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Abstract 

Plant metabolites including anthocyanins play an important role in the growth of plants, as well as in regulating 
biotic and abiotic stress responses to the environment. Here we report comprehensive profiling of 3315 metabolites 
and a further metabolic-based genome-wide association study (mGWAS) based on 292,485 SNPs obtained from 311 
rice accessions, including 160 wild and 151 cultivars. We identified hundreds of common variants affecting a large 
number of secondary metabolites with large effects at high throughput. Finally, we identified a novel gene namely 
OsLSC6 (Oryza sativa leaf sheath color 6), which encoded a UDP 3-O-glucosyltransferase and involved in the antho-
cyanin biosynthesis of Cyanidin-3-Galc (sd1825) responsible for leaf sheath color, and resulted in significant different 
accumulation of sd1825 between wild (purple) and cultivars (green). The results of knockout transgenic experiments 
showed that OsLSC6 regulated the biosynthesis and accumulation of sd1825, controlled the purple leaf sheath. Our 
further research revealed that OsLSC6 also confers resistance to cold stress during the seedling stage in rice. And we 
identified that a SNP in OsLSC6 was responsible for the leaf sheath color and chilling tolerance, supporting the impor-
tance of OsLSC6 in plant adaption. Our study could not only demonstrate that OsLSC6 is a vital regulator during antho-
cyanin biosynthesis and abiotic stress responses, but also provide a powerful complementary tool based on metab-
olites-to-genes analysis by mGWAS for functional gene identification andpromising candidate in future rice breeding 
and improvement.
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Introduction
Plants produce a variety of metabolites selected by envi-
ronment and human beings are important for both their 
lives and human health (Schauer et  al. 2006; Cao et  al. 
2022). Metabolomics, serve as the intermediate and ulti-
mate products of biological processes, are invaluable for 
both phenotyping and diagnostic studies in plants and 
humans (Kettunen et  al. 2012; Griffin 2006; Fernie and 
Schauer 2009). Meanwhile, metabolic phenotype builds a 
bridge between genes and visible phenotypes, which can 
be used as biomarkers for crop trait prediction (Matsuda 
et  al. 2012; Riedelsheimer et  al. 2012; Hirai et  al. 2007). 
Understanding the genetic basis of natural variations in 
the metabolome of major crops such as rice, is important 
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for the quality, reliability and sustainability of the world’s 
food supply.

Anthocyanins, belonging to the flavonoid pigment mol-
ecules (Reddy et al. 1995), are second largest metabolites 
which are widely distributed in different organs and tis-
sues such as roots, leaves and flowers, responsible for the 
purple, red, blue and orange colors and play a crucial role 
in attracting pollinators (Miller et  al. 2011). Meanwhile, 
anthocyanins also play a key role in resisting biotic and 
abiotic stresses, such as cold, drought, ultraviolet rays and 
pest diseases (Dixon et al. 2002; Hichri et al. 2011; Isshiki 
et  al. 2014; Schulz et  al. 2015, 2016; Zhang et  al. 2020). 
For example, overexpression of UGT79B2 and UGT79B3 
in Arabidopsis significantly enhanced plant tolerance to 
cold stress, primarily due to increased the anthocyanin 
accumulation (Li et  al. 2017a, b). Moreover, as a plant 
phytonutrient, anthocyanins have strong anti-mutation 
and antioxidant activities, and are important to human 
health, result in a high economic value (Li et al. 2017a, b). 
For the reason of their diversity and importance, antho-
cyanins have become one of the most studied metabolic 
in plants (Petroni et al. 2011; Sobel et al. 2013).

A large number of genes encode various enzymes in 
plants, and catalyze the biosynthesis of pro-anthocyani-
dins (PAs) and anthocyanins, subsequently transported to 
vacuoles for storage through various modifications (Tan-
aka et al. 2008; Zhao and Dixon 2010; Gomez et al. 2011). 
The genes involving anthocyanins biosynthesis could 
divided into two groups, named early (EBGs) and late 
(LBGs) biosynthetic genes (Pelletier et al. 1999; Lepiniec 
et al. 2006), which encode multiple enzymes that synthe-
size PAs and anthocyanins (Takashi et al. 2014), and reg-
ulated by MBW protein complex, so called MYB-bHLH 
(basic helix-loop-helix transcription factor)-WD40 
repeat protein (WDR) (Winkel-Shirley 2001; Baudry 
et al. 2004; Xu et al. 2015). Wild rice accumulate antho-
cyanin in many tissues, but these flavonoid pigments are 
absent in most cultivars possibly as a result of artificial 
selection (Zheng et al. 2019). Five putative regulators of 
anthocyanidin biosynthesis were isolated and character-
ized in rice, including the R2R3-MYB transcription fac-
tor gene OsC1 and four bHLH genes, Ra1/OsB1, Rb, Ra2 
and OsB2 (Reddy et al. 1998; Sakamoto et al. 2001; Sai-
toh et al. 2004). The gene functional analysis showed that 
OsC1 is the determinant factor of anthocyanin biosyn-
thesis in rice leaf sheath (Chin et al. 2016), which homol-
ogous to the maize anthocyanin biosynthesis gene C1 
(Cone et al. 1986), and believed a domestication related 
gene caused the loss of anthocyanin accumulation in cul-
tivars (Huang et al. 2010). Recently, the C-S-A gene regu-
lation model (OsC1-OsB2-OsDFR) has been proposed, 
which regulates anthocyanin pigmentation and reveals 
the evolution of anthocyanin biosynthesis pathway in rice 

hull (Sun et al. 2018). The WD40 repeat gene OsTTG1 is 
a vital regulator of anthocyanin biosynthesis in rice, phy-
logenetic analysis showed that directional selection has 
drove the divergence of OsTTG1 alleles between indica 
and japonica rice (Yang et al. 2021). 

Glycosylation of anthocyanidin is usually catalyzed by 
UDP dependent glycosyltransferases (UGTs) (Bowles 
et al. 2006), and UGTs play a crucial role in regulating the 
endogenous balance and biological activity of anthocya-
nins, consequently affecting plant metabolic stress toler-
ance (Li et al. 2017a, b; Rao et al. 2019). Up to now, some 
UGTs have been found, and validated to play a positive 
role in enhancing rice tolerance to many abiotic stresses, 
including salt, drought, cold, high temperatures and 
UV-B irradiation (Shi et  al. 2020; Liu et  al. 2021; Wang 
et  al. 2023). Despite the identification of these UGTs as 
key players in rice responses to abiotic stresses, the com-
prehensive biological function of these UGTs are largely 
unknown.

Cultivated rice is one of the earliest domesticated 
crops, and provides necessary nutrients to humans (Chen 
et al. 2014). The genus Oryza comprises wild and domes-
ticated species makes a comprehensive metabolomic 
study of this species imperative. Wild and cultivated rice 
showed significant differences in anthocyanin biosynthe-
sis in leaf (Zheng et al. 2019), resulted purple leaf sheath 
was common in wild rice, and rarely seen in cultivars. 
So far, only a few genes such as OsC1 directly conferring 
biosynthesis of anthocyanin in purple leaf sheath were 
isolated (Chin et al. 2016), the biosynthesis of anthocya-
nin and the mechanism of this biosynthesis difference 
have not been widely studied, and how natural or artifi-
cial selection has reshaped the metabolite profiles of leaf 
sheath color remain largely unknown.

Results
Metabolic Profiling of Wild and Cultivated Rice Accessions
To investigate the effects of numerous structurally metab-
olites on rice growth and development, we detected and 
quantified 3315 distinct metabolite features by a broadly 
targeted liquid chromatography-tandem mass spectrom-
etry (LC–MS) based metabolic profiling method (Chen 
et al. 2013) in the leaves from 311 rice accessions, includ-
ing 160 wild and 151 cultivars (Table S1). Of the detected 
metabolic features, including 3299 in wild (635 anno-
tated) and 3256 in cultivars (630 annotated), with 3240 
(629 annotated) were detected in both wild and cultivars 
(Fig. 1A). Subsequently, we identified differential metabo-
lites features between wild and cultivars according to FC 
(fold change) ≥ 2 or ≤ 0.5 and VIP (variable importance in 
the projection) ≥ 1. Finally, of the 636 metabolites anno-
tated with associated chemical structures, 170 differ-
ential metabolites were identified when comparing wild 
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and cultivars. The features including mainly alkaloids 
(21), amino acids (15), flavonoids (76), lipids (1), nucleo-
tides (7), organic acids (17), phenolic acids (14) and oth-
ers (19) (Figure S1A). Compared with wild rice, some 
metabolic features changed dramatically in cultivars, for 
example, some flavonoids (Cyanidin 3-O-rutinoside and 
Apigenin 8-C-pentoside) were decreased and increased 
by more than 11 and 50 times, respectively (Table  S2). 
We additionally observed that more than 66% (2174 of 
3315) of the metabolic features showed the coefficient 
of variations (CVs) greater than 50% (Figure S1B), and 
the broad-sense heritability (H2) revealed that 66.4% of 
the metabolites displayed values greater than 0.5 (Figure 
S1C). Of these metabolic features, lignans and coumarins 
as well as alkaloids showed the highest CVs with average 
up to 200.9% and 117.36%, ranging from 11.61% (Pro-
line betaine) to 1545.93% (Feruloylcholine) and 16.82% 
(Tricin 7-O-hexoside) to 1037.48% (Chrysin O-malonyl-
hexoside), respectively. While carbohydrates displayed 
the lowest CVs with an average of 37.06% (Table  S3), 

suggesting significant variation of metabolites in these 
materials between wild and cultivars.

The clustering analysis based on the levels of meta-
bolic features could divided the 311 rice varieties into 
two groups, represented by wild and cultivars (Fig.  1B). 
Unsurprisingly, these two subgroups almost consistent 
with the neighbor-joining tree showed two divergent 
groups which constructed by 292,485 SNPs of sequenc-
ing the 311 accessions (Figure S1D). A principal compo-
nent analysis (PCA) based on the levels of all the detected 
metabolites data revealed that the 311 rice accessions 
basically formed two distinct clusters, wild and cultivars 
(Figure S2), which consistent with the neighbor-jointing 
phylogenetic tree constructed using metabolites, indicat-
ing dynamic changes in metabolites profiles during the 
domestication from wild to cultivars.

Compared with cultivars, we discovered that 117 anno-
tated metabolites features were accumulated to signifi-
cantly higher levels in wild rice, including 18 alkaloids, 
2 amino acids, 35 flavonoids, 7 lipids, 2 nucleotides, 16 
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organic acids, 13 phenolic acids, and 24 others metabo-
lites (Table  S2). Among these metabolites, for exam-
ple, some representative metabolites like Trigonelline 
(sd1731), Cyanidin 3-O-rutinoside (sd1806), Chlorogenic 
acid methyl ester (sd2705) and 3-Methyl-1-pentanol 
(sd2137) showed significantly elevated levels in wild 
when compared with cultivars, with average levels up to 
7.73-, 11.11-,11.18- and 5.63- fold, respectively (Fig. 1C, 
Table S2). Amino acids, such as N-acetylglycine (sd1273), 
lipids, such as 13-HOTrE(r) (sd3384), nucleotides, such 
as β-nicotinamide mononucleotide (sd0522), and phe-
nolic acids, like O-p-coumaroyl quinic acid O-rutinoside 
derivative (sd2671), also displayed a higher accumulation 
in wild rice (Fig.  1C, Table  S2), indicating high natural 
variability between wild and cultivars. Altogether, among 
the eight classes of annotated metabolites, flavonoids are 
obviously selected during rice domestication.

Among all the metabolites, flavonoids were the one of 
the most critical secondary metabolite groups because 
they had the largest number in all samples, indicating 
they are widely distributed and play a important func-
tion in rice. We found that 66 of the 101 annotated fla-
vonoids had higher levels in cultivars than in wild rice, 
indicating strong positive selection of flavonoids during 
rice domestication, and the remaining 35 flavonoids had 
decline in the cultivars (Fig. 1D, Table S4). These metabo-
lites included several color related components such as 
anthocyanins. Interestingly, further observation revealed 
that among the 66 flavonoids had higher levels in culti-
vars, 45.5% (30 of 66) were oxygen-decorated, and 37.9% 
(25 of 66) were carbon decorated. While the remaining 
35 flavonoids had higher levels in wild rice, the percent of 
oxygen decorated flavonoids sharply increased to 71.4% 
(25 of 35) and the carbon-decorated flavonoids decreased 
to 14.3% (5 of 35) (Fig. 1D, Table S4), indicating that the 
oxygen-/carbon-modification of flavonoids had a dra-
matic change during rice domestication from wild to 
cultivars.

Genetic Basis of Natural Variation in Anthocyanidins 
Revealed by mGWAS
To investigate the genetic control of the natural variation 
in anthocyanidins content, GWAS and mGWAS were 
performed by a gene-based analysis for the 311 rice acces-
sions. Finally, one QTL distributed on Chr6 well known 
as OsC1 associated with leaf sheath color was identified 
in our previous study (Jiang et  al. 2024). Besides that, 
another QTL named qLSC6 also significantly associated 
with leaf sheath color was identified distributed on Chr6 
in the same interval (P-value = 1.71E−18) (Figure S3). 
Meanwhile, to assist in the identification of the candidate 
genes to reveal the qLSC6, mGWAS was performed for 
the metabolites of anthocyanidin. Coincidentally, among 

the previous mentioned 101 flavonoids, we found the 
metabolite Cyanidin-3-Galc (sd1825, P-value = 4.63E−18, 
Figure S4A) was mainly located the same interval on 
Chr6, and the results of the mGWAS for sd1825 were vis-
ualized in Manhattan plots (Fig. 2A, B). Cyanidin-3-Galc 
was a kind of flavonoid anthocyanins, with much higher 
content in wild rice compared to cultivars (Figure S4B). 
By gene annotation and linkage disequilibrium (LD) anal-
yses, LOC_Os06g09240, named OsLSC6 hereafter, which 
encoded an anthocyanidin UDP 3-O-glucosyltransferase, 
was found remarkably relevant to the content of sd1825 
within the confidence interval of the locus (Fig. 2C).

To further verify that OsLSC6 is indeed the candidate 
gene conferred the content of sd1825, we then randomly 
selected the leaves of 15 wild rice accessions had higher 
level of sd1825 with purple leaf sheath color, and 15 cul-
tivars had lower level of sd1825 with green leaf sheath 
color to perform transcriptome analysis. We measured 
the transcription levels of OsLSC6, as quantified by real-
time quantitative reverse transcription PCR (qRT-PCR) 
across above the 30 rice varieties. The results showed 
that a strong correlation between the transcription levels 
of OsLSC6 and sd1825 content, as confirmed by correla-
tion analysis (Student’s t test, P < 0.05; Fig. 2D). Sequence 
analysis showed that there were 6 SNP variations in the 
promoter region and one allelic mutation (C798A) in the 
OsLSC6 coding region resulted in significant change in 
amino acid (His-Gln) between wild and cultivars, we cat-
egorized the genotypes of OsLSC6 into three haplotypes 
(Hap.A, Hap.B, Hap.C) based on these 7 SNPs (Fig. 2E). 
This categorization showed a significant association 
between these haplotypes and sd1825 content (Fig.  2F). 
And the SNP located within 798 bpbp of OsLSC6 showed 
the most significant relevant to the levels of sd1825, 
with P values up to 6.9E−5, namely, accessions with the 
OsLSC6C haplotype (Hap.A) exhibited higher sd1825 
content than those with OsLSC6A (Hap.B) (Fig. 2F). And 
in the 160 wild accessions, only two samples carried with 
the OsLSC6A haplotype, while in the 151 cultivars, 115 
carried with the OsLSC6A haplotype (Fig. 2G, Table S5), 
showed that the allelic mutation (C798A) located in 
the OsLSC6 coding region maybe selected during rice 
domestication. Taken together, these results suggest that 
the variation in OsLSC6 was remarkably relevant to the 
content of sd1825 and influence the anthocyanin biosyn-
thesis in rice.

OsLSC6 Contribute to Leaf Sheath Color and Cold Stress 
Tolerance
OsLSC6 was annotated as an anthocyanidin 3-O-gluco-
syltransferase, was associated with the natural variation 
of sd1825 which may play an important role in the for-
mation of rice leaf color. Next, we investigated whether 
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the OsLSC6 gene is directly or indirectly regulated the 
sd1825 content, and is therefore responsible for the 
observed metabolic phenotype of the leaf sheath color, 
two CRISPR/ Cas9 constructs with different single-
guide RNAs (sgRNAs) were created and transformed 
into the purple wild rice accession DX386. Four inde-
pendent homozygous transformed lines with different 
mutations were obtained (Fig.  3A). In these plants, the 
green leaf sheath color phenotype indicates that knock-
out of OsLSC6 was achieved, which strongly suggest the 
involvement of OsLSC6 in the biosynthesis of the purple 
leaf sheath color (Fig. 3B, C).

To further validate our hypothesis that OsLSC6 affect 
the content of sd1825 in rice, levels of sd1825 in the 

leaves of the OsLSC6 transgenic lines were analyzed 
and compared with those in wild type plants by HPLC/
MS. The results showed that knocking down OsLSC6 
is accompanied by a significant decline in sd1825 lev-
els (Fig.  3D). Together, these data showed that OsLSC6 
played a role in leaf sd1825 content and responsible for 
the rice leaf sheath color.

Anthocyanins also play a crucial role in resistance to 
biotic and abiotic stresses, such as cold stress (Schulz 
et  al. 2015; Li et  al. 2017a, b), it appears reasonable to 
indicate that sd1825 is related to the adaptation of rice 
to chilling tolerance. To further confirm the involve-
ment of OsLSC6 in cold stress tolerance in rice, we sub-
jected the seedlings of two-week-old of wild type (WT) 
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and knockout lines (M1 to M4) to three low tempera-
ture treatments in 10℃ for 13 days, 15 days and 17 days, 
respectively, and followed by a 10-day recovery under 
normal conditions. The results clearly showed that the 
survival rates of WT was significantly higher than those 
of the knockout plants (Fig.  4). These results demon-
strated that the knockout of OsLSC6 reduces cold stress 
tolerance in rice. In conclusion, OsLSC6 contribute to 
not only purple leaf sheath color but also cold stress tol-
erance in rice.

A SNP in the Coding Region of OsLSC6 May Confer Leaf 
Sheath Color and Cold Stress Tolerance in Rice
To identify the distribution of the SNP (C798A) located 
in the OsLSC6 coding region in rice populations, we 
screened the 311 rice accessions used in this study and 
found that all most of the wild rice (158 of 160) harbored 

the OsLSC6C haplotype, and in the 158 wild rice acces-
sions harbored the OsLSC6C haplotype, 142 performed 
purple leaf sheath color, whereas 76% (115 of 151) cul-
tivars harbored the OsLSC6A haplotype, and in the 115 
cultivars harbored the OsLSC6A haplotype, 101 per-
formed green leaf sheath color (Fig. 2G and Table S5), no 
other allele was found. These results indicated that the 
SNP was associated with purple leaf sheath color in rice.

To investigate the relationship between the SNP and 
rice cold stress tolerance, we analyzed 411 cultivated 
rice accessions (including the 120 cultivars used in this 
study) with respect to the genotype and phenotype at 
the OsLSC6 locus. Analysis showed that the 36 culti-
vars with the genotype OsLSC6C displayed significantly 
higher seedling survival rates than the 375 cultivars with 
the genotype OsLSC6A after cold treatment (Fig. 5A and 
Table  S6). We further analyzed the distribution of the 
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Fig. 4  Knockout of OsLSC6 reduces cold tress tolerance in rice. A, B Phenotypes of the WT and OsLSC6 mutant lines before and after cold stress 
under three low temperature treatments. Scale bar = 2 cm. C Survival rates of the WT and OsLSC6 mutant lines after cold stress under three low 
temperature treatments

Fig. 5  A SNP in the OsLSC6 coding region increases rice cold tolerance. A 500 cultivars (including the 151 cultivars used in this study) were used 
for comparing the rice cold stress tolerance between the cultivars with the genotype OsLSC6A and those with the genotype OsLSC6C. B The 
frequency of genotypes OsLSC6A and OsLSC6C in indica, japonica and aus rice. C The geographical distribution of cultivars with the SNP in areas 
of Asia
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SNP in 2382 cultivated rice varieties from the 3  K RG 
(RFGB v2.0 database, https://​www.​rmbre​eding.​cn/). The 
data showed that the frequency of cultivars with the gen-
otype OsLSC6C in indica, japonica, and aus rice was 22.7, 
98.4, and 98.9%, respectively (Fig. 5B), with the japonica 
varieties with OsLSC6C being distributed mainly in East 
Asia, whereas the indica varieties with OsLSC6A were 
mainly distributed in Southeast Asia (Fig.  5C). These 
results indicated that the SNP in the OsLSC6 coding 
region confers cold stress tolerance in rice and the SNP 
was subject to strong selection during rice domestication.

Discussion
Metabolites play essential roles in plant development and 
stress responses, in this paper, by measuring 3315 metab-
olite features in 311 rice varieties, our understanding of 
natural variation at the metabolite level of rice has largely 
furthered. More than 39% of the metabolite features 
identified showed large fold change (> 2) within wild 
and cultivars in this study, which provided an interesting 
direction to explore how the huge quantitative variations 
regulate the growth and development in rice. The results 
showed that wild rice have a higher sd1825 content com-
pared to cultivars, and behave in purple leaf sheath color. 
Besides, transgenic plants with lower sd1825 content are 
sensitive to cold tolerance compared to wild type. Since 
wild rice grows in the natural environment, which is 
harsher than that of cultivars, these finding suggest that 
high sd1825 content in wild rice may play a crucial role 
in protecting plants against a range of abiotic and biotic 
stresses.

Anthocyanins have strong anti-mutation and antioxi-
dant activities, and are important to human health (Li 
et al. 2017a, b), for example, black rice contains high lev-
els of anthocyanins in the pericarp and is considered an 
effective health-promoting food (Yoshimura et al. 2012). 
We present a comprehensive study of rice metabolism, 
combining omics technologies such as genome and tran-
scriptome, and identified that a UDP 3-O-glucosyltrans-
ferase named OsLSC6 which involved in the anthocyanin 
biosynthesis of Cyanidin-3-Galc (sd1825). OsLSC6 plays 
a crucial role in regulating rice leaf sheath color. Knock-
out of OsLSC6 resulted in a significant decline of antho-
cyanins sd1825 content in wild rice and resulted in a 
green leaf sheath. Meanwhile, anthocyanins also play 
a key role in resisting biotic and abiotic stresses, such 
as cold (Schulz et al. 2015, 2016; Li et al. 2017a, b). Our 
study has demonstrated that OsLSC6 played a crucial 
role in regulating rice cold tolerance stress, which is dif-
ferent from other reported stress related UGTs, such as 
UGT76C2 and UGT71C5 (Li et al. 2015; Liu et al. 2015). 
Knockout of the OsLSC6 gene in wild rice accession 
DX386 showed significantly lower seedling survival rates 

compared to wild type under cold treatment (Fig.  4), 
these results demonstrated that OsLSC6 positively regu-
lates cold stress in rice. This highlights the potential of 
OsLSC6, which involved in the anthocyanin biosynthe-
sis of sd1825, responsible for the purple leaf sheath color 
and enhanced cold tolerance with higher accumulation of 
sd1825 in rice.

We sequenced the full-length of OsLSC6 in 311 rice 
accessions and identified a nonsynonymous polymor-
phism in the second exon (Fig. 2E), the evidence showed 
that the SNP (C798A) in the coding region of OsLSC6 
endows wild rice with purple leaf sheath color. Strikingly, 
more than 88% (142 of 160) of the wild rice harbored 
the OsLSC6C haplotype performed purple leaf sheath 
color, whereas 67% (101 of 151) cultivars harbored the 
OsLSC6A haplotype, and performed green leaf sheath 
color (Fig. 2G and Table S5), this suggests that the SNP, 
resulting in a change of amino acid in the coding region 
of OsLSC6, may responsible for the purple leaf sheath 
color in rice.

Our further research revealed that OsLSC6 also con-
fers resistance to cold stress during the seedling stage 
in rice. We grouped the 411 cultivated rice accessions 
(including the 120 cultivars used in this study) based on 
the phenotype of seedling survival rates and genotype at 
the OsLSC6 locus, and examined whether the cold toler-
ance was associated with the SNP (C798A) in OsLSC6. 
The results showed that the cultivars with the genotype 
OsLSC6C displayed significantly higher survival rates 
than the cultivars with the genotype OsLSC6A after cold 
treatment. Our data suggest that the SNP make a contri-
bution to seedling chilling tolerance.

Conclusion
In this study, the identified Oryza sativa leaf sheath color 
6 (OsLSC6) which encoded a UDP 3-O-glucosyltrans-
ferase is involved in rice anthocyanin biosynthesis and 
chilling tolerance. And we identify a SNP in the coding 
region of OsLSC6 is responsible for the leaf sheath color 
and cold stress response. Therefore, this study guides for 
rice breeding to improve rice cold tolerance and high 
content of anthocyanin.

Materials and Methods
Plant Materials
Genetic materials used in this study included 311 rice 
accessions were analysed including 160 wild rice and 151 
cultivars, information about the accessions is listed in 
Table S1. To study natural variation of the metabolome, 
the rice leaf samples were randomly collected for meta-
bolic profiling. Leaves at the five-leaf stage were used for 
metabolic analysis, the samples were obtained between 
9:00 and 12:00 am, then placed in liquid nitrogen 

https://www.rmbreeding.cn/
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immediately. The leaf samples were taken from three 
different plants and pooled together for each biologi-
cal replicate. The wild rice variety DX386 showed purple 
leaf sheath with high anthocyanin content (sd1825), was 
selected as recipient for the OsLSC6 knockout transgenic 
test.

Metabolite Profiling
A relative quantification method of widely targeted 
metabolites was used to analyze samples (Cao et  al. 
2022). The samples were crushed using a grinder (MM 
400, Retsch, Germany) with zirconia beads for 1.5 min at 
30 Hz. Next, about 100 mg of sample powder extracted 
overnight with 1.0  ml of –  20  °C pre-cooled 70% aque-
ous methanol internal standard extract at 4 °C. Following 
centrifugation at 12 000  rpm for 10 min at 4  °C, vortex 
once every 30 min for 40 s, for a total of 5 times. After 
centrifugation, the supernatant was aspirated, and the 
sample was absorbed and filtered through a microporous 
membrane and stored in the injection vial for UPLC-MS/
MS analysis (Chen et al. 2013).

The analytical conditions were as follows, UPLC: col-
umn, Agilent SB-C18; The mobile phase was consisted 
of solvent A, pure water with 0.1% formic acid, and sol-
vent B, acetonitrile with 0.1% formic acid. Sample meas-
urements were performed with a gradient program 
that employed the starting conditions of 95% A, 5% B. 
Within 10 min, a linear gradient to 5% A, 95% B was pro-
grammed, and a composition of 5% A, 95% B was kept for 
1 min. Subsequently, a composition of 95% A, 5% B was 
adjusted within 1 min and kept for 3 min. The flow veloc-
ity was set as 0.35 ml per minute; The column oven was 
set to 40 °C; The injection volume was 2 μL. The effluent 
was alternatively connected to an ESI-triple quadrupole-
linear ion trap (QTRAP)-MS.

Population Structure Analyses Using Metabolomics Data
Neighbor-joining tree and PCA plots were used to infer 
the structure of the 311 rice population. The data matrix 
was generated from 311 rice varieties and 3315 metabo-
lites, which represented the contents of each metabo-
lite in different populations. Unsupervised PCA was 
performed with metabolite data by statistics function 
prcomp within R (www.r-​proje​ct.​org). The data was unit 
variance scaled to improve normality before unsuper-
vised PCA. Identification of differential accumulation of 
metabolites between different varieties was determined 
by partial least squares-discriminate analysis (PLS-DA) 
with VIP values ≥ 1, followed by ANOVA (P ≤ 0.05).

Genome‑Wide Association Study
A total of 292,485 SNPs were used for the GWAS. Popu-
lation structure was modeled by admixture (Alexander 

et  al. 2009), only SNPs with a moderate MAF (minor 
allele frequency) ≥ 0.05 were employed. mGWAS was 
performed using the LMM (linear mixed model) imple-
mented in TASSEL (Zhang et  al. 2010). The genome-
wide significance thresholds was determined using the 
Bonferroni test threshold (P = 2.61E−7), and the lead 
SNP within the 100-kb window for each metabolite was 
extracted as one signal. SNP with the lowest P value (lead 
SNP) and its corresponding genes were believed for each 
significant metabolic site.

RNA‑Sequencing Data Analysis
RNA sequencing was performed use the leaf samples of 
15 wild rice with higher sd1825 accumulation showed 
purple leaf sheath, and 15 cultivars with lower sd1825 
content showed green. Total RNA was extracted using 
trizol reagent (Invitrogen) according to the manufactur-
er’s protocol. Sequenced clean data were mapped onto 
the rice reference genome (MSU7) using Hisat2 software 
with default parameter, and expression level of genes 
were calculated using StringTie software and the GTF 
annotation file of MSU7.

Genotyping of OsLSC6
Genome resequencing was performed for the 311 rice 
accessions used in this study. Total genomic DNA was 
extracted from leaves using CTAB buffer (Cao et  al. 
2022). Amplification of OsLSC6 was performed by PCR 
using a PCR Mix (2xTSINGKE Master Mix, TSE004). 
PCR was performed in a Bio-Rad thermo cycler T100 
(ThermoFisher SCIENTIFIC) with the following cycling 
profile: 95  °C for 5  min, followed by 35 cycles of 95  °C 
for 30 s, 56 °C for 30 s, and 72 °C for 1 min, and a final 
10  min extension at 72  °C, the primers used to amplify 
the OsLSC6 are list in Table S7.

Vector Construction and Rice Transformation
To produce the OsLSC6 gene editing vector using 
CRISPR/Cas9 technology, we selected two target sites 
in this study (GGG​AAC​ATG​AGG​TTC​GTG​GAG​GTC​
G and GAA​CAC​CGC​CAT​CCG​CCG​CGG​CGG​). Subse-
quently, the gene editing vectors were transformed into 
the wild rice DX386, which has high sd1825 content, and 
the transformation was achieved using the Agrobacte-
rium-mediated method.

Cold Treatment
To test the rice cold tolerance, the seedlings were treated 
at 10  °C for at least 13  days, subsequently, they were 
moved to artificial climate chamber with 28 °C/26 °C day/
night cycles for recovery. After 10 days, the rice cold tol-
erance was determined by the percentage of the total rice 
seedlings survival rate (Ma et al. 2009).

http://www.r-project.org
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