Table 2.
Characteristics | SVM | LGBM | RF | GBDT | XGBoost | CatBoost |
---|---|---|---|---|---|---|
AUC | 0.776 | 0.823 | 0.794 | 0.809 | 0.798 | 0.776 |
AUC 95% CI | 0.748–0.805 | 0.798–0.848 | 0.769–0.818 | 0.783–0.834 | 0.773–0.823 | 0.747–0.804 |
Accuracy | 0.867 | 0.953 | 0.933 | 0.933 | 0.978 | 0.984 |
Precision | 0.467 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
Recall | 1.000 | 0.648 | 0.323 | 0.719 | 0.716 | 0.682 |
F1 score | 0.636 | 0.786 | 0.488 | 0.837 | 0.835 | 0.811 |
Brier score | 0.145 | 0.077 | 0.077 | 0.114 | 0.068 | 0.061 |
AP | 0.142 | 0.175 | 0.145 | 0.173 | 0.141 | 0.147 |
SVM, support vector machine; LGBM, light gradient boosting machine; RF, random forest; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; CatBoost, category boosting; AUC, the area under the ROC; AP, the area under the P-R curve