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Abstract
Myocardial damage is a critical complication and a significant contributor to mortality in sepsis. MicroRNAs
(miRNAs) have emerged as key players in sepsis pathogenesis. In this study, we explore the effect andmechanisms
of miR-29b-1-5p on sepsis-induced myocardial damage. Sepsis-associated Gene Expression Omnibus datasets
(GSE72380 and GSE29914) are examined for differential miRNAs. The mouse sepsis-induced cardiac injury was
established by Lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). LPS-treated HL-1 mouse cardio-
myocytes simulate myocardial injury in vitro. miR-29b-1-5p is co-upregulated in both datasets and in cardiac tissue
from sepsis mouse and HL-1 cell models. miR-29b-1-5p expression downregulation was achieved by antagomir
transduction and confirmed by real-time quantitative reverse transcription PCR. Survival analysis and echo-
cardiography examination show that miR-29b-1-5p inhibition improves mice survival cardiac function in LPS- and
CLP-induced sepsis mice. Hematoxylin and eosin and Masson’s trichrome staining and Immunohistochemistry
analysis of mouse myocardial α-smooth muscle actin show that miR-29b-1-5p inhibition reduces myocardial tissue
injury and fibrosis. The inflammatory cytokines and cardiac troponin I (cTnI) levels in mouse serum and HL-1 cells
are also decreased by miR-29b-1-5p inhibition, as revealed by enzyme-linked immunosorbent assay. The expres-
sions of autophagy-lysosomal pathway-related and apoptosis-related proteins in the mouse cardiac tissues and HL-
1 cells are evaluated by western blot analysis. The sepsis-induced activation of the autophagy-lysosomal pathway
and apoptosis are also reversed bymiR-29b-1-5p antagomir. MTT and flow cytometrymeasurement further confirm
the protective role of miR-29b-1-5p antagomir in HL-1 cells by increasing cell viability and suppressing cell apop-
tosis. Metascape functionally enriches TargetScan-predicted miR-29b-1-5p target genes. TargetScan prediction and
dual luciferase assay validate the targeting relationship between miR-29b-1-5p and telomeric repeat-binding factor
2 (TERF2). The expression and function of TERF2 in HL-1 cells and mice are also evaluated. MiR-29b-1-5p negatively
regulates the target gene TERF2. TERF2 knockdown partly restores miR-29b-1-5p antagomir function in LPS-sti-
mulated HL-1 cells. In summary, miR-29b-1-5p targetedly inhibits TERF2, thereby enhancing sepsis-induced myo-
cardial injury.
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Introduction
Sepsis is defined as a potentially fatal multiorgan failure resulted
from a deficient response of a host to a serious infection [1,2]. Sepsis
is one of the leading causes of morbidity and mortality worldwide
due to the lack of effective interventions [3]. Sepsis-induced
cardiomyopathy is a common myocardial dysfunction induced by

sepsis, the pathophysiologic process of which is reversible [4].
Research indicated that patients suffering from both sepsis and
myocardial dysfunction are at a mortality risk of 70%–90%,
superseding the risk faced by patients who have no myocardial
damage (20%) [3,4]. Effective therapies are still unavailable despite
the exploration of multiple approaches to prevent sepsis-induced
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myocardial dysfunction [5,6]. Therefore, there is a pressing need to
identify new treatments to decrease the morbidity andmortality rate
of septic patients.
MicroRNAs (miRNAs) are single-stranded noncoding RNAs

containing ~22 nucleotides that are highly conserved in different
species. miRNAs can target the 3′ untranslated region (3′UTR) of
mRNAs to exert a negative regulatory effect on gene expression,
thereby resulting in the repression or decay of mRNA targets [7].
Reportedly, miRNAs might participate in nearly all key cellular
functions, such as growth, differentiation, proliferation, and
apoptosis [8]. As previously reported, miRNAs are linked to
multiple disorders, such as sepsis, heart disease, and diabetes [9–
11]. According to recent studies, miRNAs have a significant impact
on the development of cardiac damage during sepsis [12,13].
Therefore, investigating the specific function of miRNAs in
myocardial dysfunction in sepsis and their underlying mechanisms
may contribute to the development of novel, efficacious therapeutic
approaches for individuals suffering from myocardial injury in
sepsis.
Bioinformatics data mining through gene and noncoding RNA

microarray data is useful for identifying novel important genes and
noncoding RNAs related to disease pathogenesis [14]. Microarrays
have been used to screen for differential miRNAs and mRNAs
involved in diseases such as cancer [15], sepsis, and acute kidney
injury [16]. Previous studies have also reported differentially
expressed genes (DEGs) in patients with septic myocardial injury
via microarray microarrays [17]. Therefore, it is feasible to
investigate the molecular pathways involved in septic myocardial
injury via the use of microarrays.
In this study, miR-29b-1-5p, a differentially expressed miRNA,

was obtained through Gene Expression Omnibus (GEO) microarray
and bioinformatics screening. In vivo and in vitro models revealed
that inhibition of miR-29b-1-5p ameliorated septic myocardial
injury-related cardiomyocyte dysfunction, and this effect was
achieved by upregulation of telomeric repeat-binding factor 2
(TERF2).

Materials and Methods
Septic myocardial injury animal model
Male C57BL/6 mice weighing 23±2 g and 8 weeks old were
procured from Hunan SJA Laboratory Animal Co. (Changsha,
China), and housed in a specific pathogen-free (SPF) environment
with a temperature range of 23‒25°C and a humidity level of
55%±5%. The mice were allowed free access to a standard chow
diet and drinking water. The experimental procedures included in
this study involving animals were approved by the Ethics
Committee of Second Xiangya Hospital (approval No: 2021347).
An LPS-induced sepsis mouse model was established as

previously reported [18]. Mice were anaesthetized by inhalation
with 3% isoflurane and then intraperitoneally injected with
10 mg/kg LPS (from 055:B5, L8880; Solarbio, Beijing, China). An
equal amount of saline was injected into the control group. The
cecal ligation and puncture (CLP) sepsis models were established in
mice as follows. Mice were anaesthetized with isoflurane. A 1‒2 cm
abdominal midline incision was made to expose the cecum. After
ligating the distal part of the cecum, the ligated segment was
punctured once with a 22G needle. The appendix was repositioned
and injected subcutaneously with 1 mL of sterile saline. The
incision was closed with a 9-mm steel wound clip. miR-29b-1-5p

was downregulated or overexpressed by tail vein injection of
80 mg/kg mmu-miR-29b-1-5p antagomir or 30 mg/kg agomir
(General Biol, Chuzhou, China) dissolved in 100 μL of sterile saline
daily for 3 days [19–21] prior to LPS injection or CLP surgery.
Echocardiographic testing was performed 24 h after LPS induction
or CLP surgery. After echocardiographic testing, the mice were
euthanized by intraperitoneal injection of pentobarbitone
(200 mg/kg) immediately, after which heart tissue and blood
sample were harvested. Six mice were used per group. The
sequences of agomir and antagomir are listed in Table 1.
For survival analysis, 20 additional mice were taken from each

group according to previous methods [22]. The mouse model of
LPS-induced sepsis was induced using the aforementioned proce-
dure, and the LPS dose was adjusted to 25 mg/kg [23] to achieve a
lethal dose. The CLP model was generated using the same
procedure as described above. Mice were observed for survival
every 24 h for 96 h.

Echocardiography
Mice were anaesthesized via inhalation of isoflurane and a heating
pad was used to maintain their core temperature at the same level
24 h after LPS induction or CLP surgery. A VisualSonics Vevo-3100
Ultrasound (FUJIFILM VisualSonics, Tokyo, Japan) was used for
echocardiography measurements. The Vevo 3100 imaging program
was used to analyze the M-mode images taken along the short axis
of the left ventricle. Left ventricle end-systolic diameters (LVIDs)
and left ventricle end-diastolic diameters (LVIDd) were used to
calculate fractional shortening (FS): FS (%)=[(LVIDd‒LVIDs)/
LVIDd]×100%; and both the end-diastolic and end-systolic
volumes of the left ventricle (EDV and ESV, respectively) were
assessed to calculate the ejection fraction (EF): EF (%)=[(EDV–
ESV)/EDV]×100% [24].

Histological testing
After being fixed in 4% formaldehyde, the heart tissues were cut
transversely into paraffin-embedded sections (4-μm sections). The
tissue sections were dewaxed using xylene (Beyotime, Shanghai,
China) and rehydrated using gradient alcohol. Histological staining
was performed using a haematoxylin and eosin (H&E) staining kit
and a Masson’s staining kit (Solarbio, Beijing, China), followed by
dehydration and transparency [25,26]. Neutral resin was used to
seal the slices, which were observed under a light microscope
(Tokyo, Japan). The cardiac injury score was measured based on
HE staining as previously described [27]. Briefly, 0=no lesion,
1=myocardial damage <25%, 2=myocardial damage 25%–50%,
3=myocardial damage 50%–75%, and 4=myocardial damage
>75%. The fibrotic area was measured based on Masson’s
trichrome staining using ImageJ software (NIH, Bethesda, USA).

Table 1. The sequences of agomir and antagomir

Name Sequence (5′→3′)

miR-29b-1-5p
agomir

Sense GCUGGUUUCAUAUGGUGGUUUA

Antisense AACCACCAUAUGAAACCAGCUU

NC agomir Sense UUCUCCGAACGUGUCACGUTT

Antisense ACGUGACACGUUCGGAGAATT

miR-29b-1-5p
antagomir

UAAACCACCAUAUGAAACCAGC

NC antagomir CAGUACUUUUGUGUAGUACAA
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The sections were assessed by pathologists through a double-blind
analysis under an optical microscope (Olympus).

Immunohistochemical (IHC) staining
After being routinely dewaxed and rehydrated, the slices were
heated thrice for 5 min each in pH 6.0 antigen repair solution and
washed with PBS. Then, 3% hydrogen peroxide solution was added
to the slices (Beyotime), which were incubated for 25 min, washed
with PBS, and blocked with 3% bovine serum albumin (BSA;
Servicebio, Wuhan, China) for 30 min at room temperature (RT).
The slices were rinsed, followed by overnight incubation at 4°C
with anti-α-SMA (1:50; ab5694; Abcam, Cambrige, UK) and then a
50-min incubation at room temperature with horseradish perox-
idase (HRP)-coupled anti-IgG (1:50; ab270144; Abcam). A 3,3′-
diaminobenzidine (DAB) color development solution (Servicebio)
was used to develop slices for 3 min. Tap water was subsequently
used to rinse the slices. The sections were restained with
hematoxylin for an additional 3 min after being cleaned with tap
water. Sections were dehydrated using gradient ethanol, sealed
with xylene transparently, and finally observed under a light
microscope [28,29]. α-SMA protein expression is shown in brown.
The optical density of the α-SMA signal was assessed by ImageJ
software (NIH).

Cell processing and transfection
The HL-1 mouse cardiomyocyte cell line was procured from Procell
(Wuhan, China). The cells were subsequently cultured in Dulbec-
co’s modified Eagle’s medium (DMEM) supplemented with 10%
foetal bovine serum (FBS) at 37°C in a 5% CO2 atmosphere. After
24 h, HL-1 cells were exposed to 1 μg/mL LPS [30]. HL-1 cells was
transfected with the miR-29b-1-5p antagomir (General Biol) at a
final concentration of 50 nM, or the NC antagomir (negative control;
General Biol), the TERF2 shRNA vector (GenePharma, Shanghai,
China) at a final concentration of 1 μg/mL, or the sh-NC vector
(negative control; GenePharma) using Lipofectamine 2000 (Thermo
Fisher Scientific, Waltham, USA). The transduction of cells was

performed 24 h before LPS induction. The sequences for vector
construction are listed in Table 2.

Enzyme-linked immunosorbent assay (ELISA)
Mouse serum or HL-1 cell supernatant was collected. The levels of
tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and
cardiac troponin I (cTnI) were measured separately using the
corresponding ELISA kits according to the manufacturer’s instruc-
tions. The kits included TNF-α (SEKM-0034; Solarbio), mouse
IL-6 (SEKM-0007; Solarbio), IL-1β (SEKM-0002; Solarbio), and
mouse cTnI (KS11280; Keshun Science and Technology, Shanghai,
China).

qRT-PCR
TRIzol was used to extract total RNA from mouse left ventricle
tissue and HL-1 cells. A spectrophotometer was used to measure the
RNA concentration and quality. A TaqMan microRNA reverse
transcription kit (Applied Biosystems, Waltham, USA) was used for
miRNA reverse transcription. A reverse transcription kit (Geneco-
poeia, Guangzhou, China) was used for reverse transcription of the
mRNA to cDNA. SYBR Premix Ex Taq (Takara, Dalian, China) was
used on an ABI 7500HT system (Applied Biosystems) for
quantitative real-time PCR. The 2–ΔΔCt method [31] was used for
data processing and analysis. U6 was used as the miRNA internal
control, while GAPDH was used as the internal reference for mRNA
expression. Table 3 lists the sequences of the primers.

Western blot analysis
RIPA lysis buffer (Beyotime) was used to extract total protein from
HL-1 cells or mouse left ventricle tissues, and the total protein
concentration was determined using a BCA kit (Beyotime) as
previously described [32]. After separation by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 50 μg of
total protein was transferred to PVDF membranes (Millipore,
Billerica, USA), which were blocked with 5% skim milk in TBST
solution for 2 h. Then the membranes were incubated overnight at

Table 2. The sequences of sh-NC vector and sh-TERF2

Name Sequence (5′→3′)

sh-NC Sense GATCCGCAGATGAAGGCACGGTCACGCTCGAGCGTGACCGTGCCTTCATCTGCTTTTTG

Antisense AATTCAAAAAGCAGATGAAGGCACGGTCACGCTCGAGCGTGACCGTGCCTTCATCTGCG

Sh-TERF2 Sense GATCCGGCTTTCAAAGCTCTGTCTACTCTCGAGAGTAGACAGAGCTTTGAAAGCTTTTTG

Antisense AATTCAAAAAGCTTTCAAAGCTCTGTCTACTCTCGAGAGTAGACAGAGCTTTGAAAGCG

Table 3. The sequences of the primers used in this study

Gene Sequence (5′→3′)

miR-29b-1-5p RT primer GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTAAACC

Forward primer GCGCTGGTTTCATATGGT

Reverse primer CAGTGCGTGTCGTGGA

U6 Forward primer CTCGCTTCGGCAGCACA

Reverse primer AACGCTTCACGAATTTGCGT

TERF2 Forward primer CTGTCTACTGCACAAGACTCAG

Reverse primer TGCCAGATTAGCAAGTACCAGA

GAPDH Forward primer AGGTCGGTGTGAACGGATTTG

Reverse primer TGTAGACCATGTAGTTGAGGTCA

RT: reverser transcription.
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4°C with the following antibodies: anti-TERF2 (1:1000; 66893-1-Ig;
Proteintech, Wuhan, China), anti-Bax (1:1000; ab32503; Abcam),
anti-Bcl-2 (1:2000; ab182858; Abcam), anti-cleaved caspase-3
(1:5000; ab214430; Abcam), anti-Pro-caspase-3 (1:10,000;
ab32499; Abcam), anti-cleaved PARP (1:1000; ab32064; Abcam),
anti-TLR2 (1:1000; DF7002; Affinity Bioscience, Beijing, China),
anti-TLR4 (1:1000; 19811-1-AP; Proteintech), anti-TFEB (1:1000;
13372-1-AP; Proteintech), anti-LAMP1(1:1000; 67300-1-Ig; Protein-
tech), anti-LC3II (1:1000; 14600-1-AP; Proteintech), anti-β-actin
(1:1000; ab8227; Abcam), and anti-GAPDH (1:1000, AF7021;
Affinity Bioscience), followed by incubation with HPR-conjugated
goat anti-mouse or rabbit IgG secondary antibody (1:2000;
SA00001-2 or SA00001-1; Proteintech) for 2 h at room temperature.
Finally, protein bands were visualized using an enhanced chemi-
luminescence (ECL) kit (Xinsamax, Suzhou, China). β-Actin or
GAPDH was used as the internal control.

MTT assay
HL-1 cells from different groups were inoculated at a density of
5×103 cells/well in 96-well plates and cultured for 0, 24, 48, or 72 h.
At each time point, MTT solution (50 μL; Beyotime) was added to
each well in each group and incubated for 4 h at 37°C. After the
MTT and culture medium mixture were discarded, 150 μL dimethyl
sulfoxide was added to each well to dissolve the crystals, and the
absorbance was measured at 490 nm using a multifunctional
microplate reader (PerkinElmer, Waltham, USA).

Flow cytometry analysis of cell apoptosis
As per the manufacturer’s instructions, an Annexin V-FITC/PI
Apoptosis Detection kit (Keygene, Nanjing, China) was used to
assess apoptosis. After treatment, the cells were collected and
resuspended in 500 μL of binding buffer. The suspension was
subsequently stained with PI staining solution and Annexin V-FITC
staining solution, each in a volume of 5 μL, at room temperature
for 5‒10 min in the dark. NovoCyte Flow cytometry (Agilent,
Santa Clara, USA) analysis was conducted immediately after
collection.

Bioinformatics analysis
The GSE72380, GSE29914, and GSE185754 datasets were down-
loaded from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) for analysis of differentially expressed miRNAs and mRNAs in
dysfunctional septic cardiac tissues from mice. The mmu-miR-29b-
1-5p-targeted genes were predicted by TargetScan (https://www.
targetscan.org/vert_72/) with a threshold of total context++score
≤‒0.3. The functional enrichment of the mmu-miR-29b-1-5p down-
stream target gene set was analyzed via Metascape (https://
metascape.org/gp/index.html#/main/step1).

Dual-luciferase reporter gene assay
The use of TargetScan allowed the prediction of potential binding
sites between miR-29b-1-5p and TERF2. The miR-29b-1-5p binding
site was introduced into the TERF2 3′UTR wild-type (WT) and
TERF2 3′UTR mutant (MUT) sequences before being inserted into
the psi-CHECK2 luciferase vector to create the psi-CHECK2-TERF2-
WT and psi-CHECK2-TERF2-MUT vectors. HL-1 cells were cotrans-
fected with the aforementioned vectors and miR-29b-1-5p agomir or
NC agomir using Lipofectamine 2000. Forty-eight hours after
transfection, the relative luciferase activity was measured using a

dual luciferase reporter kit (Promega, Madison, USA) as directed by
the manufacturer.

Statistical analysis
The results were analyzed using GraphPad Prism 8.0 (GraphPad
Software, La Jolla, USA). Data are presented as the mean±the
standard deviation (SD). One-way ANOVAwith Tukey post hoc test
was carried out to analyze the differences among more than two
groups. Student’s t test was carried out to analyze the difference
between two groups. Pearson’s correlation analysis was also
conducted. A P value of less than 0.05 was considered statistically
significant.

Results
GEO dataset screening for septic myocardial injury-
associated miRNAs
Differentially expressed miRNAs in normal cardiac tissues and
septic cardiac tissues from mice were analyzed from the GSE72380
and GSE29914 microarray datasets. Three significantly down-
regulated miRNAs and 8 significantly upregulated miRNAs (Figure
1A,B; |log2FC|>0.4, P<0.05) were obtained from the GSE72380
microarray. Three differentially upregulated miRNAs and 1
differentially downregulated miRNA were obtained from the
GSE29914 chip (Figure 1C,D; |log2FC|>0.4, P<0.05). Two codif-
ferentially expressed miRNAs, i.e., miR-29b-1-5p and miR-155,
were obtained (Figure 1E). The role of miR-155 in sepsis has been
reported [33,34]. Therefore, miR-29b-1-5p was chosen for further
investigation. It was upregulated in both the GSE72380 and
GSE29914 (Figure 1F‒G).

Inhibition of miR-29b-1-5p ameliorates LPS-induced
septic myocardial injury in mice
The function of miR-29b-1-5p was subsequently explored in a
mouse sepsis model. A mouse model of septic myocardial injury
was induced by LPS. The survival rate of the mice after LPS
treatment was lower than that of the control group (Figure 2A), and
the EF and FS were significantly reduced (Figure 2B). However,
LVIDd (mm), LVIDs (mm), and heart rate were significantly greater
in LPS-treated mice than in control mice (Table 4). H&E and
Masson’s trichrome staining revealed that mice in the control group
had clear myocardial fibers and uniform and clear myocardial cell
spacing without degeneration or necrosis, while the myocardial
cells in the LPS-treated mice were significantly fractured and
deformed and had lysed myocardial fibers with enhanced fibrosis
(Figure 2C,D). Correspondingly, the cardiomyocyte injury score and
fibrotic area were increased in LPS-treated mice (Figure 2F,G). IHC
staining revealed that α-SMA level in the myocardial tissues of LPS-
treated mice was significantly increased (Figure 2E,H). ELISA
results for inflammatory cytokines showed that TNF-α, IL-1β, and
IL-6 levels in mouse serum were markedly increased (Figure 2I‒K),
and in addition, the expression level of cTnI in mouse serum was
also significantly increased (Figure 2L). qRT-PCR revealed that LPS
promoted miR-29b-1-5p expression in the myocardial tissues of the
mice (Figure 2M). Accumulating evidence indicates that the
autophagy-lysosomal pathway, which plays a fundamental role in
cellular homeostasis and antimicrobial immunity, is commonly
impaired in sepsis [35]. Therefore, changes in the expressions of
autophagy-lysosomal pathway-related proteins were also deter-
mined. As shown in Figure 2N, the expressions of TLR2, TLR4,
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TFEB, LAMP1, and LC3II increased in LPS-treated mice, indicating
that LPS treatment activated the lysosomal pathway in the cardiac
tissues of model mice. miR-29b-1-5p expression in the myocardial
tissue of mice was subsequently inhibited by miR-29b-1-5p
antagomir injection (Figure 2M). The inhibition of miR-29b-1-5p
promoted survival; increased EF and FS; decreased LVIDd (mm),
LVIDs (mm), and heart rate; alleviated the degree of myocardial
tissue injury and fibrosis in mice; and significantly decreased the α-
SMA, TNF-α, IL-1β, L-6 and cTnI levels (Figure 2A‒L and Table 4).
In contrast, the miR-29b-1-5p agomir further increased LPS-induced
septic myocardial injury and inflammation (Supplementary Figure

S1). Interestingly, the miR-29b-1p antagomir inhibited LPS-induced
activation of the lysosomal pathway by reducing the expressions of
TLR2, TLR4, TFEB, LAMP1, and LC3II (Figure 2N). These findings
imply that miR-29b-1-5p silencing can mitigate LPS-induced septic
myocardial damage in mice.

Inhibition of miR-29b-1-5p ameliorates CLP-induced
septic myocardial injury in mice
The CLP model is currently the gold standard for sepsis studies [36].
Thus, to further validate the role of miR-29b-1-5p, a mouse model of
CLP-induced septic myocardial injury was used. The results showed

Figure 1. Gene Expression Omnibus (GEO) dataset screening for septic myocardial injury-associated miRNAs (A) Volcano plot and (B) heatmap
of GSE72380. (C) Volcano plot and (D) heatmap of GSE29914. (E) Venn diagram of the differentially expressed genes identified in the GSE72380
and GSE29914 cohorts according to the intersection (|log2FC|>0.4, P<0.05). (F,G) Expression of miR-29b-1-5p in the GSE72380 and GSE29914
cohorts. *P<0.05.
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Figure 2. Inhibition of miR-29b-1-5p ameliorates lipopolysaccharide (LPS)-induced septic myocardial injury in mice (A) Mice received a single
intraperitoneal injection of 25 mg/kg LPS (lethal dose) or a tail vein injection of 80 mg/kg miR-29b-1-5p/NC antagomir for 3 consecutive days (24 h
later receiving LPS injection), after which the survival conditions were assessed for 96 h, and survival rate curves were generated. An equal amount
of saline was injected into the control group. n=20. Mice received a single intraperitoneal injection of 10 mg/kg LPS or a tail vein injection of
80 mg/kg miR-29b-1-5p/NC antagomir for 3 consecutive days (24 h later receiving LPS injection). (B) Twenty-four hours after LPS injection,
echocardiography tests were performed. (C,D) Mice were euthanized, and histological analysis of myocardial tissue injury was performed via
hematoxylin and eosin (HE) staining and Masson’s trichrome staining. Scale bar: 50 μm. (F,G) The cardiac injury score and fibrotic area were
assessed via HE and Masson’s trichrome staining, respectively. (E,H) α-Smooth muscle actin (α-SMA) expression in mouse myocardial tissues was
determined via immunohistochemistry (IHC) staining. Scale bar: 20 μm. (I‒L) Tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and cardiac
troponin I (cTnI) levels in mouse serum were determined by enzyme-linked immunosorbent assay (ELISA). (M) The miR-29b-1-5p expression level
in mouse myocardial tissue was determined by real-time quantitative reverse transcription PCR (qRT-PCR). n=6. (N) The protein levels of TLR2,
TLR4, TFEB, LAMP1 and LC3II in mouse myocardial tissues were determined by western blot analysis. n=3. **P<0.01 vs the control group;
#P<0.05 and ##P<0.01 vs. the LPS+NC antagomir group.
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that mice in the CLP group had reduced survival rate, reduced EF
and FS (Figure 3A,B), increased LVIDd (mm), LVIDs (mm), and
heart rate (Table 5), apparent myocardial tissue injury and
enhanced fibrosis, and elevated α-SMA expression in the myocar-
dium compared with those in the control group (Figure 3C‒H). The
expressions of TNF-α, IL-1β, L-6, and cTnI in the serum were
increased, and the expression of miR-29b-1-5p was upregulated in
myocardial tissues (Figure 3I‒M). Moreover, the expressions of
TLR2, TLR4, TFEB, LAMP1, and LC3II were also increased in CLP
mice (Figure 3N). These CLP-induced changes could be reversed by
the inhibition of miR-29b-1-5p (Figure 3A‒N). Conversely, the miR-
29b-1-5p agomir further increased CLP-induced septic myocardial
injury and inflammation (Supplementary Figure S2). The above
findings suggest that miR-29b-1-5p suppression protects mice from
CLP-induced septic myocardial injury.

Inhibition of miR-29b-1-5p ameliorates LPS-induced
cardiomyocyte dysfunction in vitro
The functional role of miR-29b-1-5p in cardiomyocyte dysfunction
in mice was further explored in a cellular model. A septic
myocardial injury cell model was induced by LPS in HL-1 cells.
HL-1 cells were treated with the miR-29b-1-5p antagomir, and qRT‒
PCR was subsequently used to analyze the extent of the inhibition.
Compared to the control group, the LPS-induced HL-1 cells
exhibited upregulation of miR-29b-1-5p. However, after transduc-
tion with the miR-29b-1-5p antagomir, this upregulation was
considerably reduced (Figure 4A). Moreover, LPS treatment
inhibited HL-1 cell viability, which was significantly increased
following the inhibition of miR-29b-1-5p (Figure 4B). Flow
cytometry assays showed that HL-1 cell apoptosis was induced by
LPS, which was inhibited by miR-29b-1-5p antagomir transfection
(Figure 4C). According to the ELISA results, TNF-α, IL-1β, and IL-6
levels were considerably greater in the cells of the LPS group than in
cells of the control group. However, these levels were lower after
miR-29b-1-5p antagomir transduction (Figure 4D‒F). Concerning
apoptotic markers, LPS stimulation increased the levels of the
proapoptotic proteins Bax and cleaved caspase-3 while decreasing
the level of the antiapoptotic protein Bcl-2. Inhibition of miR-29b-1-
5p increased Bcl-2 level while simultaneously decreasing Bax and
cleaved caspase-3 levels (Figure 4G‒H). Consistent with the in vivo
results, LPS-induced upregulation of TLR2, TLR4, TFEB, LAMP1,
and LC3II was also reduced by inhibition of miR-29b-1-5p (Figure
4I). Therefore, miR-29b-1-5p inhibition can ameliorate LPS-induced
cardiomyocyte dysfunction in mice in vitro.

TERF2 is a downstream target of miR-29b-1-5p
Additional screening for downstream targets of miR-29b-1-5p was
carried out, and the results showed that the TargetScan online
database predicted 214 target genes. The target genes were then

functionally enriched byMetascape andwere found to be associated
with the cell cycle pathway (Figure 5A,B). The GSE185754
microarray analysis of target genes associated with cell cycle
pathways revealed that EP300, TERF2, MLH3, and POLD4 expres-
sions were significantly downregulated in patients with sepsis
(Figure 5C). Validation by qRT-PCR in LPS-treated HL-1 cells
indicated that these 4 factors were downregulated in the LPS group
of cells, with the most significant difference in TERF2 expression
(Supplementary Figure S3A‒D). Therefore, TERF2 was selected for
subsequent analyses. Consistent with our prediction, miR-29b-1-5p
was able to bind to the TERF2 3′UTR (Figure 5D). LPS treatment
downregulated TERF2 mRNA and protein expression, while the
miR-29b-1-5p antagomir upregulated TERF2 mRNA and protein
expression (Figure 5E,F). The correlation between TERF2 mRNA
and miR-29b-1-5p levels in mouse cardiac tissues was determined.
The expressions of TERF2 and miR-29b-1-5p were negatively
correlated in the cardiac tissue of mice in the LPS and CLP mouse
models. (Figure 5G).

Silencing of TERF2 partially reverses the protective
effect of miR-29b-1-5p inhibition on LPS-induced
cardiomyocyte apoptosis and inflammation
The role of TERF2 in myocardial functional impairment in sepsis
was further explored in vitro. In HL-1 cells, the introduction of the
shTERF2 vector resulted in the inhibition of TERF2 expression, and
the efficacy of the transfection was assessed by immunoblotting
(Figure 6A). After LPS treatment, silencing of TERF2 impacted HL-1
cell viability; promoted apoptosis; increased TNF-α, IL-1β and IL-6
levels; increased cleaved PARP, cleaved caspase-3, TLR2, TLR4,
TFEB, LAMP1 and LC3II levels; and partially abolished the
protective effect of the miR-29b-1-5p antagomir on HL-1 cell
function (Figure 6B‒I). The above results indicate that silencing of
TERF2 can partially reverse the protective effects of miR-29b-1-5p
inhibition on LPS-induced cardiomyocyte apoptosis and the
inflammatory response.

Discussion
Myocardial damage is one of the most serious consequences of
sepsis and is the major cause of mortality in critical care units [37].
miRNAs have been reported to participate in sepsis-induced
myocardial injury and serve as diagnostic markers and/or treatment
targets [38]. Here, bioinformatics analysis of the sepsis-associated
datasets GSE72380 and GSE29914 identified that miR-29b-1-5p is
upregulated in both datasets. A previous study reported that miR-
29b-1-5p caused apoptosis in ischaemia‒reperfusion–induced myo-
cardial injury [39]; however, the role of miR-29b-1-5p has not been
reported in sepsis-induced myocardial injury. Therefore, it is
hypothesized that miR-29b-1-5p has a potential mechanism of
action in septic myocardial injury.

Table 4. Echocardiography data of LPS-induced sepsis model

Parameter Control LPS LPS+NC antagomir LPS+miR-29b-1-5p antagomir

Ejection fraction (%) 82.04±7.00 48.55±6.02** 49.13±8.10 68.49±9.80##

Fractional shortening (%) 61.64±9.70 19.42±3.99** 20.72±5.33 33.37±8.55#

LVIDd (mm) 1.78±0.10 2.39±0.11** 2.45±0.11 1.81±0.20##

LVIDs (mm) 0.68±0.15 1.92±0.13** 1.94±0.10 1.16±0.25##

Heart rate (bpm) 471.67±56.83 541.83±49.22* 534.17±23.38 464.00±19.37#

*P<0.05, **P<0.01 vs control group; #P<0.05, ##P<0.01 vs LPS+NC antagomir.
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Figure 3. Inhibition of miR-29b-1-5p ameliorates CLP-induced septic myocardial injury in mice (A) Mice were subjected to CLP surgery or tail
vein injection of 80 mg/kg miR-29b-1-5p/NC antagomir for 3 consecutive days (24 h later receiving CLP surgery), after which the survival conditions
were assessed for 96 h, and survival rate curves were generated. n=20. A sham operation was performed on the control group. n=20. (B) Twenty-
four hours after CLP surgery, echocardiography was performed. (C,D) Mice were euthanized, and histological analysis of myocardial tissue injury
was performed via HE staining and Masson’s trichrome staining. Scale bar: 50 μm. (F,G) The cardiac injury score and fibrotic area were assessed
via HE and Masson’s trichrome staining, respectively. (E,H) The protein levels and distribution of α-SMA in mouse myocardial tissues were
examined using IHC staining. Scale bar: 20 μm. (I‒L) TNF-α, IL-1β, IL-6 and cTnI levels in mouse serum were determined by ELISA. (M) The miR-29b-
1-5p expression level in mouse myocardial tissue was determined by qRT-PCR. n=6. (N) The protein levels of TLR2, TLR4, TFEB, LAMP1 and
LC3II in mouse myocardial tissues were determined by western blot analysis. n=3. **P<0.01 vs the control group; #P<0.05 and
##P<0.01 vs the CLP+NC antagomir group.
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Table 5. Echocardiography data of CLP-induced sepsis model

Parameter Control CLP CLP+NC antagomir CLP+miR-29b-1-5p antagomir

Ejection fraction (%) 81.53±5.13 36.35±8.93** 34.89±21.49 71.07±9.53##

Fractional shortening (%) 54.30±6.30 16.70±7.00** 15.98±11.67 33.95±9.56#

LVIDd (mm) 1.79±0.09 2.49±0.25** 2.51±0.20 2.14±0.29#

LVIDs (mm) 0.82±0.13 2.07±0.24** 2.11±0.32 1.42±0.14##

Heart rate (bpm) 457.67±29.80 534.00±23.15** 533.33±34.09 480.00±35.41#

*P<0.05, **P<0.01 vs control group; #P<0.05, ##P<0.01 vs CLP+NC antagomir.

Figure 4. Inhibition of miR-29b-1-5p ameliorates LPS-induced cardiomyocyte dysfunction in mice in vitro (A) Twenty-four hours after transfecting
HL-1 cells with the NC or miR-29b-1-5p antagomir, LPS (1 μg/mL) stimulation was applied for another 24 h, and miR-29b-1-5p expression was
validated in each group by qRT-PCR. (B) After LPS treatment for 0, 24, 48, or 72 h, MTT assay was performed to examine the viability of the
HL-1 cells. (C) Flow cytometry was used to evaluate apoptosis in HL-1 cells. (D‒F) TNF-α, IL-1β, and IL-6 levels in HL-1 cell supernatants were
measured by enzyme-linked immunosorbent assay (ELISA). (G‒I) Western blot analysis was used to measure Bax, Bcl-2, cleaved caspase-3, pro-
caspase-3, TLR2, TLR4, TFEB, LAMP1 and LC3II protein levels in HL-1 cells. n=3. **P<0.01 vs the control group; ##P<0.01 vs the LPS+NC
antagomir group.
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Figure 5. TERF2 is a downstream target of miR-29b-1-5p, and miR-29b-1-5p can target and inhibit TERF2 (A) Schematic diagram of miR-29b-1-5p
target gene screening. (B) Metascape analysis of miR-29b-1-5p target gene function. (C) GSE185754 microarray analysis of miR-29b-1-5p target
gene expression. (D) The ability of the predicted miR-29b-1-5p to target TERF2 was verified by dual-luciferase reporter gene assay. (E) qRT-PCR and
(F) western blot analysis showing TERF2 mRNA and protein expression levels in response to LPS and miR-29b-1-5p antagomir transfection in HL-1
cells. (G) Correlation analysis between miR-29b-1-5p and TERF2 in the myocardial tissues of the LPS-treated mice and CLP-treated mice. *P<0.05,
**P<0.01, ***P<0.001 vs the control group; ##P<0.01 vs the LPS+NC antagomir group.
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Sepsis-induced cardiac dysfunction is usually associated with
reduced EF and FS, increased cardiomyocyte apoptosis, and
enhanced inflammatory response [40]. Previous studies have
reported that sepsis-induced myocardial injury and inflammation
usually exhibit increased expressions of factors such as α-SMA in
myocardial tissue and cTnI, TNF-α, IL-1β, and IL-6 in serum [12,41].
The LPS and CLP surgical models are general strategies for
comprehending the process of sepsis-related myocardial dysfunc-
tion [42]. Numerous previous studies have shown that microRNAs
play different roles in septic myocardial dysfunction. MiR-193-3p

and miR-125b mitigate myocardial injury in septic mice by targeting
the STAT3/HMGB1 axis [43,44]. However, miR-377 increases
inflammation and cardiomyocyte hypertrophy in septic mice [45].
Here, the effects of miR-29b-1-5p on septic myocardial dysfunction
were explored for the first time by constructing LPS and CLP
models. miR-29b-1-5p expression was elevated in cardiac tissues
from the LPS and CLP models. miR-29b-1-5p antagonists signifi-
cantly improved the symptoms of septic myocardial injury,
including increasing mouse survival, increasing cardiac function,
decreasing α-SMA expression in myocardial tissue, decreasing

Figure 6. Silencing of TERF2 partially reverses the ameliorative effect of miR-29b-1-5p inhibition on LPS-induced cardiomyocyte apoptosis and
inflammation (A) HL-1 cells were transfected with sh-TERF2 or sh-NC vector. Forty-eight hours later, HL-1 cells were collected to detect the
protein expression of TERF2. (B‒I) HL-1 cells were transfected with sh-TERF2 or the miR-29b-1-5p antagomir for 24 h, followed by stimulation with
LPS. MTT assay was performed to examine HL-1 cell viability (B). Flow cytometry was performed to evaluate HL-1 cell apoptosis (C). ELISA was
also conducted to evaluate TNF-α, IL-1β, and IL-6 levels in HL-1 cells (D‒F). Western blot analysis was conducted to determine the protein levels of
TERF2, cleaved PARP, cleaved caspase-3, pro-caspase-3, TLR2, TLR4, TFEB, LAMP1 and LC3II in HL-1 cells (G–I). **P<0.01 vs LPS+NC antagomir+
sh-NC; #P<0.05, ##P<0.01 vs LPS+miR-29b-1-5p antagomir+sh-TERF2.
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serum levels of cTnI, TNF-α, IL-1β, and IL-6, and alleviating
myocardial tissue injury and fibrosis. Similar results were obtained
when miR-29b-1-5p was inhibited in the LPS-induced cardiomyo-
cyte model, which led to increased cardiomyocyte proliferation and
inhibited apoptosis and inflammatory factor production. These data
imply that the inhibition of miR-29b-1-5p protects against myocar-
dial dysfunction induced by sepsis.
The downstream mechanisms of miR-29b-1-5p were further

explored after confirming that elevated miR-29b-1-5p could
contribute to the progression of myocardial injury in sepsis.
miRNAs mostly regulate physiological effects in plants and animals
by suppressing target mRNA expression [46], and miR-29b-1-5p is
upregulated in septic myocardial disorder models. Therefore, the
downstream target genes repressed by miR-29b-1-5p were further
investigated via bioinformatics. Four downregulated target genes
(TERF2, Pold4, MLH3, and Ep300) were identified. Analysis of
TERF2 expression in LPS-induced cardiomyocytes showed that
TERF2 expression was most significantly altered. TERF2 is a widely
expressed protein that can bind directly to double telomeric repeat
sequences in tandem arrays and is involved in the protection of
telomere structure and chromosome ends [47]. Inhibition of TERF2
was previously reported to induce growth arrest and apoptosis in
melanoma [48], laryngeal cancer [48,49], colorectal cancer [47],
and other cancer cells. In addition, mutations in the TERF2 protein
can cause persistent inflammation in vascular disease in athero-
sclerotic mice [50]. miRNAs mediate translation through partial
base pairing to complementary sequences in the 3′UTR of target
mRNAs [51]. Dual luciferase reporter gene assays verified that miR-
29b-1-5p was able to bind to the 3′UTR of TERF2 and that miR-29b-
1-5p negatively regulated TERF2 expression. Therefore, TERF2 was
considered a downstream target gene of miR-29b-1-5p. The
inhibition of TERF2 expression in LPS-induced cardiomyocytes
via functional reversion experiments showed that silencing of
TERF2 reversed the miR-29b-1-5p antagomir-induced upregulation
of TERF2 expression, subsequently inhibited cell proliferation,
promoted apoptosis and inflammatory cytokine expression, and
partially abrogated the protective effect of the miR-29b-1-5p
antagomir on septic cardiomyocyte injury. However, in addition
to TERF2, several genes have also been reported to be regulated in a
targeted manner by miR-29b-1-5p. In oral squamous cell carcinoma,
miR-29b-1-5p targets cadherin 1 to promote EMT [52]. In gastric
cancer, miR-29b-1-5p inhibits the expression of the PH domain and
leucine-rich repeat protein phosphatase 1 (PHLPP1) to promote cell
growth [53]. In septic mice, PHLPP1 could countermodulate the
STAT1-mediated inflammatory pathway [54]. Cadherin 1 is reduced
in a sepsis-induced acute kidney injury cell model [55]. However,
further studies are needed to determine whether these genes are
involved in the activity of miR-29b-1-5p in sepsis.
A number of studies have shown that sepsis can cause autophagy

to occur in the heart and other organs and that autophagy changes
dynamically throughout sepsis [56]. During autophagy, depletion of
TERF2 promotes autophagy [57]. Lachettini et al. [58] reported that
TERF2 knockdown induces autophagy by sequestering HMGB1 into
the nucleus, where it exerts its pro-autophagic effect when it is
shuttled from the nucleus to the cytosol [59]. Moreover, inhibition
of TERF2 leads to autophagic death, and apoptosis has also been
proven to occur in gastric cancer [60]. Most current studies
suggested that the induction of autophagy in sepsis can ameliorate
sepsis-induced myocardial damage [30,61]. However, in the present

study, we found that the miR-29b-1-5p antagomir had a cardiopro-
tective effect on sepsis but inhibited LPS- or CLP-induced
autophagy-lysosomal pathway activation. Similarly, Zhao et al.
[62] confirmed that the reduction in the number of autophagosomes
and the reduction in the expression of the lysosome marker LAMP1
are associated with the protective effect of ulinastatin in LPS-
induced sepsis. The discrepancy in the role of cardiac autophagy in
sepsis may be associated with the severity of sepsis, drug specificity,
and difference in the timing of delivery [63].
In conclusion, this study demonstrated for the first time that

inhibition of miR-29b-1-5p ameliorates septic myocardial injury.
Mechanistically, inhibition of miR-29b-1-5p upregulates TERF2
expression, which in turn inhibits sepsis-induced myocardial tissue
injury, inflammation, and cardiomyocyte apoptosis. Our findings
indicate that miR-29b-1-5p may be a promising therapeutic target
for septic myocardial injury.
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Sinica online.
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