogenesis promotes osteogenesis. Despite increasing
bone mass, it does not enhance bone strength. Instead, this leads to
insufficient bone mineralization and destruction of the mechanical
properties of the subchondral bone, which accelerates articular
cartilage damage and exacerbates the vicious cycle of OA [87].
Sensory nerve fibers and nerve trunks are distributed within the
vascular channels of articular cartilage and around the blood vessels
of subchondral bone. Osteoclasts secrete Netrin-1, a protein that
plays a key role in neural development and the function of the
nervous system. This helps to establish neural connections by
guiding the growth and migration of neuronal axons; thus, sensory
innervation of the subchondral bone is related to the activity and
number of osteoclasts during OA. Osteoclasts in subchondral bone
introduce abnormal sensory innervation during OA, causing joint
pain in OA patients [88,89].

Mechanism by Which Subchondral Osteoclasts
Regulate OA
Autophagy-related signaling pathways
Increasing evidence suggests that autophagy may play a pivotal role
in regulating the proliferation, differentiation, and function of
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osteoclasts. Multiple signaling pathways, including the Beclin-1/
Becn1, p62/sqstm1, mTOR, and HIF-1α pathways, play key roles in
this process. Molecules such as CD147, G protein-coupled receptor
kinase-interacting protein 1 (GIT1), IL-17A, and TRAF6 can regulate
osteoclast autophagy through Beclin-1 [90,91]. After CD147-
mediated autophagy is activated, the levels of Beclin-1 and soluble
RANKL increase, promoting osteoclastogenesis [92]. GIT1 promotes
autophagy in osteoclasts by promoting the phosphorylation of the
Beclin1 Thr119 site and disrupting the binding of Beclin1 to BCL2
[93]. IL-17A regulates RANKL-induced osteoclast formation by
modulating Beclin-1-mediated autophagy [94]. TRAF6 mediates the
ubiquitination of Beclin1 at Lys117 and promotes RANKL-stimu-
lated osteoclast differentiation [95]. As a characteristic autophagy
adaptor protein, p62/sqstm1 activates autophagy and is affected by
LC3 accumulation and F-actin loop formation, which are involved
in RANKL-induced osteoclast differentiation [96]. Additionally,
mTOR regulates autophagy through the AMPK/mTOR/70-kDa
ribosomal protein S6 kinase (P70S6K) signaling pathway, affecting
osteoclast differentiation [97]. Among the protein signaling path-
ways through which HIF-1α regulates autophagy, the upregulation
of BNIP3 is involved in hypoxia-induced autophagy activation [98].
Furthermore, HIF-1α mediates the involvement of miRNAs in
autophagy regulation in osteoclasts [99].

Noncoding RNAs (ncRNAs)
NcRNAs are important epigenetic regulators of osteoclast biological
behavior. MiRNAs, circRNAs, and lncRNAs form a complex network
that profoundly affects the biological activity of osteoclasts [100].
Among the miRNAs studied, miR-31 is one of the most upregulated

miRNAs during osteoclastogenesis and regulates osteoclasts by
affecting RhoA activity [101]. Moreover, miR-21, a new player in
bone disease, promotes osteoclast formation and bone resorption
through the PI3K/Akt signaling pathway [102]. Moreover, miR-34c
promotes osteoclast survival by targeting leucine-rich repeat G-
protein-coupled receptor 4 (lgr4) [103]. Mir-29b promotes osteoclast
survival by inhibiting osteoclast apoptosis through the targeting of
the proapoptotic factor Bcl-2 modifier (BMF) [104]. Mir-146-5p and
mir-539 have been implicated in promoting osteoclast survival, bone
resorption, and secretion, but their targets remain to be explored
[105,106]. A large number of circRNAs are upregulated during the
early and late stages of osteoclastogenesis, suggesting that the
expression profile of circRNAs is highly regulated during osteoclas-
togenesis. However, studies on the regulation of circRNAs by
osteoclasts are rare. The available data indicate that circRNAs may
function as miRNAs in the regulation of osteoclasts [107]. Exosomes
are also involved in ncRNA communication. However, further
studies are needed on the targeted regulation of subchondral
osteoclasts by exosome-based ncRNAs.

RANK/RANKL/OPG axis
The RANKL/RANK/OPG axis plays an essential regulatory role in
osteoclast formation. This biological process begins with osteo-
blasts and stromal cells secreting RANKL, which interacts with
osteoclast precursors and binds to RANK receptors. This interaction
triggers the activation of a series of transcription factors, including
NF-κB, activator protein 1, AKT, nuclear factor of activated T-cell
cytoplasm 1 (NFATc1), and MAPK-related macromolecules such as
ERK, JNK, and p38. Activation of these downstream factors initiates

Figure 2. PDGF-BB secreted by subchondral osteoclast precursor cells promotes H-type angiogenesis in OA In the bone microenvironment,
osteoblasts and endothelial cells secrete VEGF to promote H-type angiogenesis; at the same time, osteoclasts secrete Netrin-1 to act on sensory
nerves, leading to joint pain in patients with OA.
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the transcription of genes related to osteoclast differentiation and
bone resorption, including genes encoding anti-tartrate acid
phosphatase (TRAP), cathepsin K (CTSK), the calcitonin receptor
(CTR) and MMP-9. This process ultimately results in the formation
of mature multinucleated osteoclasts [108–113]. TNF receptor-
associated factor 6 (TRAF6) is also an essential component of the
RANKL-RANK signaling pathway, and recruitment of TRAF6
activates signaling pathways such as the NF-κB, MAPK, and
PI3K/AKT pathways, thereby promoting osteoclast differentiation
and maturation [114,115]. In this process, the activation of NF-κB
and the subsequent upregulation of transcription factors such as
NFATc1 and c-Fos are critical steps in osteoclast differentiation and
maturation [116,117].
Moreover, OPG, a secreted protein and cytokine receptor protein

produced by osteoblasts, plays a pivotal role in this process. It plays
an important negative regulatory role in bone tissue. As a receptor
antagonist, it can act as a decoy receptor to replace RANK and bind
to RANKL, thereby inhibiting the formation of mature osteoclasts
and consequently downregulating bone resorption. This mechan-
ism is responsible for maintaining the homeostasis of bone tissue
and ensuring that an appropriate ratio of bone resorption to
osteogenesis is maintained. The expression of OPG is usually low
but may be reduced in OA, leading to an increase in the combined
effect of RANKL and RANK, which in turn increases the number and
activity of osteoclasts, significantly increasing bone resorption and
disrupting the balance of bone remodeling, thereby causing joint
injury [118,119]. Additionally, OPG can cause the breakdown of
osteoclast pseudopods and protect the bone cortex through MAPK
signaling and other pathways [120]. Overall, the RANKL/RANK/
OPG axis is crucial for the development and function of osteoclasts.
The ratio of OPG/RANKL determines the degree of bone resorption
and the process of bone metabolism and is a crucial factor in bone
and tissue metabolism.

Oxidative stress
Oxidative stress-induced reactive oxygen species (ROS) play a large
role in regulating the balance of the bone remodeling process. ROS
include a variety of reactive molecules and free radicals, such as
superoxide anions, hydrogen peroxide and hydroxyl radicals. These
molecules are produced through the electron transport chain during
aerobic respiration and can affect biological functions such as cell
signaling and homeostasis [121]. Several recent studies have shown
that under normal conditions, ROS are indispensable intracellular
secondary messengers that perform numerous functions, including
apoptosis, gene expression and activation of cellular signaling
cascades, and play important roles in regulating cell proliferation,
survival, metabolism, apoptosis, differentiation and migration
[122]. However, ROS play dual roles. They are harmful when their
levels increase due to aging or the onset of diseases such as OA.
Excessive amounts of ROS can lead to bone destruction and even
death of bone cells.
Recent studies have shown that oxidative stress and the

consequent generation of ROS promote osteoclast differentiation. It
has been demonstrated that RANKL stimulation increases ROS
production in BMMs via the TRAF6/Rac1/nicotinamide adenine
dinucleotide phosphate oxidase 1 (Nox1) signaling cascade, leading
to enhanced osteoclast differentiation. In contrast, the antioxidant N-
acetylcysteine (NAC) inhibited the response of BMMs to RANKL,
which included ROS generation, MAPK pathway activation, and

osteoclastogenesis. Similarly, in a glucose-induced diabetic rat
model of osteoporosis, an increase in ROS production in osteoclasts
was observed, followed by enhanced expression of MAPK, the NF-
κB signaling pathway and NLRP3-related proteins, which promoted
osteoclast differentiation and bone resorption [123,124]. The
production of ROS not only directly promotes osteoclast differentia-
tion but also interacts with osteoblasts to regulate osteoclast
formation and differentiation. The OPG/RANK/RANKL axis causes
osteoblasts and osteoclasts to be inseparable [125]. High levels of
H2O2-induced ROS in osteoblasts and BMSCs can stimulate RANKL
mRNA and protein expression via the ERK and PKA-CREB path-
ways. The cocultivation of osteoblasts and osteoclast precursor cells
demonstrated that the upregulation of RANKL expression induced
by ethanol relied on the activation of intracellular ROS through
NADPH oxidase activity in osteoblasts. Furthermore, the generated
ROS actively facilitate the differentiation of osteoclasts [126,127].
These findings imply that ROS play a pivotal role in enhancing
RANKL secretion from osteoblasts, thereby modulating the differ-
entiation of osteoclasts. In addition, the ROS/endoplasmic reticulum
and ROS/TFEB pathways regulate osteoclast production and
differentiation to a certain extent by affecting autophagy [128,129].

Inflammatory signaling pathway
Inflammatory cells are formed by immune cells, such as macro-
phages, T lymphocytes, B lymphocytes, and other leukocytes that
infiltrate bone tissues and produce a variety of cytokines and
chemokines, such as IL-1β, IL-6, TNF-α, nerve growth factor (NGF),
and the anamnestic toxin C5a, all of which can regulate osteoclast
activity to a certain degree, thus affecting OA. Accordingly, IL-1β
can stimulate osteoclastogenesis by upregulating the expression of
RANKL in osteoblasts or stromal cells, thereby significantly
increasing the rate of bone resorption and disrupting the balance
of bone metabolism, leading to the destruction of bone structure
and accelerating the progression of OA [130,131]. Simultaneously,
IL-1β can affect osteoclasts through the NF-κB signaling pathway.
When IL-1β binds to its cell surface receptor IL-1 receptor type I (IL-
1RI), it causes receptor activation and the formation of a receptor
complex consisting of IL-1RI, IL-1 receptor accessory protein (IL-
1RAcP), and myeloid mediator protein 88 (MyD88). MyD88
activates IL-1RI and TRAFs through the IL-1 receptor-associated
kinase (IRAK) to activate TRAF6. Activated TRAF6 stimulates TGF-
β-activated kinase 1 (TAK1), which induces the expression of the
kinase kappa B (IKK), leading to IκB protein degradation and NF-κB
nuclear translocation, thereby regulating osteoclasts [132]. In
addition, IL-1β activates the JAK-STAT and MAPK pathways to
stimulate osteoclastogenesis [133]. Moreover, compared with IL-1β,
IL-6 activates the JAK-STAT pathway and preferentially stimulates
osteoclastogenesis. When osteoclasts are stimulated by IL-6 family
cytokines, these factors bind to the gp130 receptor and activate
gp130, activating JAK kinases, especially JAK1 and JAK2, which
phosphorylate IL-6Rα. Activated STAT3 enters the nucleus and
affects gene expression, thereby regulating osteoclast differentiation
and activity [134]. In addition, IL-6 activates the NF-κB and MAPK
signaling pathways, thereby regulating osteoclast activity and
function. Like the RANKL/RANK system, TNF-α induces osteoclast
differentiation but independently of this process. TNF-α recruits
TRAFs to activate the transcription factors NF-κB, c-Fos, and
NFATc1, which in turn induces osteoclast differentiation. However,
TNF-α alone has a very limited role in inducing osteoclast
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formation, and several inhibitory proteins, including TRAF3, IRF8,
and RBP-j, regulate this process [135]. Furthermore, NGF and the
anamorphic toxin C5a can influence osteoclasts by activating the
RANKL and MAPK signaling cascades, respectively [136–138].
These cytokines and chemokines influence chondrocytes by

interacting with osteoblasts and osteoclasts to regulate each other
and maintain normal bone structure, thus indirectly affecting
subchondral osteoclasts. The effects of the inflammatory factors
IL-1β, IL-6, and TNF-α on chondrocytes can generally be summar-
ized as catabolism, which induces further induction of inflamma-
tory mediators as well as degradation of the cartilage extracellular
matrix through the upregulation of a series of hydrolytic enzymes
and moreover contributes to chondrocyte apoptosis [133,139].
Chondrocytes can promote subchondral bone loss by regulating
osteoclasts. Abnormal mechanical stress induces primary chondro-
cytes to produce IL-1b, which indirectly induces the differentiation
and maturation of osteoclasts by increasing RANKL expression via
osteoblasts. In the medial meniscus (DMM) instability-induced OA
model, chondrocytes produce large amounts of TNF-α and IL-6.
Moreover, TNF-α activated NF-κB and JNK in a Rankl-independent
manner, which directly induced osteoclast differentiation and
indirectly induced their production. In addition, senescent chon-
drocytes and hypertrophic chondrocytes produce proinflammatory
mediators, catabolic enzymes, and chemokines, collectively re-
ferred to as senescence-associated secretory phenotypes (SASPs),

which affect subchondral osteoclast lineage cells. In addition,
osteoclast precursors invade the hypertrophic cartilage region and
interact with chondrocytes to remodel the cartilage matrix and form
ossification centers. Moreover, mature osteoclasts can regulate
nearby chondrocytes, disrupting bone-cartilage connections and
aggravating cartilage damage. TGF-β1 expression in osteoblasts was
upregulated in a time-dependent and dose-dependent manner
under mechanical stimulation. Chondrocyte apoptosis was aggra-
vated when the cells were cocultured with osteoclasts. Intraper-
itoneal injection of a TGF-β1R inhibitor in OA rats effectively
reduced chondrocyte apoptosis and cartilage degradation. TGF-β1 is
transported from the subchondral bone to the cartilage layer by
diffusion or blood circulation, which adversely affects chondro-
cytes. Chondrocytes affected by inflammatory factors can also
indirectly affect osteoblast differentiation and maturation through
ERK, NF-κB and other signaling pathways [33,140].

Other factors
The activity and function of osteoclasts in osteoarthritic subchon-
dral bone are also affected by a variety of other factors, such as
apoptosis [141], calmodulin [142], estrogen, thyroid proteins, Nrf2
[143,144], RUNX2 [145], and other genes. These signaling path-
ways and factors work together to regulate osteoclast activity in OA
(Figure 3), leading to joint destruction and pain. An in-depth
analysis of these regulatory mechanisms is important for under-

Figure 3. Mechanistic crosstalk of subchondral osteoclasts in OA The TRAF6 gene in the RANK/RANKL/OPG axis is the central factor that
triggers the activation of a series of transcription factors, including NF-κB, AKT, MAPK, and NFATc1. Moreover, inflammatory factors and
autophagy pathways are related to RANKL/RANK and interactively affect osteoclast differentiation; in addition, ncRNAs regulate osteoclast
survival and bone resorption capacity.
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standing the pathophysiological processes of OA and developing
relevant therapeutic approaches. By interfering with these signaling
pathways, it is possible to alleviate symptoms and slow disease
progression in patients with OA.

Conclusions and Perspectives
Bone remodeling, which is essential for maintaining the mechanical
capacity of the skeleton and coordinating the replacement of old and
new bone, is a complex and subtle process mediated by all
osteoblasts. Osteoclasts are the predominant cells involved in bone
resorption and play an important role in maintaining bone
remodeling. It has an indispensable function. OA is a chronic,
degenerative joint disease that progresses irreversibly. Its main
features are cartilage degeneration and abnormal remodeling of the
subchondral bone. These lesions are inextricably linked to
inflammatory processes. Different types of cells are involved in
the inflammatory process. With the increasing understanding of the
bone remodeling process and cellular activities in OA, subchondral
osteoclasts appear to be the key to early pathological changes in OA
and are expected to be a new target for the treatment of OA. In
contrast to traditional NSAIDs or analgesics, treatments targeting
subchondral osteoclasts focus on the underlying causes and
pathophysiological mechanisms of OA, as opposed to pain and
symptom relief, which is the main focus of traditional treatments.
Targeted therapy can intervene in the pathophysiological processes
that lead to subchondral osteolysis, such as inflammation,
osteoporosis, and cartilage damage, thereby slowing disease
progression and protecting joint structures, whereas traditional
treatments can relieve only pain. Moreover, targeted therapies
usually formulate treatment plans based on the disease character-
istics and genotype of the patient and thus better meet the patient’s
requirements. Moreover, targeted therapies can provide longer-
lasting efficacy, whereas conventional therapies may require
constant maintenance and lose effectiveness over time. Addition-
ally, traditional therapies may cause gastrointestinal problems, liver
and kidney damage, and other adverse effects. In contrast, targeted
therapies typically have fewer systemic side effects due to their
capacity to target arthritis-associated biomolecules with greater
precision [146,147].
Consequently, how can subchondral osteoclasts be targeted and

regulated to achieve therapeutic effects? Currently, a large number
of studies have shown that by inhibiting RANKL and activating
AMPK, NF-κB. In addition, the generation of subchondral osteo-
clasts can be inhibited, bone resorption can be attenuated, and
osteoclast-mediated abnormal remodeling of the subchondral bone
can be reduced to alleviate OA. Drugs such as metformin,
paroxetine, irisin, and some phenolactones significantly inhibit
subchondral osteoclast differentiation and maturation (Table 1).
Additionally, from a mechanobiological point of view, mechanical
cues and biochemical factors can modulate OA by affecting
subchondral osteoclasts. There is growing evidence that appro-
priate mechanical loading reduces cartilage destruction, subchon-
dral bone changes and secondary inflammation in OA joints. Some
experiments have shown that early tibial axial mechanical loading
may reduce the abnormal remodeling of subchondral bone and
protect the cartilage from damage [148]; appropriate mechanical
loading significantly reduces the level of IL-1β, as well as cox-2 and
iNOS, and reduces the inflammatory state of OA joints through the
NLRP3/caspase-1/IL-1β axis [149]; knee loading increases the

expression of Wnt3a, and decreases the expression of NFATc1,
RANKL, TNF-α, and Cathepsin K [150].
Additionally, biochemical factor levels are likewise not negligible

in the regulation of subchondral osteoclasts. It has been shown that
human OA articular cartilage stem cells suppress osteoclasts and
improve subchondral bone remodeling in experimental knee OA
partially by releasing TNFAIP3 [175]. It also inhibits overactive
osteoclastogenesis and maintains the microarchitecture of sub-
chondral bone by suppressing ROS production [176] and the
expression of inflammatory mediators [177]. Additionally, lentiviral
small hairpin RNA can knock down macrophage inflammatory
protein 1 γ, thereby inhibiting osteoclast formation [178]. It can also
inhibit osteoclast activity by inhibiting osteoclast-associated recep-
tors (Oscar) [179,180]. Moreover, exosomes derived from dental
pulp stem cells (DPSCs) have been revealed to inhibit osteoclast
activation in vivo by inhibiting TRPV4 activation and reducing
cartilage degradation and synovial inflammation in vivo [181].
Targeted gene therapy can also regulate the activity and function of
osteoclasts to achieve therapeutic effects. According to a previous
article, ncRNAs, such as mir-21-5p, which targets Skp2 and can
decrease osteoclast production, have great potential for treating OA
[182]. Moreover, it has been shown that targeting and upregulating
HMOX1 signaling can inhibit BMM-induced osteoclast activation,
whereas selective knockdown of PDGF-BB in osteoclasts reduces
subchondral bone angiogenesis and attenuates joint damage [183].
Moreover, numerous studies have shown that autophagy plays an
indispensable role in regulating bone homeostasis and is expected
to be a new target for regulating subchondral osteoclasts [184,185].
Treatment of OA is a long-term process that focuses on improving
disease management and quality of life. Future studies will continue
to explore the molecular regulatory mechanisms of osteoclasts to
identify new drug targets and pave the way for more effective
treatment of osteoarthritis, and the development of individualized
treatment strategies will provide more precise and effective
treatments for OA patients, which will be a key focus of future
research. In addition, the collaboration of multidisciplinary research
teams will facilitate the integration of various studies on inflamma-
tion, bone resorption, and osteoclasts. In addition, the collaboration
of interdisciplinary research teams will help to integrate multiple
fields, such as inflammation, bone resorption, and osteoclast
research, thereby providing new perspectives on the comprehen-
sive treatment of OA.
In conclusion, this article reviews the latest progress on

subchondral osteoclast differentiation in OA and targeted interven-
tions for osteoclasts. Subchondral osteoclasts may play a central role
in OA pathogenesis. We hope that this work will help us understand
and develop new strategies for the targeted treatment of OA.
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