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H I G H L I G H T S  

• Methamphetamine in crime lab data not positively correlated with an increase in overdose death rates. 
• Methamphetamine a less deadly substitute for synthetic opioids. 
• Past overdose death rates do not predict the future presence of methamphetamine in crime lab data.  
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A B S T R A C T   

Background: We investigate the relationship between the supply of methamphetamine and overdose death risk in 
Ohio. Ohio and the overall US have experienced a marked increase in overdose deaths from methamphetamine 
combined with fentanyl over the last decade. The increasing use of methamphetamine may be increasing the risk 
of overdose death. However, if people are using it to substitute away from more dangerous synthetic opioids, it 
may reduce the overall risk of overdose death. 
Methods: Ohio’s Bureau of Criminal Investigation’s crime lab data include a detailed list of the content of drug 
samples from law enforcement seizures, which are used as a proxy for drug supply. We use linear regressions to 
estimate the relationship between the proportion of methamphetamine in lab samples and unintentional drug 
overdose death rates from January 2015 through September 2021. 
Results: Relatively more methamphetamine in crime lab data in a county-month has either no statistically sig
nificant relationship with overdose death rates (in small and medium population counties) or a negative and 
statistically significant relationship with overdose death rates (in large population counties). Past overdose death 
rates do not predict future increases in methamphetamine in crime lab data. 
Conclusions: The results are consistent with a relatively higher supply of methamphetamine reducing the general 
risk of overdose death, possibly due to substitution away from more dangerous synthetic opioids. However, the 
supply of methamphetamine appears unrelated to the past illicit drug risk environment. The non-lethal and yet 
serious health effects of MA use were not explored and, thus, even if the presence of MA reduces the population- 
level overdose mortality rate, the rise of other adverse health effects may counteract any public health benefits of 
fewer deaths.   

1. Introduction 

Drug overdose deaths have been rising in several countries around 
the world. However, overdose death rates in the United States (US) 
remain substantially higher than any other country (Snowdon, 2022). 
This article focuses on the state of Ohio and seeks to understand the 

potential causes and consequences of the recent increase in availability 
of methamphetamine (MA) in an environment with a concurrent rise in 
synthetic opioid availability. The findings can help us to understand the 
broader US trend in drug supply of an increasing availability of MA and 
fentanyl (Cano et al., 2023). This research is relevant to other countries 
as well since MA supply is expanding around the globe (UNODC, 2023). 
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MA in the US is inexpensive and of high purity and potency (Drug 
Enforcement Administration, 2020). There has been a large increase in 
overdose deaths involving combinations of MA with fentanyl or other 
synthetic opioids (Ciccarone, 2021). Research has found that people 
who consume both MA and heroin are at higher risk of overdose than 
people only consuming heroin (Al-Tayyib et al., 2017). Thus, this in
crease in deaths may be due to purposeful co-use leading to higher 
overdose risk. However, Daniulaityte et al. (2023) found that among 
people reporting MA use in the past 30 days in Dayton, Ohio, some 
tested positive for fentanyl despite reporting they had not used fentanyl 
in the past 30 days. Hence, increasing contamination of the MA supply 
with fentanyl may also be raising the risk of overdose death. 

This evidence would seem to indicate that the presence of MA in
creases, rather than decreases, the risk of overdose death. However, the 
positive correlation may be due to those at most risk of overdose 
increasing their MA use, not the MA use itself causing an increase in risk. 
And, thus, this statistical correlation could be present even if MA use 
itself somewhat reduces overdose risk. Relative to fentanyl, MA on its 
own has a substantially lower risk of overdose death. For people who co- 
use opioids and MA, a reduction in risk could be due to a reduction in the 
frequency of opioid use if MA is used to reduce withdrawal symptoms 
(Silverstein et al., 2021) or, as MA is a stimulant, it potentially provides 
some protection against overdose death. Some people who co-use opi
oids and MA believe there is a protective effect of MA (Daniulaityte 
et al., 2022; Clarke et al., 2022; Ondocsin et al., 2023). Animal study 
data show a bidirectional effect from amphetamines on the risk of fen
tanyl overdose, with small amounts of amphetamines increasing and 
larger amounts reducing risk (Elder et al., 2023). At a population level 
whether a greater supply of MA increases or decreases the risk of 
overdose death is an open question, particularly in a state with sub
stantial numbers of synthetic opioid-related overdose deaths. 

This article investigates the relationship between methamphetamine 
availability and overdose death using data from the Ohio Bureau of 
Criminal Investigation’s (BCI) Crime Labs as a measure of county-level 
illicit drug supply. Several other researchers have interpreted crime 
lab data in this way. For example, Cano et al. (2023) use the National 
Forensic Laboratory System (NFLIS), which includes data on drugs 
seized at a state level, to measure drug supply changes in the US, and 
Peterson et al. (2016) uses the NFLIS data to investigate changes in the 
drug supply in Ohio and Florida. Others, such as Hall et al. (2021), 
Rosenblum et al. (2020), and Zibbell et al. (2019) have used the BCI data 
as a measure of drug supply. State-level drug seizure data are a good 
proxy for drug supply, first, because the amounts seized are generally 
small, often less than a tenth of a gram. Thus, any individual seizure (or 
even 1000 s of small seizures) will not have a substantial impact on the 
overall illicit drug market. Second, assuming law enforcement intensity 
is similar from month to month within a county, changes in the 
composition of drugs over time, which is what we focus on, should 
reflect actual changes in the illicit drug market. In this article, we follow 
this interpretation of changes in crime lab data as changes in illicit drug 
supply. However, we acknowledge potential issues with this interpre
tation in our Limitations section. 

Assuming crime lab data can be used as a reasonable measure of 
illicit drug supply, we can use existing data to examine the potential 
interrelationship between supply and demand. Our main empirical 
questions are: 1. Is there evidence that an increase in the amount of MA 
seized by law enforcement, relative to other illicit drugs, is correlated 
with a higher or lower overdose death rate? In other words, first, is the 
data consistent with MA exacerbating the overdose crisis in Ohio or does 
having more MA in the illicit drug supply in the presence of synthetic 
opioids correlate with a reduction in the risk of overdose death? 2. Does 
an increase in overdose deaths correlate with a future increase in the 
relative amounts of MA seized by law enforcement? In other words, is 
there evidence that people who use opioids respond to high levels of 
overdose risk by increasing their consumption of MA? In supply and 
demand terms, does an increased supply of MA reduce the risk of 

overdose death and does an increased risk of overdose death increase the 
demand for MA? We find evidence in support of the former, but not the 
latter. In addition, although we cannot show causal estimates of the 
effect of MA on overdose deaths, this latter finding shows that the es
timates of the former are not being driven by MA supply preferentially 
going to locations with relatively high rates of overdose deaths in the 
recent past. 

2. Methods 

2.1. Data 

To empirically test the relationship between the composition of the 
illicit drug supply and overdose death rates, the article builds on the 
analysis in Rosenblum et al. (2020) using updated data from the Ohio 
BCI Crime Labs. After extensively cleaning the crime lab data (e.g., 
correcting misspellings, dropping unclear or unknown lab results, and 
dropping duplicates), we have a dataset with 212,215 samples of illicit 
drugs that were seized between January 1, 2015 and September 30, 
2021. We start the analysis in 2015, as this is when synthetic opioids and 
MA both began to appear in Ohio in substantial numbers. Our subsample 
includes all positive lab tests of prescription and illicit opioids (heroin, 
fentanyl, etc.), cocaine, MA, other synthetic stimulants (e.g. cathinones), 
MDMA and similar drugs, synthetic cannabis, benzodiazepines, psy
chedelics, PCP and variants (e.g. 3-HO-PCP), and other designer drugs. 
Cannabis and other miscellaneous drugs and substances are dropped 
from the analysis. There is a delay between drug seizure and drug 
testing, usually of one to two months, although in some cases substan
tially longer. For our current data, the BCI lab test date goes through 
February 14, 2022, with consistent numbers of observations for dates 
through September 2021. Thus, we limit our analysis to drugs seized 
through the third quarter of 2021. 

The BCI data include information on what specific drugs are in the 
samples that are tested, but they do not include the specific amounts of 
each type of drug in the sample or the purity of these drugs. The data 
also do not include information on drug paraphernalia found with the 
drugs (e.g. syringes) or the form of the drug (e.g. powder, pill, liquid). 
One county out of eighty-eight, Hamilton County (which includes Cin
cinnati), has disproportionately few observations in the BCI data given 
its population size and was dropped from the analysis. Data are aggre
gated to the county-month or county-quarter level, yielding 7047 
county-month observations and 2349 county-quarter observations. 

The BCI data are linked to publicly available county-month (or 
quarter) rates per 100,000 of unintentional1 overdose deaths from the 
Ohio Department of Health (ODH)’s website (the Ohio Public Health 
Information Warehouse). We investigate both overall overdose deaths, 
which are less prone to error (Ruhm, 2018a), and 
psychostimulant-specific overdose deaths, which are how MA-related 
overdose deaths are classified. Changes in overall death rates will give 
us information about the overall change in the illicit drug risk envi
ronment, while psychostimulant-specific death rates will show us 
whether the types of overdose deaths are changing over time. 

We use data from other sources to control for potential economic or 
health changes that may be differentially impacting overdose deaths in 
each county. We chose these controls due to data availability and 
acknowledge that there could still exist omitted variable bias from un
observed factors. The period of interest includes the COVID-19 

1 Much of the literature on overdose deaths focuses on deaths classified as 
unintentional, meaning not due to suicide or undetermined intent. These types 
of deaths are distinguished from each other in the ICD-10 classification system: 
X40–44 (unintentional), X60–64 (suicide), and Y10-Y14 (undetermined). Sui
cide and undetermined overdose deaths are much fewer than unintentional 
overdose deaths and have remained relatively stable over recent years, while 
unintentional overdose deaths have risen markedly (Olfson et al., 2019). 

D. Rosenblum et al.                                                                                                                                                                                                                             



Drug and Alcohol Dependence Reports 11 (2024) 100238

3

pandemic, which may have changed the relative risk of overdose deaths 
differentially across counties. For example, Friedman and Akre (2021) 
find that early in the pandemic there was a substantial increase in 
overdose deaths. To account for this possibility, we use data from the 
ODH to control for COVID-19 cases, hospitalization, and death counts 
aggregated to the county-month (or quarter) level. 

We control for the per capita amounts of licit prescription opioids. 
The presence of prescription opioids may raise or lower the risk of 
overdose death. On the one hand, the first wave of the opioid epidemic 
was driven by prescription opioids (Ciccarone, 2019) and may have 
increased the risk of overdose death. On the other hand, prescription 
opioids may offer a safer substitute relative to fentanyl and other illicit 
opioids. For example, Kim (2021) finds that Prescription Drug Moni
toring Programs, which restrict the availability of prescription opioids, 
are correlated with higher heroin overdose deaths. Data for per capita 
amounts of prescription opioids and opioid treatment (i.e. buprenor
phine) drugs dispensed at the county-quarter level are from the publicly 
available Ohio Automated RX Reporting System Quarterly County Data. 
Last, as economic conditions may affect the demand for illicit drugs 
(Ruhm, 2018b), we control for county-month unemployment rates from 
the US Bureau of Labor Statistics. 

2.2. Overview of overdose and drug lab data in Ohio 

Similar to the pattern in the US as a whole, Ohio has experienced a 
large increase in unintentional overdose deaths over the last decade, 
mostly attributable to fentanyl and fentanyl analogs. We present these 
trends in Fig. 1. The spike in 2017 was largely due to an influx of the 
analog carfentanil (Jalal and Burke, 2021), which is far more deadly 
than fentanyl. Also similar to the overall US, there has been an increase 
in deaths related to psychostimulants (methamphetamine and related 
drugs). However, as can be seen in the figure, most of the psychosti
mulant deaths can be attributed to those using a combination of psy
chostimulants and synthetic opioids. 

Fig. 2 shows how the BCI crime lab data have changed over time for 
the major categories of drugs. While the share of lab samples containing 
prescription opioids and heroin have been falling over time, synthetic 
opioids grew from about five percent of illicit drugs tested in 2015 to 
more than twenty-five percent in 2020 and 2021. Cocaine has been 
slowly declining, while MA has risen from a little more than 5 percent of 
the drugs tested in 2011 to about half in 2021. Thus, synthetic opioids, 
primarily fentanyl, and MA have become the dominant illicit drugs in 
Ohio. 

In addition, although small as a total fraction of MA crime lab tests, 
MA combinations with opioids, primarily fentanyl, have been 
increasing. Approximately 4.5 percent of MA positive crime lab samples 
in 2020 and 2021 also contain fentanyl. The prevalence of MA and MA- 
opioid combinations varies by county population size, with larger pop
ulation counties having relatively less of both, as well as fewer overdose 
deaths attributable to MA or MA-fentanyl combinations. To explore the 
potential heterogeneity in the relationship between MA and overdose 
deaths, the estimates below include sub-analyses of counties with small, 
medium, and large populations. 

2.3. Estimation strategy 

The estimates are implemented using linear regression analysis 
(OLS). To investigate whether an increase in MA in drug seizures is 
correlated with a contemporaneous higher or lower rate of overdose 
death, we estimate the following equation:  

Deathsit = β1MethNoSynthit + β2MethAnySynthit +

β3SynthNoMethit+δXit + αi + γt + eit                                               (1) 

where Deathsit is the rate per 100,000 of unintentional overdose deaths 
in county i and month t.2 MethNoSynthit is the fraction of county-month 
BCI lab tests that are positive for MA, but not any synthetic opioids. 
MethAnySynthit is the fraction of county-month BCI lab tests that are 
positive for both MA and any synthetic opioid. SynthNoMethit is the 
county-month fraction of BCI lab tests that are positive for any synthetic 
opioid, but not MA. The separation of tests in this way clarifies the role 
MA in general is playing as opposed to MA combined with or contami
nated with synthetic opioids. These three variables are the main inde
pendent variables of interest. Using the fraction of tests rather than the 
number of tests in a month helps to adjust for month-to-month differ
ences in total lab tests and also makes counties of different sizes more 
comparable. Fractions also help to remove bias that may be occurring 
from any general increased intensity of law enforcement in a particular 
county in a particular month that would show up as higher absolute 
numbers of drug samples. 

Xit is a vector of time-varying county-level controls: the county- 
month fraction of positive tests for other illicit and prescription drugs 
from the BCI crime lab data, prescribed opioid morphine milligram 
equivalent dose (MME) per capita for each quarter for non- 
buprenorphine opioids and also the mg per capita for prescribed 
buprenorphine each quarter, and monthly unemployment rates. We 
include controls for the presence of COVID-19, which is the county- 
month number of COVID-19 cases, hospitalizations, and fatalities. αi 
and γt are county and month fixed effects respectively. eit is the error 
term clustered by county. The time and location fixed effects control for 
general time trends in overdose deaths in Ohio as well as any time 
invariant county-specific differences in overdose deaths. 

In addition, we perform estimates for the subsamples of small pop
ulation counties (less than 50,000), medium population counties (be
tween 50,000 and 100,0000), and large population counties (more than 
100,000), to test whether locations with higher synthetic opioid avail
ability (i.e. larger population counties) are differentially affected by 
increases in MA. For testing whether the presence of higher opioid 
overdose risk increases the future prevalence of MA, we aggregate the 
data by quarter rather than month, with the average monthly overdose 
death rate over a quarter as an independent variable and future fraction 
of lab tests containing MA as the dependent variable (1 quarter, 2 
quarters, 3 quarters, and 4 quarters ahead). 

3. Estimation results 

Table 1 presents the correlation between the fraction of MA positive 
BCI crime lab tests and overall overdose death rates at the county-month 
level. We find that while there is no overall correlation, in large popu
lation counties there is a statistically significant correlation (p-value =
0.06): a 100 percentage point increase in MA is associated with a fall in 
the overdose death rate by about 0.5. To put this number in context, the 
average fraction of tests that are positive for MA in a county-month over 
the time period is about 0.23. If that fraction doubled it would be 
associated with a drop in the unintentional overdose death rate by about 
0.1. The average monthly overdose death rate in large population 
counties is 2.87 per 100,000. Thus, this increase in MA supply would be 
correlated with a fall in the overdose death rate by about 3.5 percent. 
The combined population of the large population counties is approxi
mately 8.9 million. Hence, this fall in the death rate translates into about 
9 fewer deaths per month. 

Given the sizeable increase in overdose deaths in Ohio from 
psychostimulant-fentanyl combinations shown in Fig. 1, it is perhaps 
surprising that our estimates provide evidence in accord with the idea 

2 Underlying cause of death ICD-10 codes X40-X44, unintentional drug 
overdose deaths. 
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that the increased prevalence of MA is not driving an increase in overall 
overdose deaths. Instead, our estimates indicate that increases in MA 
supply do not increase the general risk of overdose death and, in the high 
population counties with the most fentanyl-related overdose deaths, it 
may even reduce the risk of overdose death. 

In addition, as the variable is the fraction of crime lab tests, when MA 
tests rise, other drug types will fall. As synthetic opioids in the crime lab 
are the strongest predictor of overdose deaths, we can estimate what 
would happen to overdose deaths if all of the increase in MA reduced the 
fraction of synthetic opioids by a similar amount. If the fraction of 

Fig. 1. Annual unintentional overdose deaths in Ohio by drug-type. Fentanyl includes deaths where fentanyl and/or fentanyl analogs were associated with the death. 
Psychostimulant and Fentanyl deaths include both fentanyl (and/or a fentanyl analog) and a psychostimulant. Other drugs could be involved in each drug-type. Data 
Source: Ohio Department of Health.  

Fig. 2. Annual fractions of positive BCI lab tests from major drug classes that contain the specified drug class. The fraction of tests is calculated as the number of 
drug-specific tests divided by the sum of all positive tests that contain at least one of the major drug classes. Samples can test positive for multiple substances. 
Synthetic opioids include fentanyl and analogs as well as other illicit synthetic opioids such as U-47700 and etonitazene. Data Source: BCI Crime Lab Data, 2021 data 
are through September 2021.  
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synthetic opioids in the crime lab tests fell by 0.23, this would correlate 
with a reduction in the overdose death rate by about 0.46, a 16 percent 
fall in the overdose death rate, or about 41 fewer deaths per month. 
Thus, if MA supply increases cause a relative decline in the availability 
of synthetic opioids, we would expect overdose deaths to decline as well. 

Synthetic opioids in crime lab tests are positively correlated with 
overdose deaths overall and across the subsamples of small, medium, 
and large counties. However, MA mixed with a synthetic opioid in crime 
lab tests are not associated with an increase or decrease in overall 
overdose death rates. In Table 2 where the outcome is psychostimulant 
death rates, there is also no statistically significant correlation between 
MA mixed with a synthetic opioid in crime lab tests and overdose death 
rates. For medium-size counties, there is a positive association, signifi
cant at the 5 % level, between MA without synthetic opioids and psy
chostimulant death rates. Since overall overdose death rates are 

uncorrelated with the fraction of MA in medium-size counties, this 
finding indicates that as MA deaths rose, other types of overdose deaths 
fell an equivalent amount. 

These results are somewhat different than those found by Zibbell 
et al. (2022) who investigated the relationship between illicit 
stimulant-involved overdose deaths and MA and cocaine in the BCI 
crime lab data at the state level. Like us, they find no overall statistically 
significant correlation between MA-related overdose deaths and MA 
without synthetic opioids in BCI crime lab tests. However, unlike in our 
estimates, they find a statistically significant positive correlation be
tween MA with synthetic opioids and MA-specific overdose deaths at the 
state level. This difference in findings may be due to their estimates 
being at the state level rather than the county level, since our estimates 
include month fixed effects that absorb any variation over time 
happening across the state of Ohio. Their estimates are also focused on 
death counts and crime lab test counts, rather than fractions and rates, 
which could yield different results. 

While there may be an overall increase in the risk of overdose death 
in Ohio from COVID-19, which would be controlled for by our month 
fixed effect, we do not find a statistically significant correlation between 
county-level overdose death rates and the severity of COVID-19. This 
result is similar to the findings of DiGennaro et al. (2021) who investi
gate the effects of COVID-19 on overdose death trends in Massachusetts, 
but do not find measurable correlations between county-level COVID-19 
deaths and overdose deaths. 

The estimates in Tables 1 and 2 are robust to using a Poisson 
regression analysis with death counts instead of death rates as the 
dependent variable and either fractions of crime lab tests or crime lab 
test counts as independent variables. The estimates are robust to limiting 
the sample to the years 2015–2019, to avoid any potential effects of 
COVID-19. Under these restricted dates, there is a larger negative cor
relation between MA without synthetic opioids and overall drug death 
rates for large population counties (coefficient = − 0.787), statistically 
significant at the 1 % level. Hence, it could be that COVID-19 itself 
affected the role of MA in reducing overdose deaths or it may be that the 
relatively lower overdose death rates in the presence of MA are dimin
ishing over time. Additionally, in the pre-COVID-19 estimates the 

presence of MA is correlated with higher psychostimulant death rates 
overall, whereas in the main estimates there is no statistically significant 
correlation. 

Table 3 displays estimation results that test whether a higher over
dose death rate predicts higher fractions of MA in BCI lab tests in future 

Table 1 
OLS: Relationship between the fraction of BCI crime lab tests containing MA and 
unintentional overdose death rates per 100,000, 2015–2021.   

All Counties Small Medium Large  
(1) (2) (3) (4) 

MA no Synthetic Opioids -0.0893 -0.0630 0.0591 -0.4764*  
(0.1599) (0.2227) (0.3852) (0.2422) 

MA and Synthetic Opioids 1.0697 1.2847 0.5027 0.3534  
(1.0566) (1.6519) (1.1676) (0.6431) 

Synthetic Opioids no MA 1.5451*** 1.0764** 1.8711** 1.9837***  
(0.3402) (0.4994) (0.7798) (0.6016) 

R-Squared 0.25 0.18 0.37 0.49 
Observations 7047 3159 1782 2106 

Notes: Robust standard errors, clustered at the county level, are reported in 
parentheses. The estimates control for the fraction of monthly positive tests of 
cocaine, heroin, prescription opioids, synthetic cannibinoids, non-meth syn
thetic stimulants, PCP and PCP variants, psychedelics, barbiturates, and other 
designer drugs (each as a separate variable). See Appendix A for detailed defi
nitions of drug categories. Other county-month controls: unemployment rate, 
COVID 19 case counts, hospitalizations, and deaths. County-quarter controls: 
per capita MME of prescription opioids, per capita mg of prescription bupre
norphine. Estimates also include month and county fixed effects. Each obser
vation is at the county-month level from 2015 through the 3rd quarter of 2021. 
Small Counties: population 50,000 or less. Medium Counties: population be
tween 50,000 and 100,000. Large Counties: population more than 100,000. (* 
p<0.1, ** p<0.05, *** p<0.01). 

Table 2 
OLS: Relationship between the fraction of BCI crime lab tests containing MA and 
unintentional psychostimulant overdose death rates per 100,000, 2015–2021.   

All Counties Small Medium Large  
(1) (2) (3) (4) 

MA no Synthetic Opioids 0.0402 -0.0542 0.4864** 0.1326  
(0.0683) (0.0658) (0.2172) (0.1095) 

MA and Synthetic Opioids 0.6445 0.5359 0.8165 1.0366  
(0.6841) (0.9906) (1.2161) (0.7389) 

Synthetic Opioids no MA 0.2127 0.0568 0.9023*** -0.0485  
(0.1336) (0.1833) (0.3159) (0.1078) 

R-Squared 0.22 0.18 0.36 0.38 
Observations 7047 3159 1782 2106 

Notes: Robust standard errors, clustered at the county level, are reported in 
parentheses. The estimates control for the number of monthly positive tests of 
cocaine, heroin, prescription opioids, synthetic cannibinoids, non-meth syn
thetic stimulants, PCP and PCP variants, psychedelics, barbiturates, and other 
designer drugs (each as a separate variable). See Appendix A for detailed defi
nitions of drug categories. Other county-month controls: unemployment rate, 
COVID 19 case counts, hospitalizations, and deaths. County-quarter controls: 
per capita MME of prescription opioids, per capita mg of prescription bupre
norphine. Estimates also include month and county fixed effects. Each obser
vation is at the county-month level from 2010 through 2017. Small Counties: 
population 50,000 or less. Medium Counties: population between 50,000 and 
100,000. Large Counties: population more than 100,000. 
(* p<0.1, ** p<0.05, *** p<0.01). 

Table 3 
OLS: Relationship between unintentional overdose death rates per 100,000 and 
the future fraction of BCI lab drug tests containing MA (without synthetic opi
oids), 2015–2021.   

+1 
Quarter 

+2 
Quarters 

+3 
Quarters 

+4 
Quarters 

Overall Overdose Death 
Rate 

-0.0013 
(0.0034) 

-0.0060* 
(0.0034) 

-0.0030 
(0.0032) 

0.0004 
(0.0043) 

Fentanyl Overdose 
Death Rate 

-0.0000 
(0.0009) 

-0.0008 
(0.0010) 

-0.0002 
(0.0009) 

0.0009 
(0.0012) 

Observations 2262 2175 2088 2001 

Notes: The table shows coefficients for eight separate estimates with the inde
pendent variable of interest being Overall or Fentanyl-specific Overdose Death 
Rates and the dependent variable being the fraction of BCI lab tests that are 
positive for methamphetamine 1, 2, 3, or 4 quarters in the future. Robust 
standard errors, clustered at the county level, are reported in parentheses. Each 
observation is at the county-quarter level from 2015 through the third quarter of 
2021. The estimates control for the quarterly average unemployment rate, 
quarterly COVID 19 case counts, hospitalizations, and deaths, as well as quar
terly per capita MME of prescription opioids, and per capita mg of prescription 
buprenorphine. Estimates include quarter and county fixed effects. 
(* p<0.1, ** p<0.05, *** p<0.01). 
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quarters. We do not find a statistically significant relationship between 
current death rates and future MA in crime lab samples.3 There is a 
similar lack of correlation if death counts and drug counts are used in a 
Poisson regression. Estimates on the subsamples (not shown) of small, 
medium, and large population counties yield similar, not statistically 
significant, coefficients. 

These findings on the relationship between past overdose death rates 
and future MA supply are important for two reasons. First, these esti
mates show that the MA market is not differentially responding to 
counties based on the relative overdose death risk. That is, we do not see 
evidence that MA supply is responding to demand for less deadly illicit 
drugs. Individuals may be consuming MA as a risk mitigation strategy, 
but if this is true, they are either only a small part of the population, and 
so we do not see this in the aggregate estimates, or MA is being used as a 
risk mitigation strategy across counties at similar rates regardless of the 
extent of overdose deaths in a specific county. Second, as the estimates 
in Tables 1 and 2 are non-causal, we may worry that the negative 
contemporaneous correlation between MA in lab tests and overdose 
death rates in large counties is due to MA supply preferentially going to 
counties which have slower increases in or even declining overdose 
death rates. However, the estimates in Table 3 do not support that hy
pothesis. Rather the estimates align with MA supply rising across 
counties in Ohio regardless of prior trends in overdose death rates and 
that the counties that happened to have relatively more MA (and less 
synthetic opioids) in their illicit drug supply have relatively fewer 
deaths. 

4. Limitations 

One of the limitations of the empirical findings in this article, and in 
general of empirical research on illicit drugs, is the lack of precise data 
on the supply, demand, and consequences of illicit drugs. Crime lab data 
can provide detailed information about what law enforcement is 
detecting. However, if law enforcement is targeting specific types of 
drugs and ignoring others, e.g. ignoring methamphetamine and focusing 
on fentanyl, then the crime lab data could be misleading about the actual 
state of the illicit drug market. As already mentioned, when multiple 
drugs are present in the same sample, we are not able to detect the 
relative quantities of each within the sample. It is for this reason that we 
separate MA and synthetic opioids into three distinct variables, com
bined and not combined. However, when interpreting the observations 
of MA combined with synthetic opioids, we may be estimating the null 
results because the variable is too imprecise: e.g. if we could have 
differentiated the samples that are mostly MA from those that are mostly 
opioids we may have found different results. 

We may be misinterpreting the changes in crime lab data as changes 
in supply as it could instead reflect the consequences of differential 
incarceration or decreases in supply that could affect overdose deaths as 
was found by Ray et al. (2023) in Indiana. That is, if the police are 
arresting many more people with MA, it may have a substantial negative 
effect on the supply of MA, and, thus, we would interpret the negative 
correlation of MA in lab tests and death rates as a fall in MA supply 
leading to a fall in overdose deaths. However, given that there are 
relatively few monthly seizures in a county in Ohio, many typically less 
than a gram of drugs per seizure, these arrests should not have an 
appreciable affect on county-level drug supply. In any case, since we do 
not use the number of MA samples, but rather the relative amounts of 
MA samples compared to other types of drugs, our measure is not 
picking up intensity of arrests. 

A related concern is that the estimates are really just detecting the 
number of incarcerated people who use MA, rather than the composition 

of the drug market. Hence, it may be that the overdose death rate is 
driven down in the short-run with a temporarily lower number of people 
who use MA, and the estimates are missing the long-term increases in 
overdose deaths that will occur when they are released from prison. We 
acknowledge that we are focused on contemporaneous estimates and are 
missing any long-term consequences that could be substantial. Although 
the BCI crime lab data is by no means a perfect measure of changes in the 
types of drugs available in the illicit drug market in Ohio, it is the best 
available data. Given our estimation strategy in which we control for 
time and county, as long as law enforcement is not changing their 
enforcement strategies differentially by county over time, the estimates 
should detect actual changes in the illicit drug market even if measured 
imprecisely.4 

In addition to the crime lab data, mortality data may be imprecise 
about the specific cause of death. Some overdose deaths may be mis
classified as other types of deaths or deaths due to psychostimulants or 
fentanyl may have undercounts. Within the fentanyl-specific deaths, 
which fentanyl analog if any was present is unknown. This issue is why 
we focus on overall overdose deaths. However, even if the overdose 
death data were entirely accurate, another issue is that the only health 
outcome we explore is overdose deaths. The non-lethal health effects of 
MA, e.g. psychosis, myocardial infarction, hypertension, etc. (Darke 
et al., 2008), are entirely absent from our estimates and, thus, even if the 
presence of MA reduces the population-level overdose mortality rate, 
the rise of other adverse health effects may more than counteract any 
public health benefits of fewer deaths. 

5. Discussion 

The estimates presented in this article find important evidence of the 
potential consequences of the rapid expansion of the MA supply in Ohio, 
which can help inform the public health consequences of a similar 
expansion across the US. We find that relatively more MA detected by 
crime labs is either unrelated to or associated with a small, but 
measurable decrease in the overall risk of unintentional overdose death. 
This is not to say that MA is safe or cannot cause overdose deaths. Our 
findings are not that the combination of MA and fentanyl is in fact safer 
than fentanyl on its own. As our estimates are only showing averages, it 
could certainly be the case that an increase in MA availability makes 
illicit drug consumption more deadly for some people or at particular 
dose levels. Rather, given the context of extremely dangerous synthetic 
opioids, our estimates should be interpreted as showing that a relative 
increase in the availability of less deadly drugs, especially if they are 
replacing synthetic opioids, may reduce the overall number of overdose 
deaths, at least in the short-run. Furthermore, we do not investigate the 
substantial, non-fatal health consequences of MA use such as psychosis 
and cardiovascular disease, which may be increasing even if deaths 
decline. 

The exact mechanism linking MA to overdose deaths is not clear. Is it 
that MA use directly reduces the risk of overdose when used concur
rently with opioids? If the animal data are applicable to humans, is MA 
co–use with fentanyl reducing opioid overdose risk at some doses and 
increasing it at others? Is it that MA use allows people to lengthen the 
duration between opioid use or substitute away from opioids entirely? 
This is supported by recent research showing that some people find MA 
helpful for managing opioid withdrawal (Ondocsin et al., 2023). Or is 
MA supply simply correlated with a reduction in overdose death, and we 
are missing a key unobservable omitted variable, such as greater 
migration to substance use treatment, that is positively correlated with 
MA supply? 

3 The one exception is a small negative correlation between overdose death 
rates and MA in the lab tests two quarters later, which is statistically significant 
at the 10 percent level. 

4 A similar rationale allows for the use of the Drug Enforcement Agency’s 
System to Retrieve Information from Drug Evidence (STRIDE) database to 
measure changes in the illicit drug market, which also suffers from the problem 
of being a non-random sample (Arkes et al., 2008). 
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Research carried out in 2019 by the qualitative arm of this study 
team in neighboring West Virginia (WV) found that uptake of MA among 
people who already used opioids was common. This adoption of MA was 
driven by supply factors, including the shift from locally produced to 
Mexican-sourced MA, as well as local economic and social factors. These 
included a low price-point relative to opioids and a desire for partici
pation with others using MA alone or in combination with opioids 
(Ondocsin et al., 2023; Mars et al., 2024). 

Interestingly, in a given area, MA supply is unrelated to past over
dose deaths. That is, although individuals using MA with opioids may be 
doing so to reduce their overdose risk, we do not find evidence that at 
the population level, increases in the MA supply are being driven by 
overdose deaths in the vicinity. This finding is consistent with Mars 
et al. (2019) that argues that in North America, where fentanyl was sold 
as heroin, uptake was largely supply driven rather than demand driven. 
In recent years this has changed with the sale of fentanyl under its own 
name (Kral et al., 2021). Methamphetamine is also sold under its own 
identity but supply forces remain dominant. 

Deaths from opioids and stimulants form the current ‘fourth wave’ of 
the US Overdose Epidemic, and there remain many unanswered ques
tions about the contribution of these drugs to changing patterns of 
mortality (Ciccarone, 2021). By using both seizure data and overdose 
mortality data it is possible to estimate how the influx of methamphet
amine into an area correlates with the risk environment. The resulting 
picture is one where, abundant low cost, high purity methamphetamine 
is not necessarily leading to an increase in overdose deaths and, given 
the prevalence of the relatively more deadly fentanyl, may even be 
slightly reducing them. 
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Appendix A. Drug class definitions and descriptive statistics 

Below is an updated version of Appendix A found in Rosenblum et al. (2020). We list below the definition of the drug classes that we created from 
the BCI crime lab. The drugs in the data are contained as a list of drugs in string format. We searched these strings for specific drug names to categorize 
below. The data were cleaned and corrected for misspellings (e.g. fentanyl is spelled as fetanyl, fenrtanyl, fenanyl, and fenatnyl) and to remove 
potential double counts (e.g. to ensure acetyl fentanyl was counted as a fentanyl analog, but not fentanyl itself). 

Methamphetamine: Methamphetamine or amphetamine. 
Synthetic Opioids: Fentanyl, fentanyl analogs (acetyl, acryl, benzyl, benzylfuranyl, benzylparaflouro, benzylparaflourocyclopropyl, buranyl, 

butyryl, carfentanil, crotonyl, cyclopropyl, 4-flouroisobutyryl, 2-furanyl, furanyl, 3-methyl, methoxy-acetyl, nmethylnor, ortho-fluoro, orthome
thylacetyl, orthomethylfuranyl, paraflouro, paraflourofuranyl, paraflourovaleryl, phenyl fentanyl, tetrahydrofuran, thiophene, valeryl). Non-fentanyl 
synthetic opioids: (ANPP; U–47700, ISO–U47700, 4TFM–U47700, 2NAP–U47700, U– 48800, U–49900, U–51754; etodesnitazene, etonitazene, 
NP–etonitazene, isotonitazene, flunitazene, and piperidylthiambutene). 

Cocaine: Cocaine. 
Heroin: Heroin or 6-Monoacetylmorphine 
Prescription Opioids: Buprenorphine, morphine, codeine, oxycodone, oxymorphone, hydromorphone, hydrocodone, tramadol, methadone, 

meperidine, diphenoxylate, pentazocine, propoxyphene, tapentadol, dihydrocodeine, dextropropoxyphene, dextromethorphan, levomethorphan. 
Barbiturates: Aprobarbital, amobarbital, barbital, butalbital, pentobarbital, phenobarbital, and secobarbital. 
Synthetic Cannibinoids: 75 different synthetic cannibinoids (e.g. AB-CHMINACA, AB-FUBINACA, etc.). A full list is available upon request. 
Other Synthetic Stimulants: 79 different cathinones (e.g. pentedrone) and amphetamine-like drugs (e.g. phentermine). A full list is available 

upon request. 
MDMA: MDMA, MDA, MDMC, and MDDMA. 
Psychedelics: 25 different psychedelic drugs (Psilocybin, LSD, DMT, etc.). A full list is available upon request. 
Other Designer Drugs: 25B-NBOMe, 25C-NBOMe, 25H-NBOMe, 25I-NBOMe, 25B- 
NBOH, 25I-NBOH, Bk-2C-B, 2-CB, 2-CE, 2-CT-4, 2-CI, and 2-CP. 
PCP: PCP, 3-Cl-PCP, 3-HO-PCP, 3-HO-PCE, 3-MeO-PCP, BTCP, and TCP.  
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Table A1 
Descriptive Statistics (County-Month Level) 2015–3rd Quarter of 2021    

Standard   
Variable Mean Deviation Min Max 

All Overdose Deaths 3.72 7.85 0 96 
Psychostimulant Overdose Deaths 0.58 1.42 0 17 
Fentanyl Overdose Deaths 2.57 6.31 0 89 
All Overdose Death Rate 2.55 2.72 0 28 
Psychostimulant Overdose Death Rate 0.60 1.36 0 15.4 
Fentanyl Overdose Death Rate 1.66 2.23 0 26.5 
Meth and Synthetic Opioid 0.33 0.88 0 11 
Meth no Synthetic Opioid 10.50 13.74 0 137 
Synthetic Opioid no Meth 5.36 8.68 0 139 
Cocaine 4.49 9.97 0 93 
Heroin 5.17 9.09 0 82 
Prescription Opioids 3.99 5.96 0 78 
Barbiturates 0.01 0.13 0 5 
Synthetic Cannibinoids 0.30 1.15 0 22 
Other Synthetic Stimulants 0.33 1.23 0 26 
MDMA 0.17 0.86 0 31 
Psychedelics 0.48 1.35 0 22 
Other Designer Drugs 0.01 0.17 0 7 
PCP 0.17 0.86 0 22 
Unemployment Rate(%*100) 5.58 2.21 2.1 26.2 
Covid Case Count 189.16 1016.52 0 26977 
Covid Hospitalizations 10.24 49.35 0 1226 
Covid Deaths 3.15 16.83 0 627 
Opioids MME Per Capita 127.25 57.52 18.57 350.16 
Buprenorphine MG Per Capita 422.35 356.16 6.44 3632.83 

Notes: All Ohio counties except Hamilton county are included. There are 7047 observations in total. Drug categories are defined as above. 
Death rates are number of deaths per person multiplied by 100,000. Opioids MME Per Capita and Buprenorphine MG Per Capita are at the 
county-quarter level. 
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