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Abstract

The SARS-CoV-2 genome occupies a unique place in infection biology – it is the most highly
sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale
information on sampling date and geography, and has been subject to unprecedented intense
analysis. As a result, these phylogenetic data are an incredibly valuable resource for science
and public health. However, the vast majority of the data was sequenced by tiling amplicons
across the full genome, with amplicon schemes that changed over the pandemic as mutations in
the viral genome interacted with primer binding sites. In combination with the disparate set of
genome assembly workflows and lack of consistent quality control (QC) processes, the current
genomes have many systematic errors that have evolved with the virus and amplicon schemes.
These errors have significant impacts on the phylogeny, and therefore over the last few years,
many thousands of hours of researchers time has been spent in “eyeballing” trees, looking for
artefacts, and then patching the tree.

Given the huge value of this dataset, we therefore set out to reprocess the complete set of
public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny.
Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of
high quality consensus sequences from all available public data as of March 2023, viewable at
https://viridian.taxonium.org. Each genome was constructed using a novel assembly
tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically
to process amplicon sequence data, eliminating artefactual errors and mask the genome at low
quality positions. We provide simulation and empirical validation of the methodology, and
quantify the improvement in the phylogeny.

Phase 2 of our project will address the fact that the data in the public archives is heavily
geographically biased towards the Global North. We therefore have contributed new raw data to
ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina
and Singapore. We will incorporate these, along with all public raw data submitted between
March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope
the tree, consensus sequences and Viridian will be a valuable resource for researchers.

Introduction

On the eve of the SARS-CoV-2 pandemic, had one commissioned a poll of phylogeneticists
on whether their methods were adequate for current public health needs, the overall response
would have been in the affirmative. At that point, most people were analysing relatively small
datasets (N<5000), usually carefully curated and generally studied by people working closely
with those obtaining and processing the clinical samples, or indirectly, via national public health
organisations. Data were usually small, clean, and there was limited urgency. One year later, all
of these statements would no longer be true. The SARS-CoV-2 pandemic placed unprecedented
strains on the genomics and bioinformatics communities in terms of scale, turnaround time,
and coordination. In every dimension, tools and systems were pushed far beyond expectations.
Despite significant efforts and innovations, numerous steps in the process (i.e. from patient to
global phylogenies and dashboards) required prioritizing speed and practicality over absolute
accuracy. This was the right thing to do at the time as it enabled real-time management
decisions to be taken. However, since there was no unified genome assembly or QC process, the
end result has been that the set of SARS-CoV-2 genomes, on which future evolutionary and
vaccine analyses will be based, contain a large number of systematic errors [1, 2]. The goal of
this study is to re-assemble all publicly available SARS-CoV-2 raw sequence data with a single
analysis workflow to remove the vast majority of these errors, thereby building a higher quality
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Figure 1: Assemblers which wrongly default to the reference base in the absence of
data cause reversions in the phylogeny. a) Cartoon phylogeny built from perfect genomes,
with leaves coloured by genotype at a specific position X (purple - ancestral base, green - derived
base). Just one mutation at this site, shown as a white star, is needed to explain the data. b)
Cartoon showing the effect of assembly software assuming that a genome is identical to the
reference genome when there is no data - here the amplicon containing position X is dropped in
the lowest-but-one genome on the tree, creating one lone purple leaf. The tool which infers the
phylogeny looks for a parsimonious explanation for this colour distribution, and concludes it was
caused by a mutation (white star) followed by a “reversion” back to the ancestral base (red star).
Errors in assembly caused by reference-bias tend to create enrichments of reversions. c) Part
of the current UShER SARS-CoV-2 phylogeny, coloured by genotype at genome position 22813
(spike codon 417). Blow-up shows multiple reversions back to the ancestral purple. A non-
exhaustive set of artefactual mutations (reversions, unreversions, re-reversions etc) are shown
with red stars, where there is a flip back and forth from green to/from purple.

phylogenetic tree for all our benefit.
Unlike the sequencing of bacterial genomes after culture (where the details of sequencing

and assembly can stay the same over reasonably long periods) the specifics of viral sequencing
and assembly during the pandemic had to keep changing, as we describe below. This resulted in
a myriad of inconsistencies across the globe, and errors in consensus sequences. A fundamental
constraint on sequencing of SARS-CoV-2 was the fact that viral load in patient samples was
generally very low and highly variable, as a result of which the most common way to sequence
was via tiled amplicons (as had been done previously for other viruses [3]). Here, the genome is
divided into overlapping “tiles”, each of which is independently PCR-amplified , guided by PCR
primers at either end of the tile. That this was possible at all was thanks to two things: the early
release of the genome sequence [4, 5], and Quick et al’s rapid production of a set of primers,
the first “ARTIC” (acronym referring to a consortium) primer scheme [6]. A feature of any
tiled amplicon scheme is that, as the virus evolves, eventually mutations within primer-binding
sites will lead to failed amplification of the associated tile, creating gaps in the genome sequence
data (“dropouts”). This is to be expected and necessitates the development of an updated
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scheme with new primers. Additionally, many genome assembly software pipelines implicitly
made the false assumption that in the absence of data (no reads from an amplicon) one should
infer the sequence as being that of the reference genome, which in the case of SARS-CoV-2 is
also the ancestral sequence. Thus at various points during the pandemic, researchers analysing
the phylogeny would find a sudden crop of genomes “reverting to the ancestor”.

In Figure 1a we show part of a tree with the leaves coloured to show what base that genome
has at a specific position – purple for the ancestral base, and green for the derived (new) base
caused by a mutation shown as a white star. One single mutation explains that data. In
Figure 1b, we show the impact of wrongly assigning the ancestral base at the lowest-but-one
leaf (fourth purple down). Here, the most parsimonious way to explain this is with a second
mutation (red star) “reverting” back to the ancestral purple. In Figure 1c we show part of
the global SARS-CoV-2 phylogeny hosted at taxonium.org (accessed 9th April 2024), zoomed
in to show where Omicron branches from the ancestor. Leaves are coloured by the genotype of
genome position 22813 (codon 417) in the spike gene (again purple is ancestral). In the blow-up
we see within the green (Omicron) clade, a striking spray of purple that does not sit cleanly in
any subclade. Patterns like this are in general more likely to be due to assembly artefact than
multiple independent reversions. Such errors can have considerable impact on our inferences
about the underlying biology - in this case K417N is a mutation that affects antibody escape
[7], and systematic errors like this can lead to misinterpretation. However, although one can use
a reversion count as a metric of whether we suspect there are assembly problems, reversions are
not always errors. For example SARS-CoV-2 has a C to T mutation bias [8, 9] (strictly a C to
U, as it is an RNA virus, but we convert to DNA space for phylogenetics), so if you have a T to
C mutation on a phylogenetic branch leading to a large clade, you may expect to see multiple
reversions back to T in that clade.

There are a number of other possible technical artefacts that can arise (e.g. primer dimers
[10], interactions between amplicons [17], or primers binding in non-canonical sites [15]) which
should be expected and handled, otherwise additional errors will result. Unfortunately, these
errors often correlated with individual sequencing centres, which themselves correlated with local
prevalence of particular lineages at particular times. In addition, where amplicon dropout was
incomplete, the likelihood of wrongly imputing the reference genome at a particular position
becomes a function of decreasing amounts of sample RNA, creating a false relationship between
genotype and viral load [14].

Because of amplicon dropouts, as the pandemic progressed and sequential waves of Variants
of Concern (VOCs) arose, the ARTIC primer scheme was updated multiple times to restore
amplification, as well as a slew of alternative options (Midnight [18], AmpliSeq (Thermo Fisher
Scientific), VarSkip (https://github.com/nebiolabs/VarSkip, etc). Each VOC wave brought
mutations in primer bindings sites leading to amplicon dropouts, and a subsequent wave of
artefacts in genomes as these were mishandled (see Figure 2). New amplicon schemes were then
introduced, and gradually taken up, solving previous dropout problems, but also followed by
smaller waves of new artefacts in the genomes, sometimes caused by primers not being correctly
trimmed and being incorporated into assemblies. It is no exaggeration to say that since this issue
was first raised [2], thousands of person-hours of time have been spent manually looking through
trees and genomes trying to decide if strange phenomena are artefacts or not. Some of us (RCD,
AH) have been maintaining the global phylogenetic tree of SARS-CoV-2 since 2021 [19], and
the only way we have been able to maintain the integrity of the tree has been to a) completely
mask 150 nucleotide positions in the genome, as they are systematically too often wrong to
ever be trusted, and b) systematically mask (ie ignore) certain mutations on specific branches
of the tree. As artefacts ebbed and flowed, and were discovered by analysts, the masking had
to be updated (see Figure 2 and Supplementary Figure S1). After the mammoth global efforts
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Figure 2: Timeline of the SARS-CoV-2 pandemic from December 2019 to July 2023, with
selected events relating to problems with sequencing and consensus calling labelled a-e. Releases
of ARTIC primers schemes (versions 1, 2, 3, 4, 4.1, 5.3.2) are marked with green triangles. a)
Primer dimers cause amplicon dropouts [10] and 28% of GISAID [11] sequences deposited in
September 2020 have at least one gap of length at least 200bp [12]. b) A 9bp deletion in the
primer binding region of ARTIC V3 amplicon 73 causes missing data [13]. c) Dropouts causing
artefacts at Spike 95 and 142 [14]. d) ARTIC v4 roll out triggers artifactual mutations in some
pipelines [15]. e) Omicron samples cause ARTIC v4 amplicon dropout, triggering the update to
ARTIC v4.1 [16].

to sequence and collate these SARS-CoV-2 genomes, the richest dataset of any pathogen to
date, it is critical to now reprocess and clean this data, providing a firm foundation for future
discoveries.

As of March 2023, there were approximately 5.3 million SARS-CoV-2 raw sequence datasets
deposited in the SRA/ENA, very few of which had metadata recording the primer scheme and
the assembly pipeline used (data from COG-UK being a notable but geographically localised
exception). In this paper we will describe our amplicon-aware assembly and QC processes,
reprocessed these genomes and measured the improvements in the genomes and phylogeny, and
provide these data as a resource for the whole community.

Results

We set out to reprocess all available SARS-CoV-2 sequence read data, generating new consensus
genomes through an assembly workflow designed for tiled amplicon schemes with a rigorous
quality-control process, and thereby build a global phylogeny that minimizes the need for mask-
ing unreliable parts of the genome and tree.

To this end, we created Viridian, an efficient amplicon-aware assembler to consistently handle
Illumina, Oxford Nanopore, and Ion Torrent reads. Since publicly shared sequence data does not
generally have metadata logging the primer scheme used, Viridian first identifies the amplicon
scheme from the input reads. In light of this, with knowledge of where primers bind, it then
makes consensus sequences for each amplicon by building a partial-order alignment graph of the
reads using Racon [20], an approach which will detect indels more robustly than one based on
pileups. Viridian then merges the per-amplicon consensuses into a single consensus and calls
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variants. To evaluate the confidence of each position in this consensus, it remaps the reads to
the consensus, identifies unsupported positions, and using this, finally outputs a high quality
sequence that has low quality bases masked. The emphasis throughout is on minimising errors,
in particular where amplicon primers bind, producing a consensus sequence where all unmasked
positions should be correct.

We performed three evaluations of Viridian against two existing ARTIC workflow implemen-
tations: ARTIC-ILM (for Illumina) and ARTIC-ONT (for Nanopore) (see Methods). The data
used were 1) simulated data, 2) a “truth set” of 67 runs from 27 isolates with known results,
and 3) a larger dataset (N=12287, “Early Omicron”) from multiple countries in Africa from
November 2021 to March 2022 that includes the emergence of the Omicron variant.

Primer Scheme identification

We first evaluated our method for identifying primer schemes (see Methods) using two datasets
where we knew the correct primer scheme – these consisted of 8,000 simulated genomes and 67
curated truth genomes. There were zero errors. We then used 2,341,118 Illumina and 122,410
Oxford Nanopore samples where the ENA/SRA metadata had an ARTIC primer scheme version
entry of 3 or 4, and compared with the call from Viridian (Supplementary tables 1,2). There was
99.7% agreement for Illumina and 98.2% for Oxford Nanopore samples. A manual investigation
of a subset (N=20) of the discordances concluded that the remaining errors were likely metadata
errors in the ENA/SRA: in 19/20 cases, the pileups were categorical that Viridian was correct,
and in the remaining one, the data were inconclusive (supplementary text and Figures S2-6).
Note that both the truth set and the ENA/SRA data contain samples where tagmentation
during the library preparation caused fragmented reads, confirming the method worked there
too.

Simulations

We simulated a SARS-CoV-2 tree of 8,000 genomes, including SNP errors in primers and ampli-
con dropouts. Illumina and Nanopore reads were simulated from each genome, from simulated
amplicons using the ARTIC v4 scheme. To evaluate the accuracy of resulting consensus se-
quences from ARTIC-ILM, ARTIC-ONT, and Viridian, a novel pipeline was developed called
CTE (covid truth evaluation, see Methods), which evaluates each consensus sequence using the
truth to classify each position in the genome as correct or as an error. Results were highly
consistent across all tools and amplicon schemes (Supplementary Tables S3a-d). Although there
were overall very few errors, ARTIC-ONT had notably more indel errors than Viridian (Supple-
mentary Tables S3c,d).

Empirical truth dataset

The tools were compared on a truth dataset of 67 high quality sequencing runs from 28 samples,
comprising a mix of Illumina and Nanopore reads, and ARTIC (v3, v4, v4.1) and Midnight
amplicon schemes. The truth, including all expected SNPs in all runs, was determined by
manual inspection of reads mapped to the reference genome. Similarly to the simulations, all
tools performed well, with few errors (Supplementary Tables S4,5), and Viridian performing
better with respect to indels on Nanopore data (Supplementary Table S5e,f). We measured the
peak RAM and total CPU time of each truth set run. Viridian had mean peak RAM usage
of 444MB and mean CPU time 154s, whereas ARTIC-ILM and ARTIC-ONT used 1.45GB of
RAM and took 366s, and 1.80GB of RAM, and took 561s respectively (Supplementary Table
S6, Supplementary Figure S7).
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African “Early Omicron” dataset

Next we evaluated our own empirical dataset, sequenced and assembled at CERI in South
Africa, with samples from November 2021 to March 2022, including Variants of Concern Alpha,
Beta and Delta, and also encompassing the emergence of the Omicron variant. The 12,287
samples were from South Africa (N=8,645), Angola (N=957), Mozambique (N=619), Mauri-
tius (N=488), Malawi (N=480), Cameroon (N=344), Zimbabwe (N=333), Ethiopia (N=232),
Uganda (N=102), Namibia (N=83) (and 4 with unknown country), and include Illumina
(N=9,935) and Nanopore (N=2,352) runs, using either ARTIC (N=11,070 including versions
3,4, and 4.1) or Midnight (N=1,217) amplicon schemes (Supplementary Table S7). Each sam-
ple was processed with Viridian and ARTIC-ILM/ARTIC-ONT as appropriate, and the results
compared with our original assemblies [21] which have previously been shared to the UShER
[22, 23] SARS-CoV-2 phylogeny via GISAID. We scanned all positions in all consensus as-
semblies for “hard errors”, where the majority of the reads disagreed with the consensus (for
example the consensus called an A but most reads say G, see Methods). We found system-
atic positional errors (which were specific to primer scheme and sequencing technology) in the
original consensuses and the ARTIC-ONT assemblies. The errors were significantly reduced in
the ARTIC-ILM workflow although some did remain. By contrast the errors were completely
removed by Viridian. This is summarised in Figure 3.

Assembly and evaluation of the global data

We processed all Illumina, Nanopore and Ion Torrent SARS-CoV-2 sequencing runs from the
ENA/SRA as of 2nd March 2023, keeping all 3,960,704 that passed QC (see Methods) and
produced a consensus sequence using Viridian. We also obtained all matching entries from
GenBank, giving an “intersection set” of 3,311,456 samples with both a Viridian and GenBank
consensus sequence. We then built a tree of each of these three data sets – all 3,960,704 Viridian
sequences, Intersection/Viridian (i.e. the Viridian assemblies of the intersection set), and Inter-
section/GenBank (i.e. the GenBank assemblies of the intersection set) – using MAFFT [24] and
UShER (reverting deletions to the ancestral sequence and excluding insertions, see Methods).
Note that these trees

a) are built from unmasked consensus genomes, unlike the current UShER global SARS-
CoV-2 phylogeny, which pre-masks a list of “Problematic Sites” in the genome where the
community has determined assemblies may be unreliable, and

b) do not have any forcible masking of particular mutations on the branches of specific Vari-
ants of Concern, unlike the current public SARS-CoV-2 tree.

To assess the improvement in accuracy of a tree built from Viridian sequences, we next compared
the Viridian and GenBank intersection set trees.

Ns and Pango assignment

A scatterplot comparing the number of Ns in the Viridian versus GenBank assemblies (Supple-
mentary HTML file) showed very little correlation, and a strong enrichment of points where there
were many more Ns in the Viridian assembly – N=1,604,389 (53.4%) of GenBank assemblies
had no Ns, compared to N=1,197,638 (39.8%) of Viridian assemblies. There were more Ns in the
GenBank assembly for 9% of samples versus 49% samples with more Ns in the Viridian assem-
bly; of those samples with more Ns in the Viridian assembly, 29% had zero Ns in the GenBank
assembly. This is consistent with the known issue that for some software pipelines, portions of
the reference sequence had been used to fill in dropouts for a large number of sequences, and this
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Figure 3: Errors across the genome in consensus sequences from the “Early Omi-
cron” African dataset, split by sequencing technology and amplicon scheme. Plots
show the percent of consensus sequences with an error (y-axis), taking the maximum value in
windows of length 50bp (x-axis). Error here is defined as where the consensus sequence has
an A/C/G/T call, the read depth passes Viridian’s default filters (see methods), and the reads
support a different A/C/G/T call. Results are shown for Viridian, the original assemblies, and
for the ARTIC-ILM and ARTIC-ONT assembly workflows.

effect alone will have been a significant cause of reversions in the tree. Nevertheless, analysis at
the lineage level using Pangolin showed very strong agreement, with only 0.98% (N=29,475) of
samples having discordant assignments. Of the mismatches, the majority (77%) were parent-
child, with Viridian assembly the child (i.e. more specific) in 60% of those. Only 0.01% (N=287)
mismatched at the variant level. No Viridian assembly was “Unassigned”, compared with 87
of the GenBank assemblies. Analysis of the results by collection date, country, technology and
primer scheme revealed no category enriched for disagreements.

Indel calls

In samples where Viridian and GenBank assemblies result in the same Pangolin variant, indel
calls are generally concordant and either very dominant or very rare. The characterising insertion
of TAC after position 21990 (S:YY144–145TSN) in Mu is an exception, found in 90% of Viridian
assemblies but only 60% of GenBank assemblies. In samples where Viridian/GenBank have
mismatched WHO variant calls, we see fewer indels per sample in GenBank versus Viridian
(Supplementary HTML File). Notable differences at variant-defining indel sites – in particular,
for samples assigned Delta for the Viridian assembly and Omicron for the GenBank assembly,
we see two Delta-defining indels that are present in the Viridian assemblies, but absent in
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Figure 4: Most variable sites cause fewer reversions in the Viridian tree than the
GenBank tree. a) Plot showing how many positions in the genome (y axis) have at least
N reversions (x axis) in each tree (Viridian in blue, GenBank in red). Viridian curve drops
faster, having fewer positions that create many reversions. b) Scatterplot comparing count of
reversion mutations found in GenBank Dataset (y axis) and Viridian dataset (x axis). Note
(0,0) is slightly indented from the origin of the plot. Each point represents a position of the
SARS-CoV-2 genome. Three points below the line y=x are highlighted (labelled by genomic
coordinates: 22786, 8835, 15521) where Viridian has particularly high numbers of reversions,
and one (labelled 21987) for GenBank. c) Blow up of dotted square from panel b) showing vast
majority of variable sites in the genome lie above the line y=x.

the GenBank assemblies. We show in Supplementary Figure S8 those positions where there is
discordance between Viridian and GenBank.

11

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.591666doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591666
http://creativecommons.org/licenses/by/4.0/


Reversions

One of the key signals of artefactual problems used during the pandemic, was finding positions
in the genome (or branches of the tree) with very large numbers of reversions. We therefore
used Matutils [19] and custom scripts to count the number of reversions in both trees, and plot
this in two ways. In Figure 4a, we show one minus the cumulative density function of reversions
in the two trees, showing that the Viridian tree has far fewer positions with many reversions.
To understand which positions are problematic, in Figure 4b we show a scatter plot comparing
number of reversions at each position of the genome, in the Viridian and GenBank trees, with a
blow-up of the central region in Figure 4c. The main issue for phylogenetic analysis is positions
with large numbers of reversions, so we care more about the graph away from the origin. We see
that apart from a handful of positions far to the right and below the line y=x, all positions have
fewer reversions in the Viridian tree. In other words, a smaller set of positions can be masked in
the Viridian tree than in the GenBank tree in order to greatly reduce the number of reversions.
For example, the Genbank tree has 63 positions with 200 or more reversions, while the Viridian
tree has only 20. See also Supplementary Figure S9 for the specific example of genome position
22813 (introduced earlier in Figure 1), comparing the current UShER global phylogeny with the
Viridian tree.

Final global tree and masking

Our final global tree of the Viridian consensus sequences contains 3,960,704 samples. Tree
construction was done, as is normal with UShER, by batching the samples, and then alternating
adding a batch to the tree and optimising the tree. In the process of doing this, we noted how the
order in which samples were passed to UShER had a very significant effect on the deep structure
of the tree. Passing them in in random order resulted in the initial tree being constructed with
recombinant genomes, resulting in considerable misplacement of the VOCs. We determined that
the best approach was first to construct a tree with samples with no missing data, passed in in
temporal order, then to add lower quality samples later (see Methods). After constructing the
tree, we masked positions in the Problematic Sites set, which includes highly homoplasic sites
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Figure 5: Cumulative Distribution of the number of samples in USA stratified by cluster size.
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Figure 6: Comparison of Alpha variant mutational spectra calculated using (a) the August
2022 UShER tree [26] and (b) the Viridian tree. Colours show different mutation types (for
example C mutating to T, labelled as C>T) and bars show individual surrounding contexts
(for example an upstream A and a downstream A). Spectra are rescaled by the availability of
the starting nucleotide triplet. The arrow shows a contextual mutation that is unexpectedly
elevated in the August 2022 UShER tree; this elevation is not present in the Viridian tree.

in addition to sites previously observed to be reversion-prone in SARS-CoV-2, and masked 31
reversions that occurred 200 or more times in the tree - this choice of 200 allowed us to exclude
position 11083 (highly homoplasic, and one of the first Problematic Sites), but did not include
23040 where there have been true reversions multiple times in Omicron. After masking, we ran
matOptimize [25] to improve the structure of the tree in the absence of artefactual reversions
and highly homoplasic sites.

Impact on evolutionary and epidemiological analysis

The primary aim of this study is to provide a high quality resource (assemblies and phylogeny),
with less “ad hoc masking”, with the intention that it reduces systematic error and noise in
downstream work of others. We give two example applications.

First, in order to estimate the effect of the reduced number of sequence/assembly artefacts
in the Viridian assemblies on epidemiological analysis, we used geographic metadata for each
sample and a pandemic-scale cluster estimation algorithm (matUtils, Cluster-Tracker [27]), to
compare the number of inferred unique SARS-CoV-2 viral introductions in each country using
the GenBank and Viridian data (Supplementary Table S8). The expectation would be that
removing artefactual errors would reduce the number of small clusters, caused by errors pushing
genomes out of the larger clusters they truly belong in, creating artificial “introductions”. We
found, for every country except Slovakia, there were more inferred introductions with the Gen-
Bank assemblies. The effect is more pronounced in highly sampled geographic regions, especially

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.591666doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591666
http://creativecommons.org/licenses/by/4.0/


the United States (15,026 versus 13,626 introductions and 7,281 versus 6,676 singleton clusters
for GenBank vs Viridian); see Figure 5. As predicted, we see fewer small introductions with
Viridian, and at the far right (note log scales) the very largest clusters are slightly larger.

Secondly, we quantified the extent to which the higher quality assemblies would affect es-
timates of differing mutational spectra of different Variants of Concern [26]. In all cases the
spectra were very similar (i.e. the effect was limited), but interestingly in Alpha there had been
an odd T>A context (labelled with an arrow in Figure 6a) that was elevated above all others
with the August 2022 UShER tree, which was gone in the Viridian data (Figure 6b).

The difference in G>T mutations that had been observed previously between Omicron and
non-Omicron is still very much present; see Supplementary Figure S10 – confidence intervals
(shown as error bars) do not always overlap the x=y line, so there are minor differences in the
exact values but the overall trend and conclusions are unchanged.

Discussion

The pandemic was met with an unprecedented globally-distributed sequencing effort that im-
posed substantial challenges for comparing and jointly analyzing data produced by thousands
of labs with heterogeneous sampling, molecular, bioinformatic, and analysis protocols. In par-
ticular, the downstream effect of using multiple variable-quality genome assembly workflows,
inconsistent QC criteria, and the inevitable co-evolution of virus and amplicon schemas, led to
systematic errors in genomes, and therefore the phylogeny.

Here we present Viridian, a fast, low resource viral assembly tool specifically designed for
tiled amplicon data and use it to produce a high quality sequence dataset of all publicly deposited
SARS-CoV-2 data from January 2020 through to March 2023. With this we were able to build
a much higher quality phylogenetic tree, needing less masking, than the current phylogeny.

We hope for three outcomes. First, that this resource will provide a valuable substrate for
detailed evolutionary and epidemiological analyses. Second, that Viridian itself will prove useful,
providing a significant improvement for Nanopore (and marginal for Illumina) compared with the
ARTIC workflow, and a standardised single workflow and output format for Illumina, Nanopore
and Ion torrent. Third, that in future epidemics or pandemics, the tools and ideas from this
paper will serve to reduce the amount of time spent poring over trees and trying to distinguish
artefact from biology. Viridian will work for tiled amplicon sequencing of non-segmented viruses
where a consensus is the desired output (i.e. not in circumstances where multiple strains should
be identified) and a single reference can be used. In other words, situations where there is limited
structural variation or hypervariability, such as a particular outbreak, or a recent zoonosis (eg
SARS-CoV-2).

We note that a similar approach (amplicon-by-amplicon assembly followed by remapping
for QC) has been previously used for HIV (https://github.com/neherlab/hivwholeseq?
tab=readme-ov-file#1-mappingfiltering-sample-by-sample). An alternative approach,
more robust to handling hypervariable regions, is to do amplicon assembly followed by de novo
scaffolding of amplicons without use of a reference. This method was implemented in the tool
Lilo, used for African Swine Fever Virus [28].

Despite all this, bioinformatic methods can only go so far. Quality control within a single
lab is relatively easy, especially if one can use molecular protocols, such as negative controls and
using synthetic spike-ins [29]. However, maintaining quality levels from distributed sequencing
and assembly on a national and global scale is much harder. Our approach (uniform reprocessing)
is actually the simplest, providing the raw data remains available. However, it is not a viable
approach mid-pandemic when there is barely enough time to keep up with incoming data. We
therefore advocate for improved standardisation (and adoption) of metadata around sampling,
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Sample status

In Viridian tree

New

Figure 7: Geographical distribution of samples in this and the next release. Numbers
show the total number of samples for each country, excluding QC failures. The proportion
coloured green represents samples already included in the global Viridian tree (from our data
freeze in March 2023). Blue shows new samples retrieved from the ENA/SRA on 19th March
2024 that are not in the tree, but will be included in the next update to this study. See
Supplementary Figure S11 for the per-country counts of Europe. Only countries with a total of
at least 100 samples are shown.

assembly and QC, and also multinational “simulations” of pandemics to better prepare for
integrating data from different pipelines.

Returning to our project, since the data in the ENA/SRA is heavily biased towards a few
high income countries (especially USA and UK), we realised it was important to increase the
geographical breadth of our dataset, and reached out to scientists around the globe inviting them
to join our collaboration. This preprint represents Phase 1 of this project. Our team has now
submitted pre-existing raw sequence data to the ENA/SRA from Austria, Germany, Ghana,
India, Netherlands, South Africa and Sri Lanka. Once the final submissions (from Argentina,
Laos, and Singapore) have arrived, we will process all data in the ENA/SRA (taking us up
to mid 2024) and make a new release (and update this paper). The worldwide distribution of
samples is shown in Figure 7, and a breakdown of Europe is in Supplementary Figure S11 (raw
data is in Supplementary Table S9).

The pandemic was a global catastrophe with a huge cost in life, and the immense efforts
of health professionals on the front lines, public health officials and the (sometimes ad hoc)
networks of scientists and bioinformaticians has left many exhausted. However it is also a story
of tremendous achievement and solidarity. In doing this work and building this collaboration, it
has been striking how everyone has been determined to make the most of this vast resource of
SARS-CoV-2 genomic data and build the cleanest and most correct assemblies and phylogeny
as possible, to the benefit of us all. It has been a privilege to work together to produce these
high quality resources, which was only possible because raw sequence data was deposited in the
ENA/SRA.
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Figure 8: Overview of the Viridian pipeline, from input sequencing reads to output files.

Methods

Viridian pipeline

The main stages of the assembly process are: identify the amplicon scheme; sample the reads
per amplicon; generate a consensus sequence by overlapping a consensus built for each amplicon;
determine variants by aligning the consensus to the reference sequence; mask low quality bases
using read mapping to the consensus, to output a final masked consensus sequence. An overview
of the pipeline is shown in Figure 8.

Amplicon scheme identification. The amplicon scheme is automatically identified from
the reads, from the built-in set of schemes (users can optionally add their own): AmpliSeq
v1; ARTIC versions 3, 4.1, 5.3.2 400, 5.2.0 1200 [30]; Midnight 1200 [18]; and VarSkip v1a-2b
(https://github.com/nebiolabs/VarSkip).

The reads are mapped to the reference genome (default SARS-CoV-2 MN908947.3) using
minimap2 [31] with options -x map-ont (Nanopore) or -x sr (Illumina/Ion Torrent). SAMtools
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Figure 9: Method to score an amplicon scheme, using mapped fragments. a) Example of one
mapped fragment, where its left end is 3bp from the start of the primer, and its right end is
0bp from the end of the right primer. b) The plot generated from the fragment in a). The
right end of the fragment increments the counter for zero distance from a primer, and the left
end of the fragment increments the counter for 3bp distance from a primer. The information
from all fragments in the sample is added in this way, to make the distribution of distances from
nearest primer ends. c) The cumulative plot from b) after adding all fragments. d) Plot c) is
normalised by taking distance to primer end as a percentage of the mean amplicon length (x
axis), and fragment counts as percent of total fragments (y axis). The red line indicates a typical
curve where the reads match the scheme, whereas the blue line shows a scheme that does not
match. The scheme’s score is the sum of differences between the calculated line and the y = x
line (shown as a dashed line).

[32, 33] is used to make a sorted by coordinate and indexed BAM file, which by default is deleted
at the end of the run but can be kept using the option --keep bam. This BAM file is parsed
using Pysam (https://github.com/pysam-developers/pysam) to determine read depth across
the genome and which amplicon scheme is the best match to the reads. Mappings flagged as
secondary or supplementary are ignored. If reads are paired then only proper read pairs are
used. The pipeline is stopped at this stage if (by default) less than half of the genome has more
than 20X read depth.

For each amplicon scheme under consideration, a normalised score is calculated based on the
positions of mapped fragment ends. Throughout, “fragment” means the mapped portion of an
unpaired read, or the leftmost to rightmost mapping coordinates of a proper read pair. The idea
is that fragment end mapping positions are expected to stack up at the left end of left primers
and the right end of right primers, since the reads are from amplicon sequencing. The score is
an overall measure of how close the fragment ends are to the primer ends.

At each position in the genome, the number of fragments with leftmost mapped end at that
position is counted. These counts are used to score each amplicon scheme separately in turn
(Figure 9). For each position in the genome, the distance to the nearest left end of a left primer
in the scheme is found, moving to the left of that position. For example, if there is a left primer
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at position 100-130, then (assuming no other primers in this region), position 103 would have a
distance of 3 (see Figure 9(a)). Then at that position, we find how many fragments had their
left end mapped at that position, and add that number to a counter of nearest distances. For
example, if there were 20 fragments with left end at position 103, then 20 would be added to the
counter for distance 3. The process is repeated for right primers, resulting in a count of mapped
fragment ends at each distance from a primer (see Figure 9(b,c)).

The distance is normalised by taking the distance as a percent of the mean amplicon length
for the scheme, and the count of fragment ends is normalised by taking the percent of total
fragment ends. The results are binned, so that for each integer i in the range 0− 100, we know
the percent of fragments f(i) ending normalised distance in the interval [i, i+1) from a primer.
The score is defined as

100∑
i=0

(f(i)− i).

This is similar to calculating the area between the observed fragment counts and the line y = x
(Figure 9(d)), but negative values are allowed. The maximum possible score for perfect reads is
5050, because f(i) = 100 for all i and the score is then

100∑
i=0

(100− i) = 5050.

Intuitively, a scheme that matches the reads will have fragment ends close to the primer
ends, resulting in an initial steep curve. Conversely, a scheme that is not related to the reads
should approximately follow the line y = x. Therefore measuring the divergence from the y = x
line provides a reliable measure of how well the scheme and reads agree. See Figure 9(d) for
cartoons of a matching and non-matching scheme, and 10 for a real example output by Viridian.
Viridian chooses the scheme with the highest score. However, if the best score is less than 250,
or less than double the second best score, then the run is stopped and the sample is considered
to be failed. For context, ERR8959196 shown in Figure 10 had best score 4290 and second best
score 464.

Read sampling. Once the amplicon scheme is known, reads are sampled to a target depth of
(by default) 1000X for each amplicon, or using all reads for an amplicon if the mean depth is less
than 1000X. If a fragment matches to more than one amplicon, then it is assigned randomly to
one of the amplicons (the random number generator is seeded so that results are deterministic).

Within an amplicon, where there is more than one left primer (and similarly in the following
description for right primers), the number of fragments supporting that primer is counted. Here,
support is counted as the left fragment end being within 5bp of the start of the primer. A primer
is excluded from the remainder of the pipeline if it is supported by fewer than 20 fragments.
The exception is that if no left primers for the amplicon have support, then all left primers are
kept. The result is an inferred amplicon scheme, consisting of a subset of the original primers
from the chosen scheme.

Each fragment is assigned to a left and right primer pair within its designated amplicon.
These are chosen by taking the rightmost left primer and leftmost right primer that contain the
fragment. In summary, at this point in the pipeline we have a set of reads for each amplicon
with mean coverage 1000X (or lower if there were not enough reads sequenced for an amplicon).
Where an amplicon has more than one left and/or right primer, the set of reads is further split
into sets for each primer pair.
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Figure 10: Example scheme identification score plot from Viridian. Made from run accession
ERR8959196, which is Nanopore reads sequenced using ARTIC-V4.1 primers.

Assembly. A consensus sequence is generated using a separate module called cylon (https:
//github.com/iqbal-lab-org/cylon). The overall method is to generate a consensus for each
amplicon, overlap these consensus sequences into contigs, then scaffold against the reference
sequence to output a final consensus sequence for the genome (Figure 11). It takes the inferred
amplicon scheme (as described in the previous section) and a set of sampled reads for each
amplicon. Reads are further sub-sampled for each amplicon from the 1000X reads, with a target
depth of (by default) 150X for Illumina and 250X for Nanopore or Ion Torrent.

A consensus sequence is generated for each amplicon by iteratively running Racon [20] until
no more corrections are made, up to a maximum of 10 runs. If the input reads are paired,
then each read pair is merged where possible using NGMerge [34] before running Racon. During
testing, merging read pairs was found to improve the accuracy of Racon. In each Racon iteration,
reads are mapped using minimap2 with options -x map-ont (Nanopore) or -x sr (Illumina/Ion
Torrent). Racon options --no-trimming --window-length W are used, where W is the length of
the amplicon plus 100 to avoid any erroneous indels at window ends. If no sequence is returned
from Racon, then the amplicon is classed as failed. The sampled reads are mapped back to
the consensus sequence and all positions with less than 5X depth are masked with Ns. If the
resulting sequence is shorter than 30bp or has more than 50% Ns then the amplicon is failed.

Once there is a consensus sequence for each amplicon, adjacent amplicons are merged. First,
amplicons are mapped to the reference genome using minimap2, and those with no mapping in
the correct orientation are classified as failed and removed. If there is a perfect sequence match
of at least 10bp between adjacent amplicons, it is used to join them. Otherwise, if the minimap2
match coordinates imply that adjacent amplicons overlap (the reference positions overlap), then
those matches are used. Finally, if the minimap2 matches do not have overlapping reference
positions, for example if one or both of the amplicons have a truncated consensus sequence,
then a contig break is placed between the two amplicons.

Note that the start and end of the consensus sequence from each amplicon is excluded by this
overlapping method, meaning that unreliable regions of consensus sequences that were inferred
from reads starting or ending with primers are excluded. The only exception to this is where an
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Figure 11: Consensus sequence construction methods. See main text for details. a) The
starting point is primer and amplicon positions, and reads mapped to the consensus sequence.
b) The consensus sequence of each amplicon is generated independently, using Racon. c) The
amplicon sequences are overlapped using perfect matches (if they exist), making contigs. d) The
contigs are scaffolded against the reference genome, adding gaps where needed.

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.591666doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591666
http://creativecommons.org/licenses/by/4.0/


amplicon is dropped, the next amplicon will include primer sequence. However, this is masked
later in the QC stage. The amplicon overlapping is repeated for each adjacent pair of amplicons,
stitching together a consensus sequence.

Once all possible adjacent amplicons have been merged, the result is one or more contig(s).
When there is more than one contig, the position in the reference of each contig is determined
using nucmer from the MUMmer software package [35]. The contigs are scaffolded, putting an
estimated number of Ns between them based on the mapping coordinates. Since there could be
insertions or deletions in the sample, this number of Ns is not reliable, but it is corrected during
the next stage.

Variant calling. Variants are called with respect to the reference genome using the function
make truth vcf from the tool varifier [36]. This globally aligns the cylon consensus sequence
to the reference genome to identify variants. Since the amplicon schemes do not cover the
complete reference genome, false-positive deletions are excluded from the start and end of the
genome using the options --global align min coord, --global align max coord to restrict
to coordinates within the amplicon scheme. Gaps in the consensus (ie strings of Ns) are corrected
to be the same length as the corresponding portion of the reference sequence using the option
--sanitise truth gaps. These incorrect lengths can arise from failed amplicons, where the
amplicon overlapping algorithm cannot always determine the exact gap length. For nanopore
and Ion Torrent reads, indels of length 1 or 2 are removed from the consensus sequence using
the option --indel max fix length 2. This removes false-positive indels caused by the error
model of those technologies, at the cost of excluding real calls. However, in most cases any
true-positive call that is removed will be masked later in the QC and masking stage of the
pipeline.

The end result of this stage is a VCF file of variants, a consensus sequence with consistent
gap lengths, and the alignment of the reference and consensus sequences.

QC and masking. During read sampling to 1000X read depth per amplicon, each fragment
(read pair or single unpaired read) is allocated to a left and right primer, by taking the smallest
primer range that spans the entire fragment. For each amplicon and each primer pair within that
amplicon, all reads for that primer pair are mapped to the consensus sequence using minimap2
(with the same options as the original run of minimap2) and then pileup is run to gather coverage
statistics. Keeping the reads partitioned in this way means that at each genome position, the
results from one pileup run can be counted as either inside a primer (“bad” coverage) or not
inside a primer (“good” coverage). This is outlined in Figure 12. Pileup is calculated using the
pileup function from pysam with the stepper option set to samtools, and ignore overlaps

and compute baq set to False.
Pileup results are aggregated at each position in the consensus sequence. This is used with

the reference genome/consensus sequence alignment to output a TAB-delimited report with read
depth details at each position (split into separate counts for good and bad coverage). The good
coverage is used to generate a masked consensus sequence, where untrustworthy positions are
replaced with Ns. If the majority of reads disagree with the consensus position, or fewer than 20
reads in total agree with the consensus, then it is masked. At positions where there is evidence
of more than one allele – by default an allele is counted as present if is supported by at least 20%
of reads – then the consensus base is replaced with an ambiguous IUPAC code (for example,
“R” to mean “A” or “G”).

Output files. The final masked consensus sequence is written in FASTA format, plus other
files with additional information. Plots of read depth across the genome and scheme identification
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Figure 12: Consensus sequence pileup/masking methods. Two amplicons are shown with
fragments (either illumina read pairs, or unpaired nanopore reads) mapped to the consensus.
The fragments from amplicon 1 contribute to pileup at B-E, and do not count towards the
primer regions A-B or E-F. Similarly, the fragments from amplicon 2 contribute to coverage at
D-G (but not to C-D or G-H).

scoring are made. All QC results are written to a tab-delimited file with one position per row,
including detailed read depth information. A log file in JSON format is written, with a high-
level results summary section that includes all command line parameters, run time, version
information and consensus sequence statistics. It also contains detailed information such as
the MSA between the reference and consensus, amplicon details (chosen primers, number of
matching reads etc), and genome-wide read depth statistics.

Simulated data

We developed a Snakemake [37] pipeline to simulate PCR artefacts for 8000 SARS-CoV-2 sam-
ples, to compare the assembly accuracy of Viridian to the Connor Lab (https://github.c
om/connor-lab/ncov2019-artic-nf) and Epi2me labs (https://github.com/epi2me-
labs/wf-artic) ARTIC Nextflow workflows. Firstly, truth assemblies are simulated from
a reference genome and reference phylogeny using PhastSim [38] and truth variant calls ob-
tained using varifier [36]. The primer sequences of the ARTIC v4 amplicon scheme are then
mapped to the truth assembly of each sample using the aln command of bwa [39] to get the
start and end positions of each amplicon and check for sequence mismatches in primer binding
regions. If one or more mismatches are identified, one of two possible PCR artefacts are sim-
ulated with equal probability: either the primer sequence containing the mismatch is replaced
with the reference sequence, or the amplicon is assigned a read depth of 0. Random amplicon
dropout is simulated with probability 0.001 and the sequencing depth of all other amplicons
is drawn from a Normal distribution (µ = 500, SD = 20). Reads are then simulated from
each amplicon at the selected sequencing depths using ART [40] for Illumina and Badread [41]
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with --identity 94,98.5,3 for Nanopore. The reads of each amplicon are aggregated such
that there is one FASTQ of Illumina and one of Nanopore reads per sample and the reads
are assembled using the Connor lab pipeline and Viridian workflow for Illumina and Epi2me
labs pipeline and Viridian workflow for Nanopore. Finally, a new tool called Covid Truth Eval
(https://github.com/iqbal-lab-org/covid-truth-eval), which is described in detail later,
was used to generate TSV files that summarise the assembly accuracy for each tool.

Empirical truth set

Combined nasal and oropharyngeal specimens were identified during routine sequencing at Ox-
ford University Hospitals NHS Foundation Trust (OUH) as part of Pillar 1 national surveillance
in the United Kingdom. Specimens were selected representing the Pango lineages B, B.1, B.1.1.7,
B.1.1.7 (E484K), B.1.214.2, B.1.351, B.1.525, B.1.617.2, B.28, BA.1, P.1 and P.2. These were
retrieved and cultured at the University of Oxford, generating abundant virus stocks. RNA from
these virus stocks was sequenced using Illumina and Oxford Nanopore instruments with both
ARTIC and ONT Midnight protocols, in addition to sequence-independent single-primer ampli-
fication, forming the dataset deposited in ENA projects PRJEB50520 and PRJEB51850 [42].
Sequencing was performed at the University of Oxford except where otherwise stated below.

Viral culture. Vero cells were maintained in Dulbecco’s Modified Eagle Medium (DMEM)
high glucose supplemented with 1% fetal bovine serum, 2mM Glutamax, 100 IU/ml penicillin-
streptomycin, and 2.5µg/ml amphotericin B at 37°C, 5% CO2 in a humidified atmosphere before
inoculation with 200µl of throat swab fluid. Cells were then incubated at 37°C, with daily
monitoring for cytopathic effects (CPE). When CPE reached 80%, virus-containing supernatants
were harvested through centrifugation at 3,000 rpm at 4°C and stored at -80°C in single-use
aliquots. Virus titers were quantified by a focus-forming assay on Vero cells. Spike genes were
sequenced in order to verify protein sequence integrity. Refer to [43] for more details.

Extraction. Viral RNA was extracted from 200µl and 400µl volumes of Coplan viral transport
media on the KingFisher Flex system (Thermo Fisher, UK) using the MagMAX Viral/Pathogen
II Nucleic Acid Isolation Kit (IVD). Two wash steps were incorporated and extracts were eluted
in 50µl.

PCR. PCR tests were performed by OUH using two PCR assays: Altona RealStar (targeting
E and S genes; Altona Diagnostics, Liverpool, UK) and Thermo Fisher TaqPath assay (targeting
S and N genes, and ORF1ab; Thermo Fisher, Abingdon, UK).

Sequence Independent Single Primer Amplification (SISPA). Viral RNA was ex-
tracted as described above then Complementary DNA (cDNA) was prepared using a SISPA
approach [44]. In brief, firstly RNA was reverse-transcribed with SuperScript III Reverse Tran-
scriptase (Life Technologies, UK) using Sol-Primer A (5’-GTTTCCCACTGGAGGATA-N9-3’)
[45]. Then 5µL of cDNA and 1µL (100pmol/µL) Primer B (5’-GTTTCCCACTGGAGGATA-3’)
were added to a 50µL reaction using AccuTaq LA (Sigma, Poole, United Kingdom), according
to manufacturer’s instructions. PCR conditions were 98°C for 30s, followed by 30 cycles of 94°C
for 15s, 50°C for 20 s, and 68°C for 5 min, and a final step of 68°C for 10 min. Amplified cDNA
was purified using a 1:1 ratio of AMPure XP beads (Beckman Coulter, Brea, California, US)
and quantified using the Qubit High Sensitivity dsDNA kit (Thermo Fisher Scientific, UK).
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SISPA Oxford Nanopore sequencing. SISPA products were sequenced following a pre-
viously described protocol [46] using Oxford Nanopore Technologies (ONT) native barcoding
(EXP-NBD104) and ligation sequencing (SQK-LSK109) kits with R9.4.1 flow cells.

ARTIC V3 Illumina sequencing. Libraries were prepared using the NEBNext® ARTIC
SARS-CoV-2 Library Prep Kit, following standard protocol with cDNA Amplicon and Ligation
Bead Clean-ups (Version 3.0 7/21). Manual library normalisation was performed to ensure even
sample coverage, based on the library’s DNA concentration and average size, as measured by
the Qubit (Thermo Fisher Scientific, UK) and 2200 TapeStation (Agilent Technologies, USA).
Paired-end sequencing was performed using the MiSeq reagent kit v2, with 2×250bp, and one
water control on each run. NEBNext® Multiplex Oligos for Illumina® (96 Unique Dual Index
Primer Pairs) were used.

ARTIC V4.1 Illumina sequencing. Libraries were sequenced at the University of Northum-
bria following the ARTIC V4.1 CoronaHiT-Illumina protocol [47], using an Illumina NextSeq
550.

ARTIC V3 Oxford Nanopore sequencing. Sequencing was performed using the ARTIC
LoCost protocol and v3 primers using R9.4.1 flow cells. Final library concentration was quan-
tified by the High Sensitivity dsDNA kit Qubit (Thermo Fisher Scientific, UK).

ONT Midnight Oxford Nanopore sequencing. Libraries were prepared using ONT Mid-
night RT-PCR Expansion kits (EXP-MRT001) and rapid barcoding (SQK-RBK110.96), follow-
ing manufacturer protocols. R9.4.1 flow cells were used.

Manual curation. All reads were mapped to the reference genome MN908947.3 using min-
imap2 with the -x preset map-ont for Nanopore reads and sr for Illumina. A sorted BAM file
was made using samtools sort. This was used to make an unfiltered set of variant calls by
piping the output of samtools mpileup into bcftools call -vm. Each sample was curated
manually, using Artemis [48] to view the mapped reads and infer a truth set of variant calls.
Although the unfiltered calls from bcftools were used as a guide, the whole genome for every
sample was inspected for variant calls. In rare cases where the Nanopore and Illumina reads
disagreed at a position, it was flagged as “unknown”. The VCF files and metadata are available
at https://github.com/iqbal-lab-org/covid-truth-datasets.

Consensus accuracy evaluation

The accuracy of results of the simulated data and truth set were evaluated using a new tool
CTE (Covid Truth Eval). It can evaluate either a VCF file of variant calls, or a consensus
sequence, by comparing it with a “truth” consensus sequence. If the input is a VCF file, the
consensus sequence to be evaluated is made by applying the variants to the reference sequence.
It makes a multiple sequence alignment (MSA) of the consensus, truth, and reference sequences
using MAFFT [24]. Each position in the genome is classified by comparing the base calls of
the MSA, to verify the accuracy of the consensus sequence. The most common case is that the
truth nucleotide is equal to the reference nucleotide, and the consensus also called the reference
nucleotide. The possibilities for the truth are: a reference call, “homozygous” SNP (ie A, C, G, T
that is different from the reference), “heterozygous” SNP (ie a mix of A, C, G, T), indel, dropped
amplicon, or an N. Although rare, an N is used when the truth is unknown, as described above
in the manual curation section. The possibilities for the consensus call are the same, except
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each nucleotide call could be correct or incorrect (ie the same as or different from the truth
nucleotide). CTE reports the total count of each combination seen in the input sample.

Dropped amplicons are known in the truth data. However, they must be estimated from the
consensus sequence that is under evaluation. Since tools can use different methods to mask a
nucleotide or an entire amplicon, defining a position with an N as part of a dropped amplicon,
or simply masked, is ambiguous. CTE uses the minimum possible range of coordinates we
would expect to be Ns if an amplicon is dropped, ranging from one past the end of the previous
amplicon to the position before the start of the next amplicon. If a run of Ns contains this
range of coordinates for a given amplicon, then it is considered as dropped in the sequence
under evaluation. Hence there is some ambiguity between “called as N” and “dropped” when
interpreting the output of CTE.

Africa dataset

The Africa dataset comprises a total of 12,287 samples, each of which has a “GISAID” assembly,
and either Illumina (N=9935) or ONT (N=2352) sequencing reads, with primer schemes ARTIC
Version 3 or 4, or MIDNIGHT-1200 (Supplementary table S7). All samples were processed with
Viridian and ARTIC-ILM/ONT, producing a consensus sequence.

Global dataset

Metadata for all sequencing runs with taxon ID 2697049 was downloaded using the ENA por-
tal query https://www.ebi.ac.uk/ena/portal/api/search?result=read_run&query=

tax_id=2697049&fields=all&limit=10000000 on 2nd March 2023. These runs were fil-
tered to only keep those with library strategy equal to AMPLICON, library source equal to
VIRAL RNA, host empty or equal to homo sapiens, and instrument platform one of ILLUMINA,
OXFORD NANOPORE or ION TORRENT. The resulting 5,288,952 sequencing runs were downloaded us-
ing either prefetch/fasterq-dump from the SRA-toolkit (https://github.com/ncbi/sra-
tools) or enaDataGet (https://github.com/enasequence/enaBrowserTools). They were
processed with Viridian, with 4,395,655 passing its QC requirements and producing a consen-
sus sequence. These were further filtered for quality, requiring no more than 3 “heterozygous”
base calls (ie none of A,C,G,T,N) and no more than 5,000 Ns. The N count was taken from
the consensus sequence after aligning to the reference using MAFFT, as described in the Trees
section later. A further round of filtering was applied based on requiring a reliable date for
each sequencing run, using where available the collection date from the ENA/SRA, COVID-19
Genomics UK Consortium (COG-UK), and GISAID. Runs with no collection date from any
source were removed. Where dates conflicted for a given sample, the order of preference used
was the date with highest resolution, then COG-UK, GISAID, and finally ENA/SRA. The final
number of samples remaining was 3,960,704.

All GenBank genomes were downloaded on 23rd May 2023 using the Datasets tool (https://
github.com/ncbi/datasets) with parameters download virus genome taxon SARS-CoV-2.
The genome and metadata files (genomic.fna.gz, data report.jsonl.gz) were extracted from
the downloaded zip file. Genomes with host taxon ID ("host"→"taxId") 9606, ie human, were
kept. The genomes were matched to sequencing runs from the ENA/SRA using the run accession.
Only GenBank genomes that matched to a single run that also belonged to the set of 3,960,704
Viridian consensus sequences were kept. This resulted in an “intersection set” of 3,006,407 runs
with both a Viridian consensus sequence and GenBank genome.
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Primer scheme validation

Since the COG-UK metadata includes the ARTIC primer scheme version, we used their project
PRJEB37886 (included in the global dataset) to validate the scheme calls from Viridian. The
ARTIC primer scheme version used was obtained from the SRA metadata using efetch (ht
tps://www.ncbi.nlm.nih.gov/books/NBK179288/) to download metadata for experi-
ments in batches using the options -format xml -db sra -input ids.txt, where ids.txt

is the name of the file containing a list of experiment accessions. The primer scheme ver-
sion was extracted for each experiment from the value of the artic primer version tag in the
EXPERIMENT ATTRIBUTES section of the XML data. Each efetch command was attempted twice
(failures were common), resulting in a total of 2,485,169 primer scheme calls from ENA/SRA
metadata. We then restricted to Illumina and Nanopore samples that passed Viridian (the
4,395,655 samples described earlier), and only included ENA/SRA primer scheme values of
3/ARTIC v3 for ARTIC version 3 and 4/4.1alt/ARTIC v4 for ARTIC version 4. This was a
total of 2,341,118 samples.

Discordant samples for manual inspection were chosen by taking all Illumina samples with
ENA/SRA scheme version 3 and Viridian scheme version 4, sorting by run accession, and taking
5 equally spaced runs from the list. The same method was used for Illumina with ENA/SRA
version 4 and Viridian version 3, and then similarly for Oxford Nanopore samples, totalling 20
samples for manual inspection. Reads were mapped using minimap2 with the option -a to make
SAM output, and the preset -x of sr (Illumina) or map-ont (Nanopore). A sorted BAM file
was made using SAMtools, and then manually inspected with Artemis.

Trees

Trees were built using MAFFT and UShER [22] and visualised with taxonium [49]. Each se-
quence was aligned to the reference using MAFFT with the option --keeplength to force the
alignment to be the same length as the reference genome, by only allowing gaps in the query
sequence. The alignment was modified by forcing any gaps in the query sequence to be the same
as the reference sequence. The resulting sequences were batched into sets of size 100,000. A VCF
file was made for each batch with faToVcf, with the option -includeNoAltN. A tree was built by
adding each batch in turn using usher-sampled and the option --sort-before-placement-3.
The final tree was optimized with the UShER command matOptimize and the options -m

0.000000001 -r 8 -T 20. Finally, the taxonium input file was generated using the script
usher to taxonium from taxoniumtools [49]. The processing of input sequences to obtain tax-
onium input was implemented in a pipeline called Ushonium (https://github.com/marting
hunt/ushonium).

In order to maintain an accurate tree structure, we ordered the samples by first using the
samples with zero N or heterozygous calls, sorted by collection date. Then the remaining samples
were used, again sorted by collection date. An exception to the date ordering was the 12,953
samples (3,876 of these were in the intersection set of 3,006,407 samples) where the GISAID
date was given priority over other sources, which were added at the end instead of using the
date. Using the highest quality consensus sequences first meant that UShER did not have to
impute any ambiguous positions in any sequences. Sorting in date order meant that recombinant
genomes – which emerged later in the pandemic – were not added to the tree too early, since
they could be placed in an incorrect clade and then cause structural errors.

Calculation of mutational spectra and proportions of G>T mutations

Mutational spectra were calculated as reported previously [26]. Briefly, all mutations down-
stream of the corresponding lineage root node are identified. The contexts of these mutations
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are calculated in the genomic sequence at the start of the corresponding phylogenetic branch,
i.e. taking into account mutations that have arisen on ancestral branches in the phylogenetic
tree. Mutational spectra were rescaled by the genomic composition in the lineage root ancestor
as described previously [26]. Confidence intervals on the proportion of G>T mutations were
calculated using Wilson score interval incorporating the calculated proportion and the number
of sampled mutations.

Software versions

Package versions used for the simulations were: Snakemake v7.8.5 [37], PhastSim v0.0.4 [38],
ART v2016.06.05 [40], Badread git commit c2bdcbe [41], ARTIC Illumina workflow git commit
8af5152 from https://github.com/connor-lab/ncov2019-artic-nf, Epi2me wf-artic git
commit 218aa1d from https://github.com/epi2me-labs/wf-artic, CTE git commit 9cd94b8
from https://github.com/iqbal-lab-org/covid-truth-eval, Nextflow v21.04.3 [50], bwa
git commit c77ace7 [39], htslib v1.14 [51], samtools v1.14 [32], BEDTools v2.30.0 [52], joblib
v1.1.0 from https://github.com/joblib/joblib, numpy v1.22.1 [53], pandas v1.4.0 [54],
pysam v0.18.0 at https://github.com/pysam-developers/pysam and tqdm v4.62.3 from
https://github.com/tqdm/tqdm.

The ARTIC-ILM pipeline used was git commit 8af5152 from https://github.com/connor-

lab/ncov2019-artic-nf. The ARTIC-ONT pipeline used was git commit 218aa1d from
https://github.com/epi2me-labs/wf-artic. Version 4.3 of Pangolin, and version 1.21 of
pangolin-data were used.

Viridian v1.0.0 or v1.1.0 was used to process all runs. The only difference between these
versions is v1.1.0 added support for unpaired Illumina reads. The versions of tools used by
Viridian were: Cylon git commit 57d559a, minimap2 git commit b0b199f, MUMmer v4.0.0rc1,
NGMerge git commit 224fc6a, Racon git commit a2cfcac, Varifier git commit 8bc8726. Usho-
nium git commit b024320 was used, with dependencies MAFFT v7.520, UShER git commit
2df81ee, and taxoniumtools v2.0.111.

Data availability

Viridian is freely available under the MIT license at https://github.com/iqbal-lab-org/vi
ridian. Supplementary text and figures S1-9 are in the supplementary PDF file. Code used for
analysis and to generate figures is availble at https://github.com/martinghunt/viridian-
paper. The global Viridian tree is hosted at https://viridian.taxonium.org. All other
additional files are available from Figshare:

• Supplementary table S1, https://doi.org/10.6084/m9.figshare.25712982 - this is a
TSV file containing metadata of all 5,288,952 sequencing runs considered in this study

• Supplementary tables S2-9 in one xlsx file, https://doi.org/10.6084/m9.figshare.25
713045:

S2 - Summary of counts of amplicon schemes in INSDC metadata and the scheme called
by Viridian

S3 - Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on simulated data

S4 - Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on Illumina truth data set

S5 - Accuracy of Viridian, ARTIC-ILM and ARTIC-ONT on Nanopore truth data set

S6 - Run times and RAM usage on the truth data set
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S7 - Metadata for the African data set

S8 - Numbers of inferred viral introductions

S9 - Country counts in the Viridian global tree, and number of new samples since the
tree was built

• Supplementary HTML file, https://doi.org/10.6084/m9.figshare.25713198 - com-
parison of Viridian and GenBank assemblies

• All 3,960,705 Viridian consensus sequences that are in the global tree, in a single 196MB
tar archive file (https://doi.org/10.6084/m9.figshare.25713225), which contains the
sequences split over multiple xzipped FASTA files

• The Viridian global tree of 3,960,705 sequences, in JSONL and .pb format, https://do
i.org/10.6084/m9.figshare.25713261

• The GenBank and Viridian intersection trees in JSONL and .pb format, https://doi.
org/10.6084/m9.figshare.25713285

• All other Viridian consensus sequences that are not in the global tree in a single zxipped
FASTA file, https://doi.org/10.6084/m9.figshare.25713342.

Author contributions

Martin Hunt wrote the final implementation of Viridian, developed the primer-scheme identifi-
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analyses. Lily Karim performed the reversion analyses and geographical/introduction analysis.
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Cruz, Twinkle Galase Barangan, Reildrin G. Morales, Tanja Opriessnig, Virginia Mauro
Venturina, Milagros R. Mananggit, Samantha Lycett, Clarissa YJ Domingo, and Christine
Tait-Burkard. No part gets left behind: Tiled nanopore sequencing of whole ASFV genomes
stitched together using Lilo. bioRxiv, December 2021.

[29] Kim A. Lagerborg, Erica Normandin, Matthew R. Bauer, Gordon Adams, Katherine
Figueroa, Christine Loreth, Adrianne Gladden-Young, Bennett M. Shaw, Leah R. Pearl-
man, Daniel Berenzy, Hannah B. Dewey, Susan Kales, Sabrina T. Dobbins, Erica S. Shenoy,
David Hooper, Virginia M. Pierce, Kimon C. Zachary, Daniel J. Park, Bronwyn L. MacInnis,
Ryan Tewhey, Jacob E. Lemieux, Pardis C. Sabeti, Steven K. Reilly, and Katherine J. Sid-
dle. Synthetic DNA spike-ins (SDSIs) enable sample tracking and detection of inter-sample

32

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.591666doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591666
http://creativecommons.org/licenses/by/4.0/


contamination in SARS-CoV-2 sequencing workflows. Nature Microbiology, 7(1):108–119,
December 2021.

[30] John R. Tyson, Phillip James, David Stoddart, Natalie Sparks, Arthur Wickenhagen, Grant
Hall, Ji Hyun Choi, Hope Lapointe, Kimia Kamelian, Andrew D. Smith, Natalie Prysta-
jecky, Ian Goodfellow, Sam J. Wilson, Richard Harrigan, Terrance P. Snutch, Nicholas J.
Loman, and Joshua Quick. Improvements to the ARTIC multiplex PCR method for SARS-
CoV-2 genome sequencing using nanopore, September 2020.

[31] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, September 2018.

[32] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Processing Subgroup.
The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079,
August 2009.

[33] Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O
Pollard, Andrew Whitwham, Thomas Keane, Shane A McCarthy, Robert M Davies, and
Heng Li. Twelve years of SAMtools and BCFtools. GigaScience, 10(2):giab008, January
2021.

[34] John M. Gaspar. NGmerge: merging paired-end reads via novel empirically-derived models
of sequencing errors. BMC Bioinformatics, 19(1):536, December 2018.
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