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Abstract 

Background  Inflammatory bowel disease (IBD) and Parkinson’s disease (PD) are chronic disorders that have been 
suggested to share common pathophysiological processes. LRRK2 has been implicated as playing a role in both dis-
eases. Exploring the genetic basis of the IBD-PD comorbidity through studying high-impact rare genetic variants can 
facilitate the identification of the novel shared genetic factors underlying this comorbidity.

Methods  We analyzed whole exomes from the BioMe BioBank and UK Biobank, and whole genomes from a cohort 
of 67 European patients diagnosed with both IBD and PD to examine the effects of LRRK2 missense variants on IBD, 
PD and their co-occurrence (IBD-PD). We performed optimized sequence kernel association test (SKAT-O) and net-
work-based heterogeneity clustering (NHC) analyses using high-impact rare variants in the IBD-PD cohort to identify 
novel candidate genes, which we further prioritized by biological relatedness approaches. We conducted phenome-
wide association studies (PheWAS) employing BioMe BioBank and UK Biobank whole exomes to estimate the genetic 
relevance of the 14 prioritized genes to IBD-PD.

Results  The analysis of LRRK2 missense variants revealed significant associations of the G2019S and N2081D vari-
ants with IBD-PD in addition to several other variants as potential contributors to increased or decreased IBD-PD risk. 
SKAT-O identified two significant genes, LRRK2 and IL10RA, and NHC identified 6 significant gene clusters that are 
biologically relevant to IBD-PD. We observed prominent overlaps between the enriched pathways in the known IBD, 
PD, and candidate IBD-PD gene sets. Additionally, we detected significantly enriched pathways unique to the IBD-PD, 
including MAPK signaling, LPS/IL-1 mediated inhibition of RXR function, and NAD signaling. Fourteen final candi-
date IBD-PD genes were prioritized by biological relatedness methods. The biological importance scores estimated 
by protein–protein interaction networks and pathway and ontology enrichment analyses indicated the involve-
ment of genes related to immunity, inflammation, and autophagy in IBD-PD. Additionally, PheWAS provided support 
for the associations of candidate genes with IBD and PD.
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Background
Inflammatory bowel disease (IBD) comprises a group of 
chronic inflammatory diseases that primarily affect the 
gastrointestinal tract, including Crohn’s disease (CD) 
and ulcerative colitis (UC). CD is distinguished by seg-
mental transmural inflammation affecting the ileum and 
colon, whereas UC is usually limited to the colon, and 
characterized by mucosal inflammation [1]. Parkinson’s 
disease (PD) is one of the most common neurodegen-
erative disorders, presenting with bradykinesia, rigidity, 
resting tremor, and postural instability [2]. It is charac-
terized by the progressive loss of dopaminergic neurons 
in the substantia nigra and the presence of intracellular 
protein aggregates known as Lewy bodies [3]. Emerging 
evidence suggests a link between these two apparently 
unrelated disorders, indicating shared risk factors and 
underlying pathophysiology that is consistent with the 
“gut-brain axis” hypothesis [4–8]. IBD-PD co-occurrence 
has been attributed to neurodegeneration driven by 
chronic intestinal inflammation and pleiotropic genetic 
factors [4]. A recent meta-analysis, involving 12 million 
patients from 9 observational studies, provided further 
support for previous findings, indicating that both CD 
and UC are associated with an increased risk of PD diag-
nosis [9]. This increased risk was particularly prominent 
in older patients (> 65 years old), irrespective of gender. 
Moreover, exposure to anti-inflammatory tumor necro-
sis factor-α inhibitors in IBD patients has been linked to 
a significant reduction in PD risk [6, 9]. These findings 
suggest the involvement of inflammation-mediated pro-
cesses and/or potentially shared genetic factors underly-
ing both IBD and PD.

The most well-established gene implicated in the IBD-
PD pleiotropy is leucine-rich repeat kinase 2 (LRRK2). 
Polymorphisms in LRRK2 have been shown to be asso-
ciated with both PD and CD, suggesting the impact of 
impaired autophagy in the pathogenesis of both con-
ditions [5]. Variants that result in increased activity of 
LRRK2 have been shown to be associated with an ele-
vated risk of developing both PD and CD, whilst a hap-
lotype with a deactivating LRRK2 mutation, R1398H, has 
been found to be associated with protection against CD 
[5] and PD [10–12]. However, despite genetic pleiotropy 
for some of the LRRK2 variants (i.e., G2019S, N2081D, 
N551K, and R1398H) [5], each of these conditions is 

associated with specific LRRK2 variants. For example, 
G2019S is the major genetic risk for PD [13], whereas 
N2081D is considered a risk for CD [5, 14]. Moreover, 
other strong genetic predictors of PD, such as R1441G/
C/H, Y1699C, R1628P, G2385R, and I2020T, have been 
shown to be associated exclusively with PD [15], whereas 
M2397T was not linked to PD [16]. Therefore, it is not 
immediately clear whether any of these or other LRRK2 
variants may lead to IBD-PD comorbidity. Other than 
LRRK2, several other pleiotropic loci, including MAPT, 
HLA, MHC, ATP6V0A1, and NOD2, have been identi-
fied to be associated with PD, CD, UC, and other auto-
immune disorders [4, 7, 8]. Previous studies that have 
examined the genetic pleiotropy between IBD and PD 
have primarily estimated the genetic correlation between 
these two conditions by means of genome-wide asso-
ciation study (GWAS) data from separate analyses of 
IBD and PD [7, 8]. However, conducting a joint analysis 
of individuals affected by both IBD and PD would pro-
vide important insights into the underlying mechanisms 
shared by these two conditions.

Here, we investigated the effect of LRRK2 missense 
variants on PD only, CD only, UC only, IBD only, and 
the co-occurrence of IBD and PD risk (IBD-PD) using 
sequencing data from the Danish Registry, the Mount 
Sinai BioMe BioBank, and the UK Biobank. Furthermore, 
we performed a series of gene-level association and net-
work-based analyses using high-impact rare variants in 
the IBD-PD cohort and prioritized candidate physiolog-
ically-relevant genes associated with this comorbidity. 
Finally, we conducted phenome-wide association studies 
(PheWAS) in BioMe BioBank and UK Biobank to evalu-
ate the pleiotropic effects of the candidate IBD-PD genes, 
as well as IBD-PD comorbidities (Fig. 1).

Methods
Study cohorts
IBD‑PD cohort
We identified 76 patients diagnosed with both IBD and 
PD in the Danish National Biobank resource (https://​
www.​danis​hnati​onalb​iobank.​com/) using the Interna-
tional Classification of Diseases (ICD) codes from the 
Danish National Patient Registry (Additional file 1: Iden-
tification of the IBD-PD samples in the Danish National 
Biobank). Owing to the regulations of the Danish Data 

Conclusions  Our study confirms and uncovers new LRRK2 associations in IBD-PD. The identification of novel inflam-
mation and autophagy-related genes supports and expands previous findings related to IBD-PD pathogenesis, 
and underscores the significance of therapeutic interventions for reducing systemic inflammation.
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Fig. 1  Study workflow. Parkinson’s disease (PD) and inflammatory bowel disease (IBD) cases were identified based on ICD-10 codes in the UK Biobank and BioMe BioBank. 
The IBD-PD cohort comprised 67 individuals diagnosed with both PD and IBD and 426 healthy controls from the 1000 Genomes Project (1KGP). Variant-level association 
testing was performed separately in each cohort using LRRK2 variants observed in the whole exome (UK Biobank and BioMe BioBank) and whole genome sequencing 
(IBD-PD cohort) data (upper panel). Discovery of novel candidate genes was performed using the sequence kernel association test (SKAT-O) and network-based 
heterogeneity clustering (NHC) methods; the genes were further prioritized using pathway enrichment and biological relatedness methods. Fourteen prioritized candidate 
genes were then investigated in the BioMe BioBank and UK Biobank using phenome-wide association analysis (PheWAS) to validate identified associations (lower panel)
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Protection Agency, we were precluded from gather-
ing demographic and clinical data regarding patients’ 
specific IBD subtypes or their ages at the time of biosa-
mple collection. Whole-genome sequencing (WGS) 
was performed using the Illumina HiSeq X platform 
with 2 × 150  bp paired-end reads. Alignment of the raw 
reads and variant calling were performed following the 
best practice guidelines of the Genome Analysis Toolkit 
(GATK) [17] (Additional file 1: Whole genome sequenc-
ing of the IBD-PD samples).

For the control group, high-coverage WGS data of 
1000 Genomes Project Phase 3 (1KGP) individuals were 
downloaded on March 20, 2023, from the following URL: 
http://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​data_​colle​
ctions/​1000G_​2504_​high_​cover​age/​worki​ng/​20190​425_​
NYGC_​GATK/​raw_​calls_​updat​ed/ [18]. This dataset 
comprised 427 samples from non-Finnish European pop-
ulations. Joint genotyping and quality control (QC) steps 
were performed on this combined case–control dataset 
(Additional file 1: Genotyping and quality control of the 
IBD-PD cohort and Additional file  2: Table  S1). After 
QC filtration, which led to the exclusion of 9 IBD-PD 
cases and 1 control, the final dataset comprised a total of 
20,158,023 variants across 67 IBD-PD cases and 426 con-
trols. Of these, 40 (59.7%) IBD-PD cases and 214 (50.2%) 
controls were males. Genetic ancestries of the IBD-PD 
cases were determined using principal component anal-
ysis (PCA) and ADMIXTURE [19] by utilizing 1KGP 
populations as a reference, which confirmed their Euro-
pean ancestry (Additional file 1: Determining the genetic 
ancestries of the IBD-PD cases, Fig. S1 and S2).

BioMe BioBank
The Mount Sinai BioMe BioBank comprises whole exome 
sequencing (WES) data from 31,250 participants who 
were recruited from Mount Sinai primary care clinics 
(https://​icahn.​mssm.​edu/​resea​rch/​ipm/​progr​ams/​biome-​
bioba​nk). No specific criteria were used during the 
recruitment; therefore, the BioMe participants should be 
a representative sample of New York City and its neigh-
borhood. The genetic data of the participants are linked 
to their electronic health records (EHR), which we used 
to select IBD, CD, UC, and PD cases and controls. WES 
was performed by Regeneron (NY, USA) using the IDT 
xGen capture kit on an Illumina v4 HiSeq 2500 platform 
(a total of 8,761,478 sites across 31,250 samples). A QC 
check was performed to remove contaminated, low cov-
erage, gender discordant, genotype-exome discordant, 
and duplicate samples. Variant sites with a missingness 
rate > 0.02, or allelic balance < 0.30 or > 0.80 were excluded 
from the dataset. The final dataset included 30,813 sam-
ples and 8,890,425 variants.

UK Biobank
The UK Biobank dataset is a comprehensive collection of 
health-related information gathered from over 500,000 
participants across the United Kingdom [20]. WES data 
of 200,643 UK Biobank participants were used in the cur-
rent study. A QC check was performed to select samples 
and variants of high quality, using the following steps 
using PLINK v.1.9 [21]. Samples with a missingness rate 
exceeding 5%, displaying gender discrepancies and dupli-
cated samples were excluded. Second-degree or closer 
relatives were determined using KING and excluded 
to retain unrelated samples in the dataset [22]. Variants 
were removed if their missingness rate exceeded 20% or 
if they demonstrated a significant deviation from Hardy–
Weinberg equilibrium (HWE) with a P < 1 × 10−6. Con-
sequently, the final dataset comprised 189,448 samples 
17,402,345 variants.

In both BioMe BioBank and UK Biobank, individuals 
of European descent were genetically determined using 
HapMap3 populations [23] as the reference through 
an analysis with fastSTRU​CTU​RE [24]. CD, UC, IBD, 
and PD cases and controls were identified based on 
ICD-9 and ICD-10 diagnoses of BioMe BioBank and UK 
Biobank participants (Additional file  1: Identification of 
IBD and PD samples with European descent from BioMe 
and UK Biobank). The final counts of PD, IBD, CD, and 
UC cases, as well as controls, are detailed in Table 1.

Variant annotation and filtration
To assess predicted impacts on gene products and popu-
lation frequencies of the variants identified in the IBD-
PD cohort, as well as in BioMe Biobank and UK Biobank, 
variants were annotated using Variant Effect Predictor 
(VEP) v.106, CADD scores (v.1.6), and allele frequen-
cies in gnomAD v2 and 1KGP populations [18, 25–27]. 
To control the false-negative rate of predicted deleteri-
ous mutations by CADD, a Mutation Significance Cut-
off (MSC, https://​lab.​rocke​feller.​edu/​casan​ova/​MSC) 
was applied for each gene [28]. Additionally, genes were 
annotated with the Gene Damage Index (GDI, https://​
lab.​rocke​feller.​edu/​casan​ova/​GDI), which serves as an 
indicator of genes that exhibit high polymorphism in the 
general healthy population and hence are less likely to be 
disease-associated [29].

For the identification of novel candidate genes asso-
ciated with IBD-PD, variants were filtered based on 
their consequences as obtained from VEP annota-
tion. High-impact variants (“start lost,” “stop lost,” “stop 
gained,” “splice_acceptor_variant,” “splice_donor_vari-
ant,” “protein_altering_variant,” “start_retained_vari-
ant,” “stop_retained_variant,” and ‘frameshift_variant”) 
and moderate-impact variants (“missense variants,” 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/raw_calls_updated/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/raw_calls_updated/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/raw_calls_updated/
https://icahn.mssm.edu/research/ipm/programs/biome-biobank
https://icahn.mssm.edu/research/ipm/programs/biome-biobank
https://lab.rockefeller.edu/casanova/MSC
https://lab.rockefeller.edu/casanova/GDI
https://lab.rockefeller.edu/casanova/GDI
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“inframe_insertion,” “inframe_deletion”) were extracted. 
Moderate-impact variants were further filtered if their 
CADD scores were greater than the lower boundary of 
the 95% confidence interval of the corresponding gene’s 
MSC. Further, variants in genes with a GDI value of 
less than 13.84 (the cutoff proposed for human diseases 
under the generalized model) were included [29]. Finally, 
variants with a maximum minor allele frequency (MAF) 
below 1% in gnomAD and 1KGP subpopulations were 
retained to identify the final set of presumably deleteri-
ous variants for further analyses. The same filtering steps 
according to MAF and GDI were applied to obtain syn-
onymous variants for the neutral model, which estimates 
the degree of inflation due to population substructure or 
possible technical artifacts.

Analysis of LRRK2 variants
To conduct an in-depth characterization of the role of 
LRRK2 missense variants in IBD-PD comorbidity, as 
well as to assess their effect on CD, UC, IBD, and PD, 
we extracted all LRRK2 missense variants from the IBD-
PD, BioMe BioBank, and UK Biobank cohorts. PCA was 
performed using PLINK v1.9 with linkage disequilibrium 
(LD)-pruned variants (r2 = 0.2) with a MAF greater than 
5% and not exceeding HWE with a P < 1 × 10−6 [21]. The 
selection of the number of PCs to be included as covari-
ates in the analyses was based on the scree test [30] 
(Additional file 1: Fig. S3). The first two genetic principal 
components (PCs), sex and age, were used as covariates 
in the BioMe BioBank analyses while PC1, sex, and age 
were employed as covariates in the UK Biobank analyses. 
For the IBD-PD cohort, PC1 and sex were used as covari-
ates. For association testing of LRRK2 missense variants 
with a minor allele count (MAC) ≥ 3 and a case MAC ≥ 1, 
we used Firth’s logistic regression method implemented 
in PLINK v.2.0 [21, 31]. Pairwise LDs of LRRK2 missense 
variants were calculated using PLINK v.1.9.

Sequence Kernel Association Test analysis 
and network‑based heterogeneity clustering of the IBD‑PD 
cohort
To identify novel genes associated with the IBD-PD 
comorbidity, we used the optimized method of the 
Sequence Kernel Association Test (SKAT-O) to accom-
modate rare variants with potentially different direc-
tions of effect [32]. SKAT-O is an optimal combination of 
the burden test and SKAT, aiming to enhance statistical 
power. The burden test combines minor alleles at variants 
in a region, assuming they have the same direction of 
effect, and compares the difference in allele frequencies 
between cases and controls. On the other hand, SKAT 
employs a regression framework and a variance-compo-
nent test, allowing it to account for variants with differ-
ent directions of effect. SKAT-O dynamically operates 
as the burden test when it surpasses SKAT in power, and 
functions as SKAT when SKAT exhibits greater power 
than the burden test [32]. Initially, we employed SKAT-O 
using a set of synonymous variants of 72 IBD-PD cases 
and 426 controls (Fig.  1), incorporating PC1 and sex as 
covariates [33]. The analysis revealed genes with signifi-
cantly inflated P values (Additional file 1: Fig. S4A). Simi-
larly, SKAT-O using presumably deleterious variants also 
displayed genes with inflated P values (Additional file 1: 
Fig. S4B). Further investigation into the cause of this 
inflation resulted in the removal of 5 IBD-PD cases that 
exhibited an excess number of heterozygous variants in 
these genes. Subsequent analysis with 67 IBD-PD cases 
and 426 controls resolved the inflation issue (Additional 
file 1: Fig. S4C and Fig. S4D). Among the analyzed genes, 
only EPHA4 exhibited a significant burden of synony-
mous variants (P = 3.26 × 10−6). Subsequently, SKAT-O 
was performed using the set of presumably deleterious 
variants in the 67 IBD-PD cases and 426 controls, while 
employing the same covariates. The Bonferroni correc-
tion method was used to adjust P values so as to allow for 
multiple testing.

Table 1  Cohorts used in the variant-level analysis of LRRK2 

Cohort Phenotype Case# Control# Sex, cases (F/M) Sex, controls (F/M)

IBD-PD IBD-PD 67 426 27/40 214/212

BioMe BioBank PD 231 800 93/138 441/359

IBD 387 800 205/182

CD 209 800 116/93

UC 141 800 67/74

UK Biobank PD 661 3000 270/391 1734/1266

IBD 2081 3000 1069/1012

CD 603 3000 350/253

UC 1282 3000 613/669
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Additionally, we used the network-based heteroge-
neity clustering (NHC) algorithm to cluster cases and 
genes that harbor presumably deleterious variants by 
performing a gene cluster-based burden test. NHC was 
specifically tailored for small-sized cohorts to increase 
statistical power by utilizing a background protein–pro-
tein interaction (PPI) network to identify gene clusters 
significantly enriched in cases compared to controls [34]. 
In addition, NHC performs several pathway and ontology 
enrichment analyses for the identified gene clusters. The 
same set of presumably deleterious variants and covari-
ates was used in this analysis to identify and prioritize 
candidate gene clusters that displayed significant enrich-
ment in IBD-PD cases compared to controls.

Gene prioritization via pathway and gene enrichment 
analysis
To capture additional potential gene candidates asso-
ciated with IBD-PD, we performed pathway and gene 
enrichment analyses, relaxing the P value threshold 
to < 0.01 based on the SKAT-O results, resulting in 84 
genes (Fig. 1). Additionally, we selected genes in signifi-
cant clusters identified by NHC (cluster P < 0.05), except 
for those enriched for previously-identified control-
embedded pathways, leaving us with 38 genes [34]. The 
resulting gene set comprised 120 unique genes, which 
were considered potential candidates associated with 
IBD-PD. To examine the genes that have a close biologi-
cal relationship to the known IBD and PD genes, we gen-
erated sets of known genes. The set of 157 known IBD 
genes was generated based on studies of IBD, CD, and UC 
[35, 36] following the methodology described in our pre-
vious study [37]. We included 142 genes from the merged 
signals of the genome-wide significant loci (P < 5 × 10−8) 
from Jostins et al. [36], as well as 15 genes from the 95% 
credible set of the fine-mapping results by Huang et  al. 
[35]. For the set of known PD genes, we extracted genes 
associated with PD from the Human Gene Mutation 
Database (HGMD) Professional v. 2022.4 [38], which is 
the largest database currently available of high-quality 
and manually curated pathogenic variants. We specifi-
cally used the HGMD disease-causing mutations with the 
highest confidence only based on experimental evidence 
(DM), resulting in the identification of 103 known PD 
genes. We employed Ingenuity Pathway Analysis (IPA, 
QIAGEN Inc., version 01–21-03 https://​www.​qiage​nbioi​
nform​atics.​com/​produ​cts/​ingen​uity-​pathw​ay-​analy​sis) 
to compare significantly enriched pathways in the three 
gene sets.

Then, by utilizing the human gene connectome (HGC, 
https://​lab.​rocke​feller.​edu/​casan​ova/​HGC) [39], we cal-
culated the average biological distance of 120 IBD-PD-
associated genes (Dcandidate) to 157 known IBD genes and 

103 known PD genes. We compared Dcandidate with Dran-

dom, which was derived from randomly sampled gene sets 
of equivalent size (n = 120) to calculate empirical P val-
ues using 10,000 resampling iterations (Additional file 1: 
Methods used in biological relatedness, pathway, and 
gene enrichment analysis).

We then employed four complementary methods of 
pathway and biological relatedness approaches: Topp-
Gene [40], IPA, HumanBase [41], and the Human Gene 
Connectome (HGC) [39] to obtain the final 14 IBD-PD 
associated candidate genes that were selected by all four 
methods (Additional file  1: Methods used in biologi-
cal relatedness, pathway, and gene enrichment analysis). 
Additionally, DM variants in the final 14 IBD-PD-associ-
ated genes were explored in the HGMD.

The biological importance scores
We evaluated the biological importance of candidate 
genes by counting the number of IBD and PD genes in 
significantly enriched pathways, PPI networks, and 
ontologies with a P value < 0.01. We utilized several tools 
and databases to calculate the scores, including IPA core 
pathway analysis, InnateDB pathway analysis, InnateDB 
Gene Ontology (GO) analysis, and STRING interactome 
from NetworkAnalyst [42, 43]. We calculated the IBD-
specific, PD-specific, and combined IBD-PD scores by 
summing the scaled scores from each data source.

PheWAS
Gene-level PheWAS was conducted in both the BioMe 
BioBank and UK Biobank to validate the phenotypes 
associated with the 14 candidate IBD-PD genes, as well 
as to evaluate their pleiotropic effects (Fig. 1). The BioMe 
BioBank includes samples from diverse ancestral origins 
(Additional file 2: Table S2), whereas the UK Biobank is 
primarily composed of individuals of European ances-
try. ICD-9 (n = 1056 and 3344 in BioMe Biobank and UK 
Biobank, respectively) and ICD-10 diagnoses (n = 19,085 
and 11,727 in BioMe Biobank and UK Biobank, respec-
tively) of Biobank participants were converted into 1856 
clinically relevant phenotypes (phecodes) using Phecode 
Map v1.2 [44]. 1376 and 1415 phecodes with at least 20 
cases were used in the BioMe and UK Biobank analyses, 
respectively. We used a combination of PheWAS and 
SKAT-O binary robust methods, employing a case–con-
trol ratio not exceeding 1:99 for each disease and trait 
[45, 46]. Only variants identified within the IBD-PD 
cohort were included. PCA was conducted using the 
same parameters as those used in the IBD-PD cohort. 
Age, biological sex, and PC1-10 were used as covariates 
in the analysis. The Bonferroni-adjusted phenome-wide 
P value was determined as 3.63 × 10−5 (0.05/1376) and 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://lab.rockefeller.edu/casanova/HGC
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3.53 × 10−5 (0.05/1415) for BioMe and UK Biobank analy-
ses, respectively.

Results
Analysis of LRRK2 variants in the IBD‑PD, BioMe, and UK 
Biobank cohorts
The IBD-PD cohort comprised 67 individuals of North-
western and Southern European ancestry diagnosed 
with both IBD and PD, along with 426 non-Finnish 
Europeans from the 1KGP serving as controls (Fig.  2A 
and Additional file 1: Fig. S1 and Fig. S2). We performed 

variant-level association tests to assess the impact of 9 
LRRK2 missense variants identified in the IBD-PD data-
set on the IBD-PD phenotype. Additionally, we extracted 
a total of 14 LRRK2 missense variants from the BioMe 
cohort and 28 missense variants from the UK Biobank 
cohort and examined their associations with PD, IBD, 
CD, and UC (Fig.  2B, Additional file  2: Table  S3 and 
Table  S4). Our analysis identified the well-known PD 
and CD-associated variant, G2019S, as being significantly 
associated with the IBD-PD comorbidity (P = 1.59 × 10−4, 
Bonferroni-corrected P = 5.56 × 10−3) [5, 14, 47]. Moreover, 

Fig. 2  LRRK2-centered and genome-wide analysis of the IBD-PD comorbidity. A PCA plot demonstrating the distribution of IBD-PD cases 
among 1000 Genomes Project (1KGP) superpopulations. B Correlogram displaying the associations of LRRK2 missense variants with Parkinson’s 
disease (PD), inflammatory bowel disease (IBD), Crohn’s disease (CD), and ulcerative colitis (UC) in the Danish Registry, BioMe BioBank, and UK 
Biobank (UKBB) cohorts. The colors indicate odds ratios (ORs), whereas asterisks denote the significance level of the P values (* P < 0.05, ** P < 0.01, 
***P < 0.001). Empty cells indicate that the variant had a minor allele count (MAC) < 3 in the respective cohort or MAC < 1 in cases, and hence 
the association could not be assessed. C Manhattan plot displaying the results of the SKAT-O analysis. The two genes that passed the level 
of genome-wide significance (LRRK2 and 1L10RA) are highlighted in red. The dashed line denotes the genome-wide significance level. D STRING 
protein–protein interaction (PPI) network generated using genes identified in the most significant cluster (cluster 7) in the NHC analysis (in red). The 
size of the nodes is proportional to the number of variant carriers. Known IBD-associated genes in the extended PPI network are highlighted in blue



Page 8 of 18Kars et al. Genome Medicine           (2024) 16:66 

G2019S showed an increased risk for PD in both the 
BioMe and UK Biobank cohorts (P = 6.56 × 10−5 and 
7.66 × 10−3, respectively). Additionally, the N2081D variant 
was associated with the IBD-PD comorbidity at a nominal 
significance level (P = 0.027).

We further investigated the odds ratios (ORs) derived 
from Firth’s regression for all 25 variants identified in the 
IBD-PD, BioMe, and UK Biobank cohorts. The G2019S 
variant demonstrated an increase for PD and both IBD 
subtypes, whereas the N2081D and L119P variants were 
associated with an elevated risk for increased risk for 
PD and CD. In addition to G2019S, N2081D, and L119P, 
the P1542S and M2397T variants exhibited an increased 
risk for the combined IBD-PD phenotype. Interest-
ingly, the P1542S variant was exclusively associated with 
an increased risk of IBD-PD comorbidity, whereas it 
exhibited a decreased risk of PD in the BioMe BioBank 
analysis, despite displaying odds ratios close to 1 in the 
remaining analyses. Additionally, E334K, S865F, I1371V, 
R1325Q, R1628P, and M1646T variants displayed an 
increased risk for both PD and one or both subtype(s) 
of IBD based on the BioMe and UK Biobank analyses. 
S1647T, previously considered as a neutral variant [48], 
displayed ORs close to 1 for both PD and IBD subtypes, 
as expected.

Afterwards, we searched these 25 LRRK2 variants in 
HGMD and found that 16 variants had been reported 
to be associated with PD at varying confidence levels 
(Additional file 2: Table S5) [38]. Among those, 6 variants 
(E334K, R793M, S1228T, R1325Q, G2019S, and Y2189C) 
were associated with PD and classified under the DM 
category. Interestingly, the R793M, S1228T, and Y2189C 
variants demonstrated increased ORs for IBD but not for 
PD in the UK Biobank cohort, although the association 
of R793M and Y2189C with PD could not be assessed 
due to low MAC. The R1398H, N551K variants (the only 
variant pair in strong LD, r2 = 0.93) and I723V exhibited 
low ORs for the IBD-PD comorbidity. However, they dis-
played a positive relationship with UC and IBD risk in the 
BioMe BioBank dataset. Overall, these results provide 
further evidence in support of the role of LRRK2 variants 
in the pathogenesis of IBD-PD comorbidity. We note that 
while the reported OR results implicate trends of risk or 
protection, the majority of the P values in the aforemen-
tioned results (Fig. 2B and Additional file 2: Table S4) did 
not reach study-wide statistical significance, most likely 
due to the limited sample size of the study cohorts.

Gene‑level association testing using the IBD‑PD cohort
To identify novel genes associated with the IBD-PD 
comorbidity, SKAT-O analyses were performed using 
9561 genes containing 34,640 presumably deleteri-
ous rare variants (Fig.  2C, Additional file  2: Table  S6). 

As a result, LRRK2 (P = 7.41 × 10−7) and IL10RA 
(P = 1.11 × 10−6) attained the genome-wide significance 
level (Bonferroni-corrected P = 5.23 × 10−6). Consistent 
with its well-established association with both PD and 
IBD, LRRK2 was identified as the most significant gene in 
the analyses [5]. Following LRRK2 and IL10RA, the third 
most significant gene according to the SKAT-O results 
was DHRS2 (P = 1.85 × 10−5). These findings confirmed 
that LRRK2 is an IBD-PD-associated gene and revealed 
IL10RA (and potentially DHRS2) as candidate genes.

Network‑based heterogeneity clustering in the IBD‑PD 
cohort
Genetic heterogeneity is a common feature in many 
human diseases, including IBD and PD [49, 50]. To over-
come the challenges caused by genetic heterogeneity in 
identifying disease-associated genes through conven-
tional frequency-based case–control studies that assume 
genetic homogeneity, we employed NHC to identify can-
didate gene clusters associated with IBD-PD [34]. NHC is 
optimized for case–control analyses of small cohorts by 
performing pathway-level aggregations of genes carrying 
candidate variants, employing a clustering approach of 
gene–gene biological relatedness metric. NHC revealed 
12 gene clusters with a cluster P < 0.05 (Additional file 2: 
Table S7). Four significant gene clusters (clusters 68, 70, 
71, and 76) were deprioritized because the significantly 
enriched pathways in these gene clusters had been pre-
viously found to be highly enriched in healthy European 
controls [34]. Two significant gene clusters (clusters 7 and 
73) included genes previously associated with Parkinson-
ism (FIG4 and VAC14) [51, 52] and IBD (IFNAR1, IL6ST, 
ATG16L1, and NOD2) [36] (Fig. 2D and Additional file 1: 
Fig. S5).

There were four additional potentially relevant sig-
nificant gene clusters identified by NHC. Cluster 24 con-
tained ATP6V0A1, ATP6V0A2, ATP6V0D2, ATP6V1B1, 
and ATP6V1H, genes encoding components of the vac-
uolar-ATPase complex, which plays a role in phagosome 
acidification. The vacuolar-ATPase complex has been 
implicated in the pathophysiology of several neurodegen-
erative diseases, including PD [53]. Additionally, previous 
GWAS have identified ATP6V0A1 as a candidate for PD 
[54]. Cluster 20 consisted of genes involved in GMP bio-
synthesis, GMPS, IMPDH1, and IMPDH2. IMPDH1 has 
been suggested to play a role in PD pathogenesis through 
protein misfolding and accumulation [55]. Furthermore, 
mutations in IMPDH2 have been associated with a dom-
inant-type juvenile-onset dystonia-tremor disorder [56]. 
Cluster 57 encompassed EPS15, FCHO1, FCHO2, and 
HGS, genes related to endocytosis. Deficiency of FCHO1 
has been shown to be associated with both IBD and Guil-
lain Barré syndrome [57]. Additionally, EPS15 encodes 
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an endocytic accessory protein that interacts with par-
kin and might contribute to the pathogenesis of PD [58]. 
Lastly, cluster 40 contained LIN9, MYBL2, RBL1, and 
TFDP1. TFDP1 has been found to be associated with IBD 
in a previous GWAS [59]. These findings highlight the 
potential relevance of these gene clusters to the patho-
genesis of IBD and PD.

Comparison of IBD‑PD‑associated genes with established 
IBD and PD genes
To compare the genes identified in the IBD-PD cohort 
with genes known to be associated with IBD and PD, 
we combined genes with nominal significance (P < 0.01) 
from SKAT-O results and genes from significant NHC 
gene clusters into a single gene set (n = 120). We then 
compared it to the sets of known IBD (n = 157) and 
PD (n = 103) genes (Additional file  2: Table  S8). Only 
LRRK2 overlapped in known IBD and known PD gene 
sets. When comparing these gene sets with the IBD-PD-
associated gene set, only 7 (5.83%) genes overlapped with 
known IBD genes and 4 (3.33%) genes overlapped with 
known PD genes (Additional file 2: Table S8). To evaluate 
the functional relevance of the 120 IBD-PD-associated 
genes to IBD and PD, we calculated their average bio-
logical distance (Dcandidate) to 157 known IBD genes and 
103 known PD genes and found that Dcandidate was 17.9 to 
known IBD genes whereas it was 19.2 to known PD genes 
(Fig.  3A). The average distances within the known IBD 
(DIBD) and PD (DPD) genes were 13.9 and 16.8, respec-
tively. Then, we compared Dcandidate to randomly sampled 
gene sets of equivalent size (n = 120) in 10,000 resampling 
iterations and obtained P values of 0.044 for IBD and 
0.045 for PD, indicating that the biological relatedness 
of the candidate genes to IBD and PD was not random 
(Fig. 3A).

Pathway enrichment analysis with IPA showed that 
among the 104 significantly enriched pathways in the 
IBD-PD gene set, 6 pathways, “Iron homeostasis signal-
ing pathway,” “Th1 Pathway,” “Autophagy,” “Th1 and Th2 
Activation Pathway,” “Docosahexaenoic Acid (DHA) 
Signaling,” and “Th2 Pathway,” were significantly enriched 
in all three gene sets (Additional file  2: Table  S9). A 
total of 75 significantly enriched pathways were shared 
between the IBD-PD and known IBD gene sets, primar-
ily related to the inflammatory response and infections. 
By contrast, only 4 pathways were significantly enriched 
in both the IBD-PD and known PD gene sets, including 
those related to autophagy, endocytosis, and lysosomal 
biogenesis. Interestingly, 19 pathways were unique to 
the IBD-PD gene set including “Purine Nucleotides De 
Novo Biosynthesis II”, “Assembly of RNA Polymerase III 
Complex” and “Role of MAPK Signaling in Promoting 
the Pathogenesis of Influenza”. Additionally, 18 pathways 

were enriched in both known IBD and PD gene sets but 
not in the IBD-PD gene set, including “ERBB4 Signaling”, 
“Immunogenic Cell Death Signaling Pathway” and “Neu-
roinflammation Signaling Pathway”. These results sug-
gested the potential role of inflammation and autophagy 
in the combined IBD-PD phenotype.

Gene prioritization through biological relatedness, 
pathway, and gene enrichment analyses
To further identify and prioritize candidate genes asso-
ciated with IBD-PD from the set of SKAT-O and NHC 
significant genes, we employed biological related-
ness and pathway enrichment. As a result, 14 genes 
(ATP11B, EPS15, IFNAR1, IL10RA, IL6ST, JAK1, LRRK2, 
NOD2, PIK3C3, PIKFYVE, RB1CC1, TRIM22, ULK2, 
and ZFYVE16) were prioritized based on the overlap-
ping genes from HumanBase, HGC, ToppGene and IPA 
results (Fig. 3B and Additional file 2: Table S10). Among 
14 candidate genes, four (IFNAR1, IL6ST, LRRK2, and 
NOD2) were known IBD-associated genes [36], whereas 
LRRK2 is also a well-known PD gene. We then explored 
HGMD for pathogenic mutations within candidate genes 
and found that 11 genes harbor “DM” (disease-caus-
ing) variants in various diseases (EPS15 in congenital 
heart disease, IFNAR1 and JAK1 in immunodeficiency, 
IL10RA and TRIM22 in IBD, IL6ST in hyper-IgE syn-
drome, LRRK2 in PD, NOD2 in CD, PIKFYVE in corneal 
dystrophy, ULK2 in neurodevelopmental disorder and 
ZFYVE16 in brain arteriovenous malformation).

In addition, we assessed the biological significance of 
the SKAT-O and NHC significant genes by calculating 
scores for shared interactions, pathways, and terms with 
known IBD and PD genes using PPI networks, pathway, 
and gene ontology enrichment analyses (Additional file 2: 
Tables S9, S11 and S12). The results revealed that genes 
involved in JAK-STAT and interferon alpha signaling, as 
well as autophagy-related genes, were particularly note-
worthy as candidate genes for IBD-PD (Fig. 3C and Addi-
tional file  2: Table  S13). Specifically, immunity-related 
genes, such as JAK1, IL6ST, STAT2, and IFNAR1, were 
more prominent in the IBD-specific analysis, whereas 
LRRK2 and other phagosome-related genes including 
PIK3C3, PIKFYVE, PIK3R4, and VAC14 were more sig-
nificant in the PD-specific analysis (Additional file  1: 
Fig. S6, Additional file 2: Tables S14 and S15). Then, we 
investigated the tissue RNA expression patterns of the 14 
prioritized genes using the consensus RNA tissue expres-
sion dataset from the Human Protein Atlas (https://​www.​
prote​inatl​as.​org/) [60]. We observed that 11 out of the 14 
genes were ubiquitously expressed, whereas 3 exhibited 
tissue enrichment or enhancement in addition to being 
expressed in almost all tissues including the gastrointes-
tinal tract, brain and bone marrow and lymphoid tissues: 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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LRRK2 showed tissue enrichment in the lung, IL10RA 
displayed tissue enhancement in the bone marrow and 
lymphoid tissue, and NOD2 in bone marrow, esophagus, 
skin, and vagina. These findings further supported the 
potential role of these genes in the pathogenesis of IBD-
PD comorbidity.

PheWAS
Lastly, we conducted a gene-level PheWAS in BioMe 
BioBank and UK Biobank using presumably deleteri-
ous variants located in the 14 candidate genes that were 

identified in the IBD-PD cohort (Table S16) to validate 
the associations of candidate genes and explore their plei-
otropic effects. The analysis in BioMe BioBank revealed 
that the association between LRRK2 and PD (phecode, 
332) was the most significant result (P = 2.19 × 10−13), 
surpassing the phenome-wide significance level (Fig. 4A 
and Additional file 2: Table S17). Moreover, LRRK2 was 
associated with torsion dystonia (333.4, P = 3.79 × 10−4) 
and “Extrapyramidal disease and abnormal movement 
disorders” (333, P = 1.29 × 10−3) in BioMe BioBank. We 
further observed supporting results for the prioritized 

Fig. 3  Candidate gene prioritization and validation using a phenotype-wide association study (PheWAS). A Density plots displaying the distribution 
of the average distances of 120 random genes (Drandom) to known inflammatory bowel disease (IBD, in purple) and known Parkinson’s disease (PD, 
in green) genes obtained from 10,000 resampling iterations. Dashed lines represent the average distance of the candidate gene set (Dcandidate, 
n = 120) to known IBD and PD genes. B Circos plot showing the candidate genes identified by four complementary pathway and biological 
relatedness approaches. Final candidate genes that were identified by all four methods are highlighted in orange. C Heatmap of the combined 
biological importance scores of the IBD-PD candidate genes. A higher score indicates a higher number of shared pathways, ontologies, or modules 
with known IBD and PD genes. The colors represent the magnitude of the scaled scores calculated by each method. The highest-scaled scores are 
depicted in red, whereas the lowest scores are shown in blue. The top 40 genes are shown in the plot
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genes associated with IBD and PD in BioMe with a nomi-
nal significance level. Specifically, NOD2 was associated 
with CD (Regional enteritis, 555.1, P = 1.38 × 10−4 in UK 
Biobank and P = 2.56 × 10−2 in BioMe BioBank) and IBD 
(P = 4.49 × 10−2 in UK Biobank and P = 2.29 × 10−2 in 
BioMe BioBank) (Fig. 4B and Additional file 2: Table S18). 

TRIM22 was associated with UC-related phecodes (556, 
P = 3.36 × 10−3, 578, P = 1.14 × 10−2, 556.1, P = 1.63 × 10−2 
and 555.21, P = 2.89 × 10−2) and PD (332, P = 2.15 × 10−2) 
and “Myoclonus” (333.2, P = 2.51 × 10−2) in UK Biobank. 
It was also associated with “Extrapyramidal disease and 
abnormal movement disorders” and essential tremor 

Fig. 4  Gene-level PheWAS of 14 candidate genes in A BioMe BioBank and B UK Biobank. The red dashed lines denote the study-wide significance 
levels
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in BioMe BioBank (333, P = 1.79 × 10−2 and 333.1 
2.87 × 10−2, respectively). IL10RA was found to be asso-
ciated with UC (555.21 P = 2.09 × 10−3 in BioMe and 
3.69 × 10−2 in UK Biobank) and gastrointestinal hemor-
rhage (P = 1.67 × 10−2 in BioMe and 1.67 × 10−2 in UK 
Biobank). Interestingly, IL10RA was also found to be asso-
ciated with “Abnormality of gait” (350.2, P = 2.79 × 10−2) 
and “Abnormal movement” (350, P = 3.87 × 10−2) in 
BioMe BioBank. EPS15 exhibited associations with 
essential tremor (333.1, P = 1.03 × 10−2) in UK Biobank 
and “Abnormal movement” (350, P = 9.95 × 10−3) and 
“Abnormality of gait” (350.2, P = 3.99 × 10−2) in BioMe 
BioBank. Furthermore, PIKFYVE showed an association 
with “Abnormal involuntary movements” in UK Biobank 
(350.1, P = 2.26 × 10−2), whereas it was associated with 
“Ulceration of intestine” (556.1, P = 2.91 × 10−2) and 
“Ulceration of the lower GI tract” (556, P = 4.67 × 10−2) 
in BioMe. ULK2 was associated with PD in UK Biobank 
(332, P = 3.5 × 10−2) and noninfectious gastroenteri-
tis and “Hemorrhage of gastrointestinal tract” in BioMe 
(P = 1.38 × 10−2 and 3.12 × 10−2). Additionally, JAK1 was 
associated with essential tremor (333.1, P = 1.03 × 10−2) 
and RB1CC1 displayed an association with cholangitis 
(575.1, P = 1.02 × 10−2) and IL6ST with noninfectious gas-
troenteritis in UK Biobank (558, P = 3.14 × 10−2). Lastly, 
we observed associations between IFNAR1 and nonin-
fectious gastroenteritis (558, P = 3.96 × 10−3), ZFYVE16 
and UC (555.21 P = 1.96 × 10−2), ATP11B and “Abnormal-
ity of gait” (350.2, P = 3.27 × 10−2), PIK3C3 and PD and 
“Abnormal involuntary movements” (332, P = 3.49 × 10−2 
and 350.1, P = 3.69 × 10−2) in BioMe BioBank.

PheWAS results also revealed interesting pleiotropic 
effects of these genes, which have been shown to exert 
relevant functions in the identified phenotypes, such as 
the associations of NOD2 and hypercoagulability (286.81 
and 286.8) [61] and asthma (495) [62], IL6ST and joint 
disease (727.4) [63] and systemic and cutaneous lupus 
erythematosus (695.4, 695.42, and 695.41) [64], and 
IFNAR1 and viral hepatitis [65]. Moreover, candidate 
genes displayed associations with various other autoim-
mune and allergic conditions, including ankylosing spon-
dylitis, enthesopathy, rheumatoid arthritis, erythematous 
skin lesions, eosinophilia, and polyarteritis nodosa. These 
findings provide additional evidence for the functional 
significance of these genes in the development and mani-
festation of diverse phenotypes beyond the primary con-
ditions of interest.

Discussion
In the present study, we successfully replicated the 
well-established associations of the LRRK2 G2019S and 
N2081D variants with IBD-PD. Both variants are located 
in the kinase domain of LRRK2 and have been linked to 

increased kinase activity [5, 48]. Furthermore, we iden-
tified 11 additional candidate LRRK2 variants that may 
contribute to IBD-PD comorbidity. Previous studies 
have already reported L119P, S1228T, R1628P, M1646T, 
and Y2189C as PD risk variants [66–69], while I1371V 
has been shown to cause increased phosphorylation and 
aggregation of α-synuclein in neurons [70]. Addition-
ally, P1542S is a common variant (gnomAD MAF = 0.03) 
and has been listed as a CD-associated polymorphism 
in HGMD [38]. E334K, R1325Q, and R1628P have been 
previously shown to increase the LRRK2- dependent 
Rab10 Thr73 phosphorylation, which is used as an indica-
tor of increased LRRK2 kinase activity conferring higher 
risk of PD [48]. This observation indicates that the car-
riers of these variants potentially benefit from LRRK2 
kinase inhibitor therapy [48]. However, it is important to 
note that the remaining candidate LRRK2 variants identi-
fied in the current study have been previously shown to 
have no impact on LRRK2-dependent rab10 Thr73 phos-
phorylation, autophosphorylation of LRRK2Ser1292 or 
autophosphorylation of LRRK2Ser935. This suggests the 
possibility of the involvement of alternative mechanisms 
in the pathogenesis of IBD-PD comorbidity for these spe-
cific variants and further investigations are warranted to 
elucidate their precise effect.

On the other hand, we observed that the R1398H, 
N551K, and I723V variants were protective against 
IBD-PD but showed a trend to increase risk in the UC-
specific and combined IBD analyses in BioMe BioBank. 
The protective effect of the R1398H variant on PD and 
CD has been previously documented, which was linked 
to GTPase activation leading to a reduction in LRRK2 
kinase activity. Also, N551K is in strong LD with R1398H 
[5, 38]. Our results may indicate no protective effect of 
these variants on UC, which probably contributed to the 
lack of association also observed in the combined IBD 
(CD + UC) analyses.

In the second part of the study, by examining the IBD-
PD cohort using different computational approaches, we 
discovered both previously known and novel genes asso-
ciated with PD and IBD. Although the sample size was 
relatively small, LRRK2 and IL10RA attained genome-
wide statistical significance in SKAT-O analysis and the 
P value of DHRS2 was just below the Bonferroni-cor-
rected significance threshold. IL10 plays a major role in 
anti-inflammatory processes, and variants in the genes 
encoding IL10 and IL10 receptors have been shown to 
be associated with very early onset IBD [71–74]. Impair-
ments in IL10 production and signaling have also been 
implicated in neurodegenerative diseases [75] including 
PD [76–78]. DHRS2 encodes a short-chain dehydroge-
nase/reductase that is involved in lipid metabolism and 
redox homeostasis. Under ischemic conditions, DHRS2 
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exerts cytoprotective effects by reducing the accumu-
lation of dicarbonyl compounds and reactive oxygen  
species (ROS) and implicated in the PD pathogenesis  
[79, 80].

As a complementary approach to SKAT-O, we utilized 
NHC, which is particularly advantageous for prioritiz-
ing candidate gene clusters in small cohorts for diseases 
with high genetic heterogeneity, like PD and IBD [49, 50], 
as conventional frequency-based case–control studies 
assume genetic homogeneity [34]. Through NHC analy-
sis, we identified 6 biologically-relevant gene clusters, 
two of which contained previously known IBD- and/
or PD-associated genes. We then examined significant 
genes obtained from SKAT-O analysis (P < 0.01) and 
genes within significant gene clusters from the NHC 
analyses. The results indicated that the average distance 
of these 120 significant genes to known IBD genes (Dcan-

didate = 17.9) was slightly shorter than that to known PD 
genes (Dcandidate = 19.2). However, when considering the 
shorter average biological distance within known IBD 
genes (DIBD = 13.9) compared to that within known PD 
genes (DPD = 16.8), these findings suggest similar con-
tributions from IBD and PD to the IBD-PD-associated 
genes. Despite a minor overlap between IBD-PD-associ-
ated genes with known IBD and PD gene sets, the path-
way enrichment results revealed a notable overlap in 
enriched pathways, especially between IBD and IBD-PD 
gene sets. In addition to 6 pathways related to autophagy 
and immune response enriched in all three gene sets, 
there were 10 pathways that were unique to IBD-PD-
associated genes. Among these pathways were those 
involving three of the final 14 candidate genes, namely 
PIK3C3, PIKFYVE, and JAK1, along with several other 
genes. Of especial note, the genes involved in purine 
nucleotide biosynthesis, MAPK signaling, ephrin A sign-
aling, LPS/IL-1 mediated inhibition of RXR function, 
and the NAD signaling pathway [81] could also be of 
particular interest for future studies, given their distinc-
tive signatures for IBD-PD comorbidity, as well as their 
established or suggested roles in intestinal inflamma-
tion and neuronal metabolism [82–89]. By applying four 
distinct pathway enrichment and biological relatedness 
methods using both known IBD and known PD gene sets 
to reduce the likelihood of IBD-only or PD-only associa-
tions contributing to the observed comorbidity, we fur-
ther identified and prioritized candidate genes associated 
with IBD-PD. This approach led us to identify 14 can-
didate genes, all of which have been reported to display 
functions that are relevant to IBD and PD pathogenesis 
(Additional file  1: Supplementary information regard-
ing 14 prioritized genes). By calculating the biological 
importance scores using PPI networks and pathway and 
ontology enrichment, we showed that inflammation and 

autophagy-related genes likely play a significant role in 
IBD-PD pathogenesis.

The gene-level PheWAS in two different Biobanks 
further supported the PD and/or IBD associations of 
the candidate genes. Since we aimed to investigate the 
potential pathogenicity of the rare variants identified 
in the IBD-PD cohort, we exclusively used these vari-
ants to examine the associations of the candidate genes 
in the BioMe BioBank and UK Biobank, which might 
have resulted in higher P values than anticipated when 
replicating some previously known associations. As 
expected, the most significant association was observed 
between LRRK2 and PD. TRIM22, IL10RA, PIKYVE, and 
ULK2 were found to be associated with both IBD- and 
PD-related phecodes, whereas NOD2, RB1CC1, IL6ST, 
IFNAR1, and ZFYVE16 were associated specifically 
with IBD-related phecodes. Additionally, LRRK2, JAK1, 
ATP11B, and PIK3C3 were associated with PD-related 
phecodes. Although not all candidate genes showed sig-
nificant associations directly with IBD and PD diagno-
ses, we observed other relevant phenotypes that can be 
related to these diseases. For example, one of the earliest 
and most common motor changes observed in PD is the 
gait disturbance, which is caused by the impaired basal 
ganglia function [90]. Since IL10RA, EPS15, and ATP11B 
were associated with “Abnormality of gait,” they might 
be associated with PD. Further, RB1CC1 was found to be 
associated with cholangitis, a disease closely associated 
with IBD [91]. These results support the potential con-
nection between immune dysregulation, gut inflamma-
tion, and motor symptoms observed in PD and are in line 
with previous findings regarding the reduced incidence 
of PD in IBD patients receiving anti-inflammatory ther-
apy [6, 9].

Previous studies investigating shared genetic factors 
between IBD and PD have mainly focused on common 
variants, leading to the identification of several loci asso-
ciated with both diseases. Recently, a report examining 
the genetic correlation between IBD subtypes and PD 
using summary statistics of previous GWAS identified 
23 novel loci in addition to the 9 loci reported previously 
[8]. Interestingly, ATP6V0A1, a gene that was identified 
in our NHC analysis, was among the novel pleiotropic 
loci shared between PD and CD and between PD and UC 
in that study. However, two recent Mendelian randomi-
zation studies, which also used summary statistics from 
large-scale GWAS of PD and IBD, failed to find a causal 
relationship between the two conditions [92, 93]. These 
conflicting findings might be attributable to the possi-
bility that common genetic variants contributing to the 
IBD-PD comorbidity account for only a small fraction of 
the overall cases [50, 93]. Instead, the risks are driven by 
rarer variants. Other factors, such as chronic low-grade 
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inflammation and environmental factors might cumula-
tively contribute to the development of PD in some IBD 
cases [6, 92].

However, in contrast to these previous studies that 
investigated the shared genetic factors between PD and 
IBD using separate cohorts with only one of these dis-
eases phenotyped, our approach involved the analysis of 
WGS data from patients diagnosed with both IBD and 
PD. We used high-impact rare variants to identify novel 
genetic defects with larger effect sizes, which were not 
properly captured by GWAS studies due to their design. 
Applying our approach, we identified novel candidate 
genes implicated in inflammation and autophagy, which 
may play a role in the pathogenesis of IBD-PD comor-
bidity. However, it is important to consider the potential 
impact of incomplete penetrance, a common feature of 
many genetic diseases, including PD [94], on the mani-
festation of the disease in variant carriers. A thorough 
evaluation of the penetrance of our detected putative dis-
ease-causing variants can be more effectively performed 
in large case–control studies [95]. It will be crucial to 
continue investigating the genetic determinants of IBD-
PD comorbidity to gain a comprehensive understanding 
of the underlying pathogenesis and develop effective risk 
stratification and personalized treatment strategies.

We believe that our study’s major strength is that, 
despite the limited sizes of the study cohorts to accom-
modate stringent variant-level analyses especially when 
considering rare variants, we applied a framework of 
analyses that were specifically designed to handle small 
sample sizes, thereby enabling novel gene discoveries 
for unique clinical phenotypes. It is nevertheless impor-
tant to acknowledge certain limitations of our study. 
First, detailed clinical data were missing for the IBD-PD 
cohort owing to the strict regulation of the Danish Data 
Protection Agency for linking patient-level data with bio-
specimens, thereby preventing us from assessing the age 
of onset of these conditions or IBD subtypes (CD ver-
sus UC). Moreover, due to the lack of access to genetic 
data for IBD-only or PD-only patients, and healthy con-
trols in the Danish Registry, we utilized existing data-
sets with available clinical information and performed 
extensive QC checks and genetic ancestry analyses to 
reduce the potential ascertainment bias. In addition, the 
disease cohorts were generated based on ICD codes, 
which may inherently lack granularity for certain disease 
subtypes. Also, we could not rule out genetic contribu-
tions from other immune-mediated diseases. Extensive 
evidence points towards a link of both IBD and PD with 
several organ-specific and multi-organ autoimmune dis-
orders [96–101], making it challenging to exclude IBD 
and PD cases with concomitant immune-mediated dis-
eases from the BioMe BioBank and UK Biobank cohorts. 

Although adjusting association tests for polygenic risk 
scores for autoimmune diseases could reduce the poten-
tial confounding effect, there is a lack of a consensus 
on representative conditions that should be adjusted 
for. Moreover, such an approach might bias the results 
towards the null, especially those related to IBD, which 
itself is an immune-mediated condition. Nevertheless, 
an in-depth investigation of the potential confounding 
by autoimmune diseases is still warranted. An important 
aspect to consider when interpreting the results is that 
all IBD-PD cases included in this study share a common 
European ancestry and the results, therefore, may not be 
generalizable to more ethnically and racially diverse pop-
ulations. Despite leveraging the ethnically-diverse BioMe 
BioBank to validate our findings within the IBD-PD 
cohort, it is still crucial to validate these findings across 
diverse populations.

Furthermore, the relatively small cohorts used in the 
LRRK2 coding sequence analysis limited our ability to 
observe and analyze very rare functional variants, as large 
sample sizes are pivotal for effectively detecting disease-
associated rare variants and facilitating their replication 
across diverse cohorts [32]. Moreover, most of the P val-
ues in the variant-level analysis did not attain genome-
wide statistical significance, which prevented us from 
drawing definitive conclusions. However, despite this 
limitation, we were able to replicate the well-known asso-
ciations of the LRRK2 G2019S and N2081D variants with 
both IBD and PD and identify potential novel causal vari-
ants. Furthermore, even though analyses to detect novel 
candidate genes associated with IBD-PD comorbidity 
were based on sequencing data from 67 IBD-PD cases, 
we used the NHC algorithm to address the low statistical 
power resulting from the small sample size and genetic 
heterogeneity, and identified six functionally-relevant 
gene clusters. In addition, by employing several path-
way enrichment and biological relatedness approaches, 
we were able to prioritize genes from both SKAT-O and 
NHC results with high confidence. Lastly, the focus on 
high-impact rare variants during the discovery of novel 
candidate genes may have limited the detection of poten-
tial associations with common variants or variants with 
smaller effect sizes. Future studies incorporating rare and 
common variants, larger sample sizes in addition to anal-
yses specific to the subtypes of IBD could provide a more 
comprehensive understanding of the genetic architecture 
underlying the IBD-PD comorbidity.

Conclusions
In conclusion, our study highlights the significance of 
shared genetic factors in the IBD-PD overlap by both 
supporting previous findings and introducing novel 
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candidate genes and variants. Future investigation of 
the interplay between inflammation and autophagy 
could in principle provide a better understanding of the 
shared etiology of IBD and PD and potential therapeu-
tic targets for drug development and repurposing.
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