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REFORMS: Consensus-based Recommendations for 
Machine-learning-based Science
Sayash Kapoor1,2*, Emily M. Cantrell3,4, Kenny Peng5, Thanh Hien Pham1,2, Christopher A. Bail6,7,8, 
Odd Erik Gundersen9,10, Jake M. Hofman11, Jessica Hullman12, Michael A. Lones13,  
Momin M. Malik14,15,16, Priyanka Nanayakkara12,17, Russell A. Poldrack18, Inioluwa Deborah Raji19, 
Michael Roberts20,21, Matthew J. Salganik2,3,22, Marta Serra-Garcia23, Brandon M. Stewart2,3,22,24, 
Gilles Vandewiele25, Arvind Narayanan1,2

Machine learning (ML) methods are proliferating in scientific research. However, the adoption of these methods 
has been accompanied by failures of validity, reproducibility, and generalizability. These failures can hinder scientific 
progress, lead to false consensus around invalid claims, and undermine the credibility of ML-based science. ML 
methods are often applied and fail in similar ways across disciplines. Motivated by this observation, our goal is to 
provide clear recommendations for conducting and reporting ML-based science. Drawing from an extensive 
review of past literature, we present the REFORMS checklist (recommendations for machine-learning-based science). 
It consists of 32 questions and a paired set of guidelines. REFORMS was developed on the basis of a consensus of 
19 researchers across computer science, data science, mathematics, social sciences, and biomedical sciences. REFORMS 
can serve as a resource for researchers when designing and implementing a study, for referees when reviewing 
papers, and for journals when enforcing standards for transparency and reproducibility.

INTRODUCTION
Machine learning (ML) methods are being widely adopted for 
scientific research (1–11). Compared to older statistical methods, 
they offer increased predictive accuracy (1), the ability to process 
large amounts of data (12), and the ability to use different types of 
data for scientific research, such as text, images, and video (7). How-
ever, the rapid uptake of ML methods has been accompanied by 
concerns of validity, reproducibility, and generalizability (13–20). 
There are several reasons for concern. Performance evaluation is 
notoriously tricky in ML (21–24). ML code tends to be complex and 
as yet lacks standardization (25, 26), leading to a lack of computa-
tional reproducibility (27). Subtle pitfalls arise from the differences 

between explanatory and predictive modeling (28). The hype and 
overoptimism about commercial artificial intelligence (AI) may spill 
over into scientific research (29). In addition, publication biases that 
have led to past reproducibility crises (30) are also present in ML 
research (31, 32). If left unchecked, these flaws can lead to a feedback 
loop of overoptimism because nonreplicable findings are cited more 
than replicable ones (33). There is an urgent need to systematically 
address errors in ML-based science rather than finding errors in 
individual studies after publication.

Here, we focus on a specific subset of ML applications: ML-based 
science. We use this term to refer to research that makes a scientific 
claim using the performance of an ML model as evidence. For example, 
Salganik et al. (34) use ML models to investigate the predictability of 
life outcomes. This contrasts with ML methods research, which 
involves improving widely applicable ML methods instead of making 
scientific claims using ML models. In the next section (“The scope 
of our claims: ML-based science”), we clarify the distinctions between 
ML methods research and ML-based science and outline the scope 
of the paper in greater detail. Box 1 summarizes this discussion.

One promising way to detect and prevent errors in scientific 
research is by improving standards for conducting and reporting 
science (35–37). Clear expectations for using ML methods can allow 
researchers and referees to spot errors early. Despite the use of ML 
methods across disciplines, there are no widely applicable best prac-
tices for reporting the design, implementation, and evaluation of 
ML-based science. This leads to different, and often no fixed stan-
dards for conducting and reporting research in each field adopting 
ML methods. As a result, common failure modes in using ML methods 
recur across disciplines (38, 39).

Here, we introduce a checklist for ML-based science, with the 
goal of preventing known but common errors that occur when ML 
is used in scientific research. To that end, we review the literature on 
best practices and common errors in ML-based science. We introduce 
the REFORMS checklist for reporting ML-based science, which 
consists of 32 items across eight modules (Table 1). We accompany 
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REFORMS with a detailed set of guidelines to set expectations for 
each item (text S1).

Checklists have been adopted in many scientific fields (35–37, 
40), and they have been impactful in improving reporting practices 
(41, 42). In 2014, the U.S. National Institutes of Health (NIH) 
created principles to improve reproducibility and rigor, endorsed by 
several journals. One item was the creation of guidelines and checklists 
for journals (43). The EQUATOR network collects reporting guidelines 
for health research and includes more than 500 checklists (44). Several 
checklists have been proposed in ML methods research (32, 45, 46).

REFORMS differs from this large body of past work in crucial 
ways. First, past checklists for scientific research are field or method 
specific. For example, the CLAIM checklist (35) provides best prac-
tices for reporting research on AI in medical imaging. As a result, 
many items in thechecklist do not apply to other scientific fields 
adopting ML methods. Because ML methods are being rapidly 
adopted across fields, and research that uses ML methods suffers 
from similar errors, we aimed to make the REFORMS checklist field 
agnostic. We selected items that broadly apply to fields that use ML 
methods. Second, past checklists for ML methods research focus on 
common errors in developing ML methods. However, these errors 
differ from the ones that arise in scientific research (see Box 1 for the 
distinction between ML methods research and ML-based science). 
For instance, the checklist provided by Pineau et al. (32) does not 
include questions about the distribution about which the claims are 
made, because ML methods research often focuses on improving a 
model’s performance on a benchmark dataset (47). In contrast, 
clearly specifying the distribution of interest is core to a scientific 
claim. Still, past work in both scientific research and ML methods 
research has helped inform our checklist.

We present findings from an extensive review of past research on 
best practices and common shortcomings relevant to each of the 
eight checklist modules. Notably, the REFORMS checklist repre-
sents consensus-based recommendations for ML-based science. 
These recommendations subtly differ from reporting guidelines: While 
reporting guidelines only include items that can be addressed by 
authors after a study has been conducted, consensus-based rec-
ommendations, such as the REFORMS checklist, also inform readers 
of best practices and can take a stance on how certain research ac-
tivities should be conducted.

Alongside the checklist, we release guidelines paired with each 
item in the checklist (text S1). Similar guidelines have been included 
in past efforts at establishing standards. For instance, the STROBE-RDS 
statement (37) included an “explanation and elaboration” document 
to clarify expectations for each item in the checklist. Our guidelines 
aim to increase the usability of the REFORMS checklist and to pro-
vide pointers to best practices for ML-based science.

The REFORMS checklist can help address common failure modes 
that lead to errors in ML-based science. To guard against corners 
being cut because of time and publication pressures, the standards 
provide a set of clear expectations. To aid researchers new to ML-
based science, the guidelines for each item identify resources and 
relevant past literature. While no single document would be enough 
to familiarize researchers with all the nuances of ML-based science, 
our hope is that the guidelines can be one useful pedagogical re-
source. Finally, there are many steps involved in successfully reporting 
ML-based science. It is hard to keep all of these items in mind when 
writing up a study. REFORMS provides all 32 items in one docu-
ment to prevent omission errors.

THE SCOPE OF OUR CLAIMS: ML-BASED SCIENCE
We define ML-based science as scientific research that uses the 
performance of an ML model as evidence for a scientific claim. 
This includes, but is not limited to, making predictions, con-
ducting measurements, or performing other tasks that contribute 
to the body of scientific knowledge. This definition has two 
parts: First, the research should be geared toward answering a sci-
entific question of interest. This means that other types of ML 
research and applications do not fit under the umbrella of ML-
based science:

ML methods research
Research focusing on developing and refining ML methods, such as 
a typical NeurIPS paper, does not constitute ML-based science. 
While such work does contribute new ML methods, the main objective 
is not to solve specific scientific problems of interest about general-
izable populations. (Still, elements of the REFORMS checklist could 
be valuable to ML methods research. This is particularly the case 
when these newly developed methods are evaluated on benchmarks 
that directly influence their application in scientific contexts despite 
not being representative of real problems.)

Predictive analytics
Many real-world applications of ML models emphasize predictive 
accuracy but are not conducted to gain scientific insights. For ex-
ample, social media platforms use ML to predict if a user will click 
on ads millions of times a day. There are many differences between 
predictive analytics and ML-based science. In predictive analytics, 
the population or distribution of interest may not be clearly defined. 
The relationships found using ML models only need to hold within 
a company or organization and need not generalize. Relative accu-
racy is more important than absolute accuracy numbers because the 
decision to deploy a model has often already been made—so the 
only question being answered by the modeling activity is which of a 
given set of models should be deployed in production. In addition, 
verifying whether the predictions later come true is often easy. This 
feedback is a better test for whether an application works as intended 
(compared to using a checklist).

Box 1.
What is ML-based science?
ML-based science refers to scientific research that uses ML models to 
contribute to scientific knowledge. This includes making predictions, 
conducting measurements, or performing other tasks that help answer 
scientific questions. 
ML-based science could use various ML techniques such as supervised 
learning, unsupervised learning, and reinforcement learning. The research 
should be geared toward answering a scientific question of interest. 
Exclusions. Not all ML research and applications qualify. For example, ML 
methods research and predictive analytics fall outside the scope. Similarly, 
quantitative research not using ML methods, such as explanatory 
modeling and simulations, do not qualify as ML-based science. 
Applicability. Our checklist for ML-based science will be more useful for 
some types of research than others. For instance, research on the use of 
ML for predictions may benefit more than research on using ML for search 
tasks within vast and complex spaces.
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Table 1. The REFORMS checklist for ML-based science. See text S1 for guidelines on how to use the checklist. Alongside each item, authors should report the 
section or page number where the item is reported. Some items in the REFORMS checklist could be hard to report for specific studies. Instead of requiring strict 
adherence for each item, authors and referees should decide which items are relevant for a study and how details can be reported better. To that end, we hope 
that the checklist can offer a useful starting point for authors and referees working on ML-based science.

Module Item

Study goals 1a. State the population or distribution about which the scientific claim is made.

1b. Describe the motivation for choosing this population or distribution (1a.).

1c. Describe the motivation for the use of ML methods in the study.

Computational reproducibility 2a. Describe the dataset used for training and evaluating the model and provide a link or DOI to 
uniquely identify the dataset.

2b. Provide details about the code used to train and evaluate the model and produce the results 
reported in the paper along with link or DOI to uniquely identify the version of the code used.

2c. Describe the computing infrastructure used.

2d. Provide a README file which contains instructions for generating the results using the 
provided dataset and code.

2e. Provide a reproduction script to produce all results reported in the paper.

Data quality
3a. Describe source(s) of data, separately for the training and evaluation datasets (if applicable), 
along with the time when the dataset(s) are collected, the source and process of ground-truth 
annotations, and other data documentation.

3b. State the distribution or set from which the dataset is sampled (i.e., the sampling frame).

3c. Justify why the dataset is useful for the modeling task at hand.

3d. State the outcome variable of the model, along with descriptive statistics (split by class for a 
categorical outcome variable) and its definition.

3e. State the sample size and outcome frequencies.

3f. State the percentage of missing data, split by class for a categorical outcome variable.

3g. Justify why the distribution or set from which the dataset is drawn (3b.) is representative of 
the one about which the scientific claim is being made (1a.).

Data preprocessing 4a. Describe whether any samples are excluded with a rationale for why they are excluded.

4b. Describe how impossible or corrupt samples are dealt with.

4c. Describe all transformations of the dataset from its raw form (3a.) to the form used  
in the model, for instance, treatment of missing data and normalization—preferably  
through a flow chart.

Modeling 5a. Describe, in detail, all models trained.

5b. Justify the choice of model types implemented.

5c. Describe the method for evaluating the model(s) reported in the paper, including details of 
train-test splits or cross-validation folds.

5d. Describe the method for selecting the model(s) reported in the paper.

5e. For the model(s) reported in the paper, specify details about the  
hyperparameter tuning.

5f. Justify that model comparisons are against appropriate baselines.

Data leakage 6a. Justify that preprocessing (Module 4) and modeling (Module 5) steps only use information 
from the training dataset (and not the test dataset).

6b. Describe methods used to address dependencies or duplicates between the training and 
test datasets (e.g. different samples from the same patients are kept in the same dataset 
partition).

6c. Justify that each feature or input used in the model is legitimate for the task at hand and 
does not lead to leakage.

Metrics and uncertainty
7a. State all metrics used to assess and compare model performance  
(e.g., accuracy, AUROC etc.). Justify that the metric used to select the final model is suitable  
for the task.

7b. State uncertainty estimates (e.g., confidence intervals, standard deviations), and give details 
of how these are calculated.

7c. Justify the choice of statistical tests (if used) and a check for the assumptions of the  
statistical test.

Generalizability and limitations 8a. Describe evidence of external validity.

8b. Describe contexts in which the authors do not expect the study’s findings to hold.
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The second criteria for ML-based science is that the research 
should use ML methods. By this, we refer to a variety of techniques 
including, but not limited to, supervised learning, unsupervised 
learning, and reinforcement learning. Consequently, other types of 
quantitative research not using these methods do not fall under the 
umbrella of ML-based science:

Explanatory modeling
Such research uses traditional statistical methods for improving our 
understanding of real-world phenomena rather than predicting out-
comes (48). This is an example of quantitative scientific research that 
does not use ML methods. For more information about how explan-
atory modeling differs from ML methods, see the section on item 1c 
(“Motivation for the use of ML methods in the study”). While 
explanatory modeling suffers from many shortcomings (13), errors 
in this domain are subtly different compared to ML-based science, 
which means that much of our checklist does not apply to explana-
tory modeling research.

Simulation
Similarly, physics-based models and simulation methods are sometimes 
evaluated iteratively by output and by their fidelity with existing 
theory (49, 50) and do not involve ML or fitting models to data—
except potentially as a tool to understand and summarize the simu-
lation results. As a result, many items in the REFORMS checklist do 
not apply. Note that some algorithms used in ML, like Markov chain 
Monte Carlo, are examples of numerical simulations; however, these 
are used only to fit models to data, which is different to simulating 
an underlying phenomenon of interest.

In sum, we call research at the intersection of ML methods and 
quantitative science “ML-based science.” The work of Salganik et al. 
on the Fragile Families Challenge (34) is an example of this category. 
They used ML to predict children’s life outcomes and answer scientific 
questions about the predictability of outcomes studied by sociologists. 
We discuss many other examples in our review.

The checklist is broadly applicable to research where the scientific 
claim is supported by the accuracy of an ML model on an out-of-
sample test set. The specific ML method used is not important. As 
an example, research using logistic regression models would be 
within scope if the accuracy of the logistic regression model on an 
out-of-sample dataset is used to support the scientific claim of interest. 
See the section on item 1c (“Motivation for the use of ML methods 
in the study”).

In some cases, our checklist may be applicable to scientific work 
with foundation models (51), which are a type of ML model, al-
though our focus in this paper is more general. There are several 
challenges with using proprietary foundation models for scientific 
research. For example, they are nondeterministic and can change 
without adequate notice (52, 53). This could lead to hard-to-resolve 
shortcomings in computational reproducibility. Foundation models 
are one example of a gray area in the definition of ML-based science. 
In such cases, we leave it up to the authors and referees to decide 
whether the REFORMS checklist is useful.

Note that our checklist will likely be more helpful for some types 
of ML-based science than others. For instance, it is likely to be more 
useful for predictive modeling compared to research that uses ML 
methods for search tasks in vast and complex spaces, such as the 
search for new materials or new phases of matter (54). In cases 
where verifying the result of an ML-based experiment is easy (for 

instance, verifying the properties of a new drug in a lab), our checklist 
might be less useful than such verification, though it could help 
ensure the validity of the experiments before verification.

METHODS
To develop the REFORMS checklist, we started with a focus on 
steps in a canonical ML pipeline, drew from previous checklists 
used in other domains, and went through a consensus process with 
all authors, involving multiple rounds of feedback and a virtual dis-
cussion. Table  2 lists the modules in our checklist and the corre-
sponding stages in the ML pipeline. For each module, we focus on 
three goals: (i) establishing the scientific claim and its relationship to 
the ML modeling process; (ii) providing an overview of the best 
practices and common shortcomings in building ML models cor-
rectly; and (iii) enabling the verification of the results by an inde-
pendent researcher. In other words, we aim to decrease the likelihood 
of errors of interpretation (goal 1) or execution (goal 2) and to make 
it easier for independent researchers to spot errors (goal 3). Box 2 
outlines these goals in more detail. Box 3 summarizes how different 
stakeholders—authors, referees, and journals—can use the checklist.

To build on previous efforts at improving the reporting quality of 
research, we used three past checklists to ensure our coverage of im-
portant items in reporting an ML model. Pineau et al. (32) provided 
the checklist used alongside papers submitted to NeurIPS 2020, a promi-
nent ML methods conference. Collins et al. (40) provided the TRIPOD 
checklist for prediction models in health research. Mongan et al. 
(35) introduced the CLAIM checklist for AI models in clinical 
imaging. We chose these checklists because they covered diverse 
modeling approaches and were applicable in different settings—ML 
methods research, models for individual diagnosis and prognosis, 
and ML for medical imaging, respectively.

Consensus process for developing the REFORMS checklist
Once we had an initial set of items, authors met virtually for a dis-
cussion. One of the main outcomes of the discussion was the need 
for a paired set of guidelines alongside each item to clarify how these 
items should be reported, which we discuss in more detail below. Then, 
the authors collaboratively edited the checklist to choose commonly 
applicable items across disciplines. We paid close attention to usability: 

Table 2. Stages of ML-based science and corresponding checklist 
modules. 

Stage of scien-
tific study

Section of the checklist

Study design
Study goals (Module 1)

Computational reproducibility (Module 2)

Data collection 
and 
preparation

Data quality (Module 3)

Data preprocessing (Module 4)

Modeling Modeling decisions (Module 5)

Evaluation
Data leakage (Module 6)

Metrics and uncertainty quantification (Module 7)

Scope and 
limitations Generalizability and limitations (Module 8)
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To decrease the time and cognitive load that using the checklist would 
entail, we removed items that were too specific and would apply to a 
small subset of ML-based science. Last, the authors independently 
flagged unclear items to improve the quality of the checklist.

A recurring theme in our conversation was making the checklist 
easy to use. To that end, we developed a set of accompanying guide-
lines to help researchers understand the motivation for each section 
and clarify what is expected for each item in REFORMS. The guide-
lines (text S1) are based on our review of past literature for items in 
the checklist (this review is presented next). We include references 
to key prior work to help onboard researchers new to using ML 
methods. This includes a mix of peer-reviewed scientific research 
that details best practices, as well as resources from the ML methods 
community that outline common shortcomings and ways to address 
them. Crucially, we do not take prescriptive stances on matters of 
ongoing methodological debate. Instead, we present best practices 
to minimize and detect known types of errors in ML-based science.

Organization of the paper
In the remainder of the paper, we present the REFORMS checklist. 
They comprise eight modules based on the stages of an ML-based 
science study (see Table 2). For each module, we motivate why items 
in this module are important to address in ML-based science. For 
each item, we include expectations about what it means to address 
the item sufficiently. In our review, we draw from past literature on 
best practices and common errors in ML-based science. We also 
occasionally draw on literature about science with traditional statis-
tical methods, as best practices and shortcomings are shared in many 
aspects of ML-based science and other quantitative science. In Table 1, 
we provide a template for the REFORMS checklist. In text S1, we 
distill the guidelines for filling out the checklist as a standalone doc-
ument. In text S2, we present a table with additional details on the 
references used in our review.

MODULE 1: STUDY GOALS
This section focuses on stating a study’s goals. This is motivated 
by recent research that shows that reporting study goals in adequate 
depth and clarity is not trivial or common (55). Studies that appear 
to ask the same research question may actually have subtle differences 
in their questions which lead to substantially different findings (28).

1a) Population or distribution about which the  
scientific claim is made
The population of interest is the group to which the researchers in-
tend the findings of the study to generalize. In the parlance of ML 
methods research, population is analogous to a “distribution” of 
scientific interest. That is, scientific claims are often made about data 
sampled from a certain distribution (56), rather than a specific popula-
tion of individuals. For example, the performance of an image clas-
sification tool might be made in the context of images taken from 
various distributions, such as satellite images of a certain region, 
instead of human populations. For brevity, we treat population and 
distribution interchangeably.

The population is typically broader than the sampling frame and 
sample, which are discussed in Module 3. Defining the population 
of interest is important because it shapes the article’s conclusions, 
places boundaries on those conclusions, and provides the basis for 
metrics of significance and uncertainty that derive from the concept 

Box 2.
What is ML-based science?
Goal 1: Establish the scientific claim and its relation to the ML task. A 
key feature of our checklist, distinguishing it from those used in ML 
methods research, is its focus on using ML to support scientific claims. In 
such research, it is necessary to establish the intended scientific claim as 
well as how the performance of the ML model supports that claim. For 
example, it is necessary to state the population of interest and justify why 
the dataset used in the ML task represents this population. This is as 
opposed to ML methods research, where the performance of a model on 
a benchmark dataset is often itself the main claim made in a paper. 
Goal 2: Ensure that the ML task is executed correctly and that the 
performance is reported in sufficient detail. To establish that the 
performance of the specified ML model supports the intended scientific 
claim, it is necessary to ensure that the performance of the model is 
calculated correctly. There are many ways in which the performance of a 
model can be misleading. For example, a common error in ML research is 
evaluating a model on data it was trained on, resulting in overly optimistic 
results. In addition, reporting uncertainty is necessary to interpret model 
performance correctly. 
Goal 3: Enable an independent scientist to verify results. Finally, our 
checklist is designed to help ensure that all resources and descriptions 
needed for verifying a study are provided alongside the paper. Thus, our 
checklist helps ensure that independent researchers can understand and 
evaluate a given study. 
The three goals listed above are not intended to be disjoint and often 
support one another. They can help orient the reader when navigating 
our checklist, and they reveal how our checklist is tailored to ML-based 
science.

Box 3.
How authors, referees, and journals can use REFORMS.
Our recommendations can help improve the quality of ML-based science in 
multiple ways. 
Authors can self-regulate by using the REFORMS to identify errors and 
preemptively address concerns about using ML methods in their paper 
(42). This can also help increase the credibility of their paper, especially in 
fields that are newly adopting ML methods. We expect that REFORMS will 
be useful to authors throughout the study—during conceptualization, 
implementation, and communication of the results (see Table 2 for a list of 
checklist modules corresponding to these goals). The checklist can be 
included as part of the supplementary materials released alongside a 
paper. The guidelines can help authors learn how to correctly apply the 
REFORMS checklist in their own work and introduce them to underlying 
theories of evidence. 
Referees can use REFORMS to determine whether a study they are 
reviewing falls short. If they have concerns about a study, they can ask 
researchers to include the filled-out checklist in a revised version. For 
example, Roberts et al. (15) use the CLAIM checklist (35) to filter papers for 
a systematic review based on compliance with the checklist. 
Journals can require authors to submit a checklist along with their papers 
to improve standards for ML-based science. Similar checklists are in place 
in a number of journals (90, 91); however, they are usually used for specific 
disciplines rather than for methods that are prevalent across disciplines 
(192). Because ML-based science is proliferating across disciplines, REFORMS 
offers a method-specific (rather than discipline-specific) intervention. 
Note that the REFORMS checklist is additive to field-specific norms. It is 
not a replacement for existing requirements within fields, such as 
preregistration, ethics reviews, or using discipline-specific checklists for 
other parts of the research process. It might seem burdensome to ask 
researchers to adhere to another set of standards, but our work was born 
out of painful necessity: Studies across fields have repeatedly found 
reproducibility errors in ML-based science (39), and in the absence of a 
systematic intervention, this is likely to worsen.
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of sampling from a population (55, 57, 58). Unfortunately, research arti-
cles do not always clearly state their population of interest (55, 59, 60).

1b) Motivation for choosing this population or distribution
The choice of a particular population of interest may be motivated 
by pure scientific interest or by a need for applied knowledge. Ex-
plaining the motivation for studying the population of interest helps 
the reader understand the importance of the study and contextualize 
its results.

We acknowledge that the motivation for choosing a particular 
population of interest may arise from what data is available. The 
development of the motivation depends on whether researchers fol-
lowed a deductive, inductive, or iterative approach (61). In a deduc-
tive approach, researchers begin with a theory and a population of 
interest and then select or create a dataset based on the data’s ability 
to test that theory for that population. In an inductive approach, 
researchers begin with a dataset and then determine what research 
questions and populations of interest that dataset can address. In an 
iterative approach, researchers iterate between data collection, data 
analysis, and theory until they develop a hypothesis, and then collect 
additional data to test that hypothesis (61). The deductive approach 
is the most widely accepted approach in the scientific community, 
but Grimmer et al. (61) argue that there is also great value in inductive 
and iterative approaches and that it is important to communicate 
which approach was used.

1c) Motivation for the use of ML methods in the study
The research questions asked in ML-based studies often differ from 
those asked with traditional statistical methods. Breiman (12) fa-
mously argued that there are “two cultures” in statistical modeling: 
the “data modeling” culture and the “algorithmic modeling” culture. 
In the data modeling culture, which is aligned with traditional sta-
tistical methods, researchers’ focus is on estimating the parameters 
of a function that is meant to meaningfully represent the process by 
which input data produces output data in the world. This includes 
describing relationships between quantities of interest (“descriptive 
modeling”) and estimating causal effects (“explanatory modeling”) 
(48). For example, researchers might ask, “what is the relationship 
between household income and the likelihood of experiencing clinical 
depression?,” and estimate the magnitude and direction of that 
relationship using a logistic regression model. In the “algorithmic 
modeling” culture, which aligns with much of ML-based research, 
the focus is on building a model that reliably maps input data to 
output data. In this culture, the parameters do not necessarily need 
to provide a faithful and interpretable description of patterns in the 
world; rather, the goal is to accurately predict output data when 
given a new sample of input data that is separate from the original 
data sample in which the model was trained. For example, researchers 
might ask, “given all the data available about a person in a particular 
dataset, how accurately can we predict whether that person will 
experience clinical depression?,” and test a variety of models to find 
the one with the best predictive accuracy. (This could include pre-
dictions made with simple models like linear or logistic regression.) 
Breiman’s proposition was that more scientific research should use 
algorithmic modeling (12). Several responses to Breiman have argued 
for the value of merging the two cultures or moving iteratively 
between them (48, 62–66).

Because non-ML (data modeling) methods are currently the 
standard approach in many scientific disciplines, explaining the 

motivation for using ML methods will help readers better under-
stand a study’s goals. Considering the differences and similarities 
between Breiman’s two cultures may be useful to researchers when 
motivating the use of ML methods. In addition, many recent articles 
provide guidance on the value of ML methods for science (1, 7, 48, 
62, 67–71).

MODULE 2: COMPUTATIONAL REPRODUCIBILITY
Computational reproducibility refers to the ability of an indepen-
dent researcher to get the same results as reported in a paper or 
manuscript. It is an essential part of computational research (72).

Computational reproducibility can help independent researchers 
evaluate the findings in a paper and verify whether they hold up 
under scrutiny. The availability of reproducibility materials has led 
to several errors being spotted (73–78). Conversely, if the code and 
data for reproducing all results in a study are not available, then 
identifying the precise sources of errors in a study becomes hard 
(79–81).

Current computational reproducibility standards fall short
Some journals require authors to make their computational repro-
ducibility materials available after publication without requiring 
these materials at the time of publication. However, such measures 
can miss the mark. Stodden et al. (82) attempted to contact the 
authors of 204 papers published in the journal Science to obtain 
reproducibility materials. Only 44% of authors responded. Similarly, 
Gabelica et al. (83) studied papers published in 333 open-access 
journals indexed on BioMed Central in January 2019. Of the 1792 
papers that claimed they would share data upon request, 1669 did 
not share the data. That is, they were unable to get the data for 93% 
of the papers. This indicates the importance of requiring computa-
tional materials at the time of publication rather than at the authors’ 
discretion later.

Vasilevsky et al. (84) studied the data-sharing policies at 318 bio-
medical journals. They found that almost a third of these journals 
had no data-sharing policies in place. Even the journals that did 
have data-sharing policies did not have clear guidelines for authors 
to comply with their policies.

ML methods research has also struggled to ensure computational 
reproducibility (85, 86). Gundersen and Kjensmo (18) systematically 
analyzed 400 papers that were published at leading conferences. In 
addition to code and dataset availability, they evaluated the docu-
mentation of methods in a paper’s text, for instance, whether the 
experimental setup is described. They found that none of the 400 papers 
satisfied all of their reproducibility criteria, and in general, papers 
only satisfied 20 to 30% of the criteria.

Pineau et al. (32) found that only around half of the papers 
submitted to NeurIPS 2018, a leading ML conference, contained the 
code and data needed to reproduce results. To improve reproduc-
ibility, they introduced a checklist that was used in NeurIPS 2019. In 
the checklist, including reproducibility materials was optional but 
recommended. Still, after the checklist was introduced, more than 
75% of the papers included reproducibility materials along with the 
submissions. Similar checklists have become the standard at several 
ML conferences (87–89). While ML methods research differs from 
ML-based science in its goals and practices, we can learn from these 
experiences to emphasize the importance of computational repro-
ducibility in ML-based science.



Kapoor et al., Sci. Adv. 10, eadk3452 (2024)     1 May 2024

S c i e n c e  A d v a n c e s  |  R e v i e w

7 of 17

Ensuring computational reproducibility in  
ML-based science is challenging
ML methods used in scientific research can be complex and often 
require numerous packages and dependencies. This makes computa-
tional reproducibility challenging (27). Liu and Salganik (25) describe 
their experiences ensuring computational reproducibility while 
editing a special issue in Socius on the Fragile Families Challenge. 
The Fragile Families Challenge was a prediction competition where 
multiple participants tried to predict children’s life outcomes on the 
same dataset (34). The special issue published papers based on a few 
of the resulting models. Liu and Salganik wanted to ensure that the 
code and data alongside every publication were verified to ensure 
that they produced the same results as those presented in the paper. 
Despite spending 13 months working on achieving computational 
reproducibility and exchanging dozens of emails with the authors, 
they were unable to verify the computational reproducibility of all 
papers. Even preliminary steps, like installing the correct versions of 
each package, were nontrivial when a large number of packages were 
used in a study. They could eventually verify the computational repro-
ducibility of 7 of the 12 papers. They published the rest with the code 
and data available at the time of publication.

Interventions adopted by journals
Journals have adopted several measures to improve computational 
reproducibility (90–92). The Transparency and Openness Promo-
tion standards introduced by the Open Science Foundation (93) 
have a few sections that focus on computational reproducibility in 
scientific research. They are divided into three levels: Level 1 re-
quires stating whether the computational reproducibility materials 
are available. If they are, authors should provide details about how to 
access them. Level 2 requires the materials to be available in a trusted 
repository at the time of publication. Level 3 requires the materials 
to be verified by the journal to ensure that they generate the results 
reported in the paper before publication.

Several social science journals use the Data and Code Availability 
Standards for computational reproducibility (94). Other journals 
have taken additional measures to verify whether the code is correct. 
For instance, Nature Methods conducts code reviews in addition to 
peer reviews for papers that provide computational artifacts (95).

In our checklist, we include the basic details that can enable inde-
pendent researchers to verify the computational reproducibility of a 
result. Our checklist requires information about the dataset, code, 
computing environment, documentation for how to get the results 
in a study, and a reproduction script to automatically run the code 
and generate results. We acknowledge that computational reproduc-
ibility is hard and that some items in this module are more challeng-
ing compared to others. For instance, it is not always possible to 
release private datasets. When one aspect of computational repro-
ducibility cannot be entirely met, researchers can still aim to satisfy 
the other aspects (e.g., provide a reproduction script even when data 
cannot be made available). Researchers can also address limitations 
through alternative means. We provide some such options below, 
such as providing a synthetic imitation of the data when the real 
data cannot be publicly released.

2a) Dataset
Peng et al. (96) and Nosek et al. (93) highlight the importance of 
citing datasets with permanent links to clarify which version of a 
dataset is used in a study. If an original dataset is provided alongside 

a study, documentation for the dataset is also important. For in-
stance, authors can include data dictionaries (97) or datasheets (98). 
Such documentation should report basic details about the proper-
ties and format of the data.

Some datasets could contain sensitive information and cannot be 
publicly released. To address this, authors have previously released 
synthetic datasets when working with sensitive data (99–102). However, 
a limitation of synthetic data is that we can never know the patterns inher-
ent to the original data to check if those patterns are preserved in the 
synthetic data (103, 104). As a result, we cannot understand whether 
important relationships and properties of the original data have 
been preserved.

2b) Code
Similarly, it is important to report the exact version of code used 
for running the experiments and producing the results in a paper 
(105). Authors can accomplish this by providing a Digital Object 
Identifier (DOI), commit tag (for instance, from code repositories 
such as GitHub, GitLab, or BitBucket), or other documentation to 
precisely identify the version of the code used to train and evaluate 
the model and produce the results reported in the paper. Note that 
using archiving systems that provide permanent identifiers for the 
code used, like Dataverse, is likely to aid long-term reproducibility 
(106, 107).

2c) Computing environment
Different computational experiments require different amounts of 
computing resources. To help readers understand the precise 
computing requirements for reproducing the study, authors should 
report details about the hardware (CPU, RAM, and disk space), soft-
ware (operating system, programming language, and version num-
ber for each package used), and computing resources (time taken to 
generate the results) used to generate their results. Stodden and 
Miguez (108) provide best practices to document computing 
infrastructure.

2d) Documentation
Good documentation helps researchers unfamiliar with a project by 
walking them through the steps of setting up and running the code 
provided, starting from environment requirements and installation, 
to examples of usage and expected results (109, 110).

2e) Reproduction script
A script to produce all results reported in the paper using the re-
producibility materials can substantially reduce the time it takes 
for an independent researcher to reproduce the results reported in 
a study. Reproduction scripts can download packages with the version 
numbers needed to run the code, set the right dependencies, 
download and store datasets in the correct location, set up the comput-
ing environment, and run the code to produce the results reported 
in the paper.

Authors can implement such scripts in several ways, such as 
using a bash script (111) or using an online reproducibility platform 
such as CodeOcean (112). Note that this is a high bar for computa-
tional reproducibility. In some cases, it might not be possible to 
provide a script that would allow an independent researcher to re-
produce all results—for instance, if the analysis is run on an aca-
demic high-performance computing cluster or if the dataset does 
not allow for programmatic download.



Kapoor et al., Sci. Adv. 10, eadk3452 (2024)     1 May 2024

S c i e n c e  A d v a n c e s  |  R e v i e w

8 of 17

MODULE 3: DATA QUALITY
This module helps readers and referees understand and evaluate the 
quality of the data used in the study. Using poor-quality data or data 
that is not suitable for answering a research question can lead to 
results that are meaningless or misleading.

3a) Data source(s)
Describing a study’s data source(s) allows readers to evaluate the data’s 
strengths and weaknesses and to judge whether the data is appropriate 
for the study’s goals. Most studies provide descriptions of their data source, 
but those descriptions sometimes lack important details (113–115). 
In addition, the quality of reporting about ground-truth annotation 
methods in ML-based science varies widely (116). To ensure a minimum 
level of information about data sources is reported, our checklist asks 
researchers to report when, where, and how data was collected, and how 
ground-truth annotations were performed on the dataset, if applicable.

3b) Sampling frame
A sampling frame is a list of people or units from which a sample is 
drawn. Because of practical limitations, the sampling frame in many 
studies does not include all members of the target population. It is 
important to describe a study’s sampling frame so that readers 
understand the boundaries of the study’s sample and how that sample 
relates to the target population (discussed further under checklist 
item 3g: Dataset for evaluation is representative).

Some research papers do not provide a clear description of their 
sampling frame or eligibility criteria for inclusion in the sample (59, 
113, 117). Furthermore, one review article found that when papers 
stated information about their sampling frame or eligibility criteria 
was available in a prior publication, the prior publication was not 
always accessible, and the relevant information was often extremely 
difficult or impossible to find (117).

3c) Justification for why the dataset is useful for the 
modeling task
Our checklist asks researchers to justify why the dataset is useful for 
the modeling task because the appropriateness of a data source will 
depend on the research question. For example, while biased or 
incomplete data is inappropriate for some research questions, such 
data can work well for other research questions as long as the re-
searcher understands how these shortcomings affect the analysis 
and communicates the limitations (61). A broad claim like “this is 
the best dataset available on this topic” does not help readers un-
derstand the strengths and weaknesses of the data for the study’s 
research question; researchers should be specific about why the 
dataset is well suited to the question.

Modern ML-based research often relies on repurposed data sources, 
which are sometimes termed “big data:” for example, social media data, 
digital trace data, or digital administrative records (118). Salganik (118) 
describes 10 common characteristics of “big data” that result in differ-
ing strengths and weaknesses compared to traditional data sources. Re-
searchers who are using ML with repurposed data can use these 10 
characteristics as a guide when justifying why the data source is appro-
priate for their research goals and identifying shortcomings of the data.

3d) Outcome variable
Our checklist asks researchers to report how their outcome variable 
is defined. The outcome or target variable is the quantity that the 
model is used to predict, detect, classify, or estimate.

The outcome variable is typically an empirical proxy for an un-
observable theoretical construct (119). For example, researchers 
might pose a question about the construct “academic performance” 
and use grade point average as measured in school administrative 
data as the empirical proxy for this construct. The outcome variable 
is usually not a perfect match for the theoretical construct it repre-
sents. Thus, to allow readers to evaluate a paper’s claims, authors 
should describe precisely how their outcome variable is measured 
and note any ways in which this outcome variable might not align 
with the associated construct. This is especially important because 
mismatches between variables and the constructs they are purported 
to represent can create fairness issues (120).

Our checklist also asks for descriptive statistics about the outcome 
variable. Reviews of prior literature have found that descriptive 
statistics are not always sufficiently reported (121, 122). Descriptive 
statistics about the outcome variable help readers to understand the 
context being studied and to identify concerns related to rare values 
or skewed data.

3e) Number of samples in the dataset
Reporting sample size is important because a study must have 
sufficient sample size to achieve its objectives. Some research objectives 
can be achieved with small to moderate-sized samples: for example, 
detecting large differences between groups. Other objectives generally 
require large samples: for example, studying rare events, studying 
heterogeneity, or detecting small differences (118).

Note that there can be downsides to large sample sizes. When the 
sampling frame is unrepresentative, increasing the sample size can 
shrink confidence intervals without decreasing bias in estimates, thus 
giving false confidence (123). Furthermore, if a study exposes par-
ticipants to any level of risk, larger samples may magnify harms (118).

Scientific literature is generally consistent about reporting total 
sample size (59, 124). However, reporting on sample size for sub-
groups or sample size after attrition in longitudinal research is less 
consistent (59). To ensure clear reporting, our checklist asks that in 
addition to the total sample size, researchers who are conducting a 
classification task report the number of samples in each class. This 
follows recent calls for more granular details about data, such as by 
Gebru et al. (98). We also ask researchers to distinguish between the 
number of individuals in the dataset and the number of rows in 
the dataset, in cases where an individual can appear in more than 
one row.

3f) Missingness
Missing data is highly prevalent in many research domains and can 
affect the results (34, 125, 126). It is important for researchers to 
report the prevalence of missing data in their dataset and to specify 
how they handled missingness (125). Missingness is particularly im-
portant to address carefully when it is nonrandom (127). Extensive 
literature across multiple fields has established that research articles 
frequently provide insufficient information about the presence and 
handling of missing data (59, 113, 126, 128–132).

Checklist item 3f focuses on reporting the prevalence of missing 
data. Reporting how missing data is handled is covered in item 4c: 
Data transformations.

3g) Dataset for evaluation is representative
This item asks researchers to justify that their sample is representative 
of the target population defined in Module 1. Representativeness is 
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important for the study’s ability to generalize from the sample to the 
target population. Lack of representativeness in the sampling process is 
sometimes underreported; for example, one review of past literature 
found underreporting of information about selection bias (59).

Probability sampling is a common approach for achieving repre-
sentativeness. However, probability sampling is not always necessary. 
Because of coverage errors and nonresponse in probability sampling, 
the differences between probability sampling and nonprobability 
sampling are not always as large as they first appear (118). For stud-
ies that use nonprobability sampling, researchers may be able to make 
a reasonable argument for representativeness by comparing sample 
characteristics with population characteristics (57). Researchers can 
also use statistical methods to adjust for nonprobability sampling 
(or to adjust for errors in probability sampling), such as post-
stratification, sample matching, propensity score weighting, and 
calibration (118).

In some studies, the dataset will not be representative of the 
target population. Reasons a sample might fail to be representative 
of the target population depend on the type of data collected. For 
example, Salganik (118) describes three types of representation er-
ror in survey data, and Grimmer et al. (61) describe four sources of 
bias in sample selection for text analysis. A nonrepresentative sam-
ple is okay for certain research goals. For example, Salganik argues 
that research that aims to make out-of-sample generalizations gen-
erally requires representative data, but research that aims to make 
within-sample comparisons can be well suited to nonrepresentative 
data (118). Concerns about nonrepresentativeness should be noted 
under checklist item 8a: Evidence of external validity.

MODULE 4: DATA PREPROCESSING
Preprocessing is the series of steps taken to convert the dataset from 
its rawest available form into the final form used in the modeling 
process. This includes data cleaning and selection (i.e., selecting a 
set of samples from the dataset to be included in the modeling pro-
cess) as well as other transformations of the data, such as imputing 
missing data and normalizing feature values.

Our checklist focuses on two broad components of preprocessing: 
first, the subset of data to consider (i.e., which rows of a dataset are 
considered), and second, the transformations that are subsequently 
applied to the data (i.e., how entries of a dataset might be altered). 
Each of these components has implications on the scope and validity 
of resulting scientific claims and are essential for ensuring the 
reproducibility of the results. As discussed in Module 3, preprocessing 
methods are often not specified in papers.

4a) Excluded data and rationale
Researchers might exclude some samples from the dataset—for 
instance, to remove outliers or to only focus on certain subsets. 
Thus, the resulting scientific claims should be made in relation to 
the particular subset of a dataset that is ultimately used. This type of 
preprocessing is closely related to our discussion on data quality 
(Module 3) and generalizability (Module 8). This item underscores 
the importance of reporting the specific subset of the dataset used, 
in addition to details about the overall data.

Hofman et al. (28) note how the choice of the subset can substantially 
affect the performance of the resulting model. A specific example 
they use is the prediction of the reach (“cascade size”) of a social 
media post as a function of the poster’s past success. They show that 

the threshold of popularity used to determine the subset of posts 
considered plays a large role in influencing the predictability of 
cascade size. The scientific claim—regarding the predictability 
of the success of a post—depends on what data are included and 
excluded. We ask authors to justify why the particular subset of data 
used was chosen.

4b) How impossible or corrupt samples are dealt with
A dataset may contain erroneous or undesirable data points. Data 
may be impossible (e.g., a person whose height is recorded as 10 feet) 
or corrupted (e.g., a survey response filled out by a bot). Different 
techniques have been developed to detect such cases (133, 134). 
Attempting to filter such data can be important to ensure the data-
set represents the intended population of the study. Data detected as 
impossible or corrupt may be removed or transformed—our checklist 
asks authors to report such steps in items 4a and 4c, respectively.

4c) Data transformations
Once the set of data points to be used is decided upon, researchers 
could transform the data in various ways: for example, by normalizing 
or augmenting data, or imputing missing data. Both imputing miss-
ing data and under/oversampling from a subpopulation—if done 
improperly—can harm the validity of model performance in rela-
tion to the scientific claim made. For example, mean imputation and 
oversampling must be done separately on each fold of a dataset. Failing 
to do so can result in overoptimistic results (78).

Specifying preprocessing steps is also important for ensuring the 
reproducibility of the results. Choices in preprocessing technique 
can substantially affect the properties of the resulting model, including 
accuracy and interpretability (135, 136).

MODULE 5: MODELING
Researchers make several choices in creating an ML model. The 
exact specification of the model is important to consider with re-
spect to the particular scientific claim being made. In addition, 
because of the large number of choices involved in creating an ML 
model, it is important to report exact details of how an ML mod-
el is created—otherwise, reproducibility by independent research-
ers could be hindered. Raff (137) attempted to reproduce ML results 
from 255 papers using only the paper’s text (i.e., without using 
the code accompanying a paper), and found that 93 could not be 
reproduced.

Modeling choices are also closely related to choices involving 
evaluation. Model selection—the process of choosing the model(s) 
whose results are reported in a study—often depends on the evalua-
tion setup. An improper approach to evaluation or model selection 
can result in exaggerated performance estimates.

Major ML conferences, such as NeurIPS and International 
Conference on Machine Learning, incorporate checklists that ask 
authors to verify that they have included training details within their 
paper, similar to the specific items we propose below (88, 89). Simi-
larly, Mitchell et al. (138) introduced model cards to document 
details about the modeling and evaluation process, with a primary 
focus on natural language processing and computer vision.

A note on terminology: There is no broad agreement on the use 
of different terms related to the modeling process. For the purpose 
of the discussion in this module, we make one conceptual distinction. 
Items 5a and 5b focuses on aspects of the model that are specified 
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before training. This includes, for example, the type of model and 
the loss function. Meanwhile, items 5c, 5d, 5e, and 5f focus on fitted 
(trained) models.

5a) Model description
Specific details about all models trained are essential for ensuring 
the reproducibility of a paper. This includes specifying the input 
and output of a model, the type of model (e.g., Random Forest or 
Neural Network), and the loss function and algorithm used to train 
the model.

5b) Justification for the choice of model types implemented
With many different possible types of ML models to choose from, 
the choice of types to consider can be dependent on the intended 
scientific claim of a paper. For example, if a scientific claim aims to 
establish how predictive a set of features can be [e.g., (34, 139)], then 
it may be appropriate to consider a wide range of types—the most 
important criteria is the resulting accuracy of the fitted models. If 
the scientific claim aims to establish the potential usability of a model 
in practical settings, there may be additional desiderata. For exam-
ple, a model that is used in high-stakes settings like clinical decision-
making may need to be interpretable or explainable (140), so it may 
be more appropriate to choose a model type that is likelier to have 
these properties.

It is not always clear what the best type of model to use is for a 
given scientific question. For example, there is an active debate on 
how or if interpretability or explainability should be implemented in 
the context of different applications [see e.g., (141)]. Here, we ask 
authors to provide reasons for why the set of model types they 
implemented is appropriate.

The focus of this item is on the types of models considered, but 
some claims may depend on the choice of a specific fitted model 
(and its performance). The following items address the process of 
evaluating, selecting, and comparing specific fitted models.

5c) Model evaluation method
We ask authors to report details about the model evaluation proce-
dure. We include evaluation in this “modeling” module because 
evaluation is often used as part of the model selection process (see 
item 5d). That is, it is common to consider many models and select 
the best-performing one on the basis of the evaluation setup.

Evaluation of ML models must be done on test data separate 
from training data and any data that was used in model selection 
(see item 5d for details). To ensure reproducibility and verify validity, it 
is necessary to report how data were split and used. We ask authors 
to report how models are evaluated: For example, using a holdout 
test set, an external validation test set, or (nested) cross validation. 
We also ask for the sample size within each split of the data, including 
the number of samples of each class for classification tasks.

5d) Model selection method
There are many possible fitted models that can arise depending on 
specific choices in the modeling process. Even holding the type of 
model fixed, differences can arise because of the specific choice of 
hyperparameters, for example. Researchers should report how the 
final model(s) reported in a paper are selected.

A common goal of model selection is to select the model with the 
best performance on a hold-out set, but improper model selection 
can result in misleading performance (142, 143).

Testing multiple models on the holdout set and choosing the one 
with the best performance on the holdout set can result in an over-
optimistic estimate of performance. Neunhoeffer and Sternberg (76) 
consider this type of error in the context of political science, show-
ing how a study on civil war prediction conducted improper model 
selection. Similarly, if cross-validation (CV) is used in the model selec-
tion process, testing on the same data will result in an overoptimistic 
estimate of performance (144). To avoid this bias, a separate test set 
can be maintained, or when there is less data, nested CV can provide 
an alternative (142).

Model selection is not limited to choosing the model with the 
highest accuracy. Multiple models can achieve the same accuracy as 
one another yet make different predictions for the same individuals 
and have different characteristics regarding issues like fairness and 
interpretability. This phenomenon is known as predictive multiplicity 
(145, 146). Black et al. (147) provide guidance on opportunities and 
concerns that arise from such issues.

5e) Hyperparameter selection
Training procedures are often dependent on the choice of model 
hyperparameters, such as regularization weight, the number of training 
epochs, or the learning rate for a model. Similarly, hyperparameters 
can also be used to define the model space, such as the choice of 
activation function or the width of layers in an artificial neural network. 
The choice of hyperparameters is part of the model selection process.

In the context of natural language processing research, Dodge 
et al. (148) show that details about hyperparameter search affect the 
resulting accuracy. More resources devoted to searching over hyper-
parameters can improve performance substantially. Islam et  al. 
(149) show that because of variance in performance depending on 
hyperparameters, specific choices of hyperparameters can be mis-
leading when interpreting results. One method may perform better 
than another with one set of hyperparameters while performing 
worse given a different set of hyperparameters. Incorrect estimates 
of model performance due to hyperparameter optimization are 
especially concerning when comparing different models (150–152).

Last, note that the degree to which hyperparameter optimization 
affects results can vary depending on the model type (153). This may 
be a reason to prefer one model type over another.

5f) Appropriate baselines
It can be important to compare the performance of a model to base-
lines, especially when the scientific claim argues that a particular 
ML method can outperform existing approaches on a task. To clearly 
establish the performance of an ML model, it is necessary to detail 
how baseline models were trained and how the baseline methods are 
optimized. For example, if the baselines were not chosen using the 
same model selection methods, this could result in the baselines 
being “weak.” As a result, the apparent benefits of the new method 
may be misleading. Sculley et al. (24) and Lin (154) detail examples 
in which ML models were compared to weak baselines.

Lones (155) discusses how to compare models more broadly. See 
also item 7c: Appropriate statistical tests for a discussion on the use 
of statistical testing to compare models.

MODULE 6: DATA LEAKAGE
Leakage is a spurious relationship between the features and the 
target variable that arises as an artifact of the data collection, sampling, 
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preprocessing, or modeling steps. For example, normalizing features 
in the training and test data together leads to leakage because informa-
tion about the test data features is included in the training data (156).

Data leakage is a common error in the use of ML methods. Epic, 
a U.S. healthcare technology company, released a sepsis prediction 
model in hospitals nationwide. However, one of the features used in 
the model was whether a patient had been prescribed antibiotics. This 
is an error because antibiotics would typically be prescribed after the 
diagnosis of sepsis, so they act as a proxy for the outcome variable. 
Consequently, the model’s performance was inflated because of having 
access to information it would not have in a real-world scenario (157).

Leakage has caused widespread reproducibility errors in ML-
based science. In a survey of leakage across ML-based science, 
Kapoor and Narayanan (39) found that leakage affects hundreds of 
papers across 17 fields.

We ask authors to justify that their study does not suffer from major 
sources of leakage, which we elaborate on in this section. Kapoor and 
Narayanan (39) offer model info sheets to help detect and prevent 
leakage before publication. Our checklist focuses on the three main 
types of leakage in ML-based science found in their survey.

6a) Train-test separation is maintained
When information from the test set is used during the training process, 
it leads to overoptimistic performance results due to data leakage.

Not using a held-out test set is a textbook error in ML (158). Still, 
it is widespread. For example, Poldrack et al. (159) find that of the 
100 neuropsychiatry studies that claimed to predict patient outcomes, 
45 only reported in-sample statistical fit as evidence for predictive 
accuracy.

There can be other, more subtle variations of this error. For 
example, if the train-test split occurs after any of the other pre-
processing or modeling steps (Modules 4 and 5), this also results in 
leakage. Vandewiele et al. (78) found overoptimistic results in 21 papers 
that claimed to predict the risk of preterm births. These papers suf-
fered from the same error: oversampling data before partitioning it 
into training and test sets. This resulted in the test set becoming 
artificially similar to the training set and led to exaggerated performance 
claims across the literature on preterm risk prediction.

6b) Dependencies or duplicates between datasets
In some cases, samples in the dataset might have dependencies. For 
example, a clinical dataset might have many samples from the same 
patient. Oner et al. (160) find that when image data from the same 
patient is present in training and test sets, it leads to overoptimistic 
results. Similarly, for time-series forecasting models, randomly splitting 
a time-series dataset into training and test sets is likely to lead to 
overoptimism (161), because the training data has information 
“from the future” (162).

In such cases, the train-test split or CV split should take these 
dependencies into account—for instance, by including all samples 
from each patient in the same train-test split or CV fold. There are 
several ways to avoid these dependencies. Bergmeir and Benítez 
(163) find that blocked CV for time-series evaluation deals with 
temporal autocorrelation. Hammerla and Plotz (164) demonstrate 
how “neighborhood bias” can affect data recordings close in time. 
They introduce “meta-segmented CV” to deal with such dependen-
cies. Roberts et al. (165) describe block CV strategies for a number 
of structures with dependencies, including temporal, spatial, and 
hierarchical dependencies.

Duplicates in the datasets can also spread across training and test 
sets if the dataset is split randomly. This should be avoided, as it 
leaks information across the train-test split. Roberts et al. (15) 
outline this error with Frankenstein datasets: Datasets that combine 
multiple other sources of data can end up using the same data 
twice—for instance, if two datasets that rely on the same underlying 
data source are combined into a larger dataset.

6c) Feature legitimacy
If any of the features used in a model is a proxy for the outcome, this 
can result in leakage. Filho et al. (166) found that a prominent paper 
on hypertension prediction (167) suffered from data leakage due to 
illegitimate features. The model included the use of antihypertensive 
drugs as a feature to predict hypertension. However, this feature is 
not available when predicting whether a new patient suffers from 
hypertension in a clinical setting, so it artificially inflates the perfor-
mance of the ML model. Similarly, Epic’s sepsis prediction tool 
used “antibiotics” as a feature to predict whether someone would get 
sepsis (157).

This type of leakage is more likely when there are a large number 
of features, due to the increased likelihood of including one or more 
illegitimate features. The sheer volume of features can make it chal-
lenging to scrutinize each one for potential leakage.

MODULE 7: METRICS AND UNCERTAINTY QUANTIFICATION
The performance of ML models is key to the scientific claims of 
interest. Because authors can make many possible choices when 
choosing performance metrics, it is important to reason why the 
metrics used are appropriate for the task (8, 168). In addition, 
communicating and reasoning about uncertainty is important, but 
uncertainty is currently under-reported (169–173). For example, 
Simmonds et al. (38) find that studies often do not report the 
various kinds of uncertainty in the modeling process.

We ask authors to report their performance metrics and un-
certainty estimates for those metrics in enough detail to enable a 
judgment about whether they made valid choices for evaluating the 
model’s performance. The checklist requires authors to detail how 
they evaluate the performance of their model on its own and in relation 
to baselines. In addition, in this section, we ask authors to reason 
about their measurement of model performance and uncertainty in 
relation to their scientific claim.

7a) Performance metrics used
There are many possible ways to measure the performance of an 
ML model [see table 4 in (8) for an overview]. Certain metrics can 
be misleading or inappropriate. For example, accuracy might not 
be suitable to measure the performance of an ML model in the 
presence of heavy class imbalance: When most data points have 
positive labels, it is easy to obtain high accuracy simply by predict-
ing positive for all cases (174). Other common metrics, like area 
under the receiver operating characteristic (AUROC), also have 
limitations (175).

The proper choice of metric is often influenced by the particular 
application being studied. In some domains, certain errors may be 
more costly than others. For example, false positives are more costly 
than false negatives in email spam detection (176). We ask authors 
to justify the use of a particular performance metric in relation to 
the scientific claim.
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7b) Uncertainty estimates
Uncertainty in the performance of ML models can arise in many 
ways. For example, it could arise from randomness in the training 
data, evaluation data, or in the training process itself. Uncertainty is 
important to capture when evaluating the strength of a scientific 
claim. Because a dataset represents only a finite sample from a pop-
ulation, there is uncertainty in this sampling.

Research using ML methods can look to other areas of statistical 
practice for existing methods for quantifying uncertainty. For ex-
ample, diagnostic testing in medicine is directly analogous to super-
vised classification, and so biostatistical methods for such settings 
(177) are broadly applicable. Beyond binomial proportion confidence 
intervals, such methods include McNemar’s test, as well as analytic 
approaches for sample size calculations (particularly relevant for 
seeing whether there is sufficient power to audit for differential 
performance among subpopulations). Where methods do not exist, 
bootstrapping within the test set can be used to generate confidence 
intervals for performance claims (142).

Uncertainty in the performance of ML models can also affect 
downstream use of these labels in scientific inquiry. Angelopoulos 
et al. (173) show how this uncertainty can be propagated to subse-
quent analyses.

In a systematic review of uncertainty quantification across seven 
scientific fields, Simmonds et al. (38) found that scientific fields differ 
in what kinds of uncertainty they report. They propose best practices 
and a checklist to help researchers account for uncertainty.

7c) Appropriate statistical tests
Comparing the performance of different models can be key to some 
scientific claims. For example, a scientific claim may argue that one 
ML method outperforms others. Statistical testing is one tool to 
evaluate such differences in performance. Raschka (142) gives an 
overview of statistical tests for ML models. Still, in some or even 
most cases, an appropriate and valid statistical test may not be 
known; this can be an area for further development. The reliance on 
statistical significance testing has also led to misinterpretations and 
false conclusions. As a result, reporting uncertainty is better than 
performing statistical tests alone (178). Still, if a statistical test must 
be performed, it should be appropriate for the comparison.

MODULE 8: GENERALIZABILITY AND LIMITATIONS
External validity (or “generalizability”) refers to the extent to which 
the findings from a study’s sample apply to the target population, as 
well as the extent to which the findings apply to other populations, 
outcomes, and contexts (179, 180).

ML-based science faces a number of threats to external validity 
(13, 181). Because studies that use ML methods are often unaccompa-
nied by external (i.e., out-of-distribution) validation (182), it is im-
portant to reason about these threats. In addition, authors are best 
positioned to identify the boundaries of applicability of their claims 
to prevent misunderstandings about the claims made in their study.

External validity of three types of claims in ML-based science
We distinguish among three types of external validity, corresponding 
to three types of claims made in ML-based science.
External validity of claims about observed patterns
In some studies, researchers use ML methods to make a claim about 
the presence of a pattern in the world. For example, Mathur et al. use 

structural topic modeling to study manipulative tactics in a corpus 
of U.S. political campaign emails from the 2020 election cycle. One 
of their findings is that the median active sender of campaign emails 
uses “sensationalist clickbait” in 37% of those emails (183). A ques-
tion about the external validity of this claim might be: Is the fre-
quency of sensationalist clickbait in campaign emails similar in 
other U.S. election cycles?
External validity of claims about fitted models
A “model” is a function that an algorithm learns when the algorithm 
is applied to data (184). In some studies, researchers train an ML 
model and make a claim about the model’s performance when 
deployed in real-world settings. For example, Dugas et al. build a 
model to forecast influenza outbreaks at the city level using Google 
Flu Trends and other readily accessible data, with the goal that the 
model can be deployed by medical centers to provide warning of 
upcoming outbreaks. They find that “the model, on the average, 
predicts weekly influenza cases during 7 out-of-sample outbreaks 
within 7 cases for 83% of estimates” (p. 1) (185). A question about 
the external validity of their claim, which they note in their discus-
sion, is: Does the model achieve similar performance in other years? 
External validity of claims about fitted models is more widely known 
as “domain generalization” or “robustness to distribution shift” and 
is a well-studied phenomenon in ML (186, 187).
External validity of claims about learning algorithms
An “algorithm” is a procedure for learning from data (184). In some 
studies, researchers make a claim about the usefulness of ML 
algorithms in a particular context. For example, Bansak et al. (188) 
develop an ML algorithm to assign refugees to resettlement sites by 
“leverag[ing] synergies between refugee characteristics and resettlement 
sites.” They test the algorithm in retrospective data from the United 
States and Switzerland and find that their “approach led to gains of 
roughly 40 to 70%, on average, in refugees’ employment outcomes 
relative to current assignment practices” (p. 1). They claim that gov-
ernments can use this algorithmic assignment approach to improve 
resettlement outcomes for refugees. However, unlike the influenza 
forecasting example above, they do not claim that the specific model 
they trained can be deployed directly into use. A question about 
external validity of their claim might be: Does algorithmic assign-
ment of refugee resettlement locations work similarly well for other 
time periods?

Reporting on external validity falls short in past literature
Reviews of past literature have found that scientific papers some-
times lack discussion about external validity (59) or lack information 
about sample demographics that would help readers draw their own 
conclusions about external validity (189). Furthermore, many ML-
based studies make claims about the ability of a model to deploy in 
real-world settings but do not report whether their evaluation 
sample matches the population in the real-world setting (189) and 
do not conduct external validation (189, 190).

8a) Evidence of external validity
In this checklist item, we ask researchers to discuss the ability to 
generalize their claims from the sample to the target population and 
to other populations, outcomes, or contexts. Researchers can use a 
mix of quantitative and theoretical approaches to make arguments 
regarding their findings’ external validity. They can report quantitative 
evidence by testing their claims in out-of-distribution data. They can 
make theoretical arguments about their expectations of external 
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validity by referring to prior literature and reasoning about the level 
of similarity between contexts (60).

Several threats to the external validity of ML models have been 
documented in past literature. Finlayson et al. (191) outline external 
validity failures due to dataset shifts in clinical settings. Hullman et al. 
(13) discuss the threats to external validity that arise in different 
phases of an ML research project. Liao et al. (182) outline a taxonomy 
of evaluation failures in ML, including failures in external validity. 
Geirhos et al. (56) discuss the phenomenon of shortcut learning in 
ML models, a phenomenon where models rely on shortcuts (such as 
the background color in an image) instead of detecting patterns that 
actually relate to the phenomena of interest.

Researchers who make claims about fitted models should be 
aware that even if their model currently generalizes to their target 
population, that performance may degrade over time because of 
temporal distribution shift (or “temporal drift”). Causes of temporal 
drift include changes in technology, changes in population and 
setting, and changes in behavior (191). Concerns about the risk of 
drift should be communicated in the paper, when applicable.

8b) Contexts in which the authors do not expect the study’s 
findings to hold
Clarifying the circumstances under which scientific conclusions or 
model performance are not expected to hold helps to set clear 
expectations and avoid unjustified hype. Raji et al. (181) find that 
flaws in ML models deployed in real-world settings stem in part 
from a lack of focus on identifying when models are not expected to 
work. Simons et al. (60) argue that making an explicit “constraints 
on generality” statement that identifies boundaries of the circum-
stances where findings are expected to hold has several benefits, 
including helping to ensure that a study’s conclusions accurately 
reflect its evidence, increasing the likelihood of successful replica-
tion, and inspiring follow-up studies that test the findings in new 
populations.

CONCLUSION
ML methods present an exciting advance for scientific research. 
Done right, they can allow researchers to analyze complex data and 
work with modalities such as images and video. Yet, recent failures 
of ML-based science reveal the urgent necessity of improving 
standards of transparency across fields that use ML methods. Our 
paper provides a cross-disciplinary bar for conducting and reporting 
ML-based science.
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