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Abstract 
 

Brain-wide association studies (BWASs) have attempted to relate cognitive abilities with brain 
phenotypes, but have been challenged by issues such as predictability, test-retest reliability, and cross-
cohort generalisability. To tackle these challenges, we proposed a machine-learning “stacking” approach 
that draws information from whole-brain magnetic resonance imaging (MRI) across different modalities, 
from task-fMRI contrasts and functional connectivity during tasks and rest to structural measures, into 
one prediction model. We benchmarked the benefits of stacking, using the Human Connectome Projects: 
Young Adults (n=873, 22-35 years old) and Human Connectome Projects-Aging (n=504, 35-100 years 
old) and the Dunedin Multidisciplinary Health and Development Study (Dunedin Study, n=754, 45 years 
old). For predictability, stacked models led to out-of-sample r~.5-.6 when predicting cognitive abilities at 
the time of scanning, primarily driven by task-fMRI contrasts. Notably, using the Dunedin Study, we 
were able to predict participants’ cognitive abilities at ages 7, 9, and 11 using their multimodal MRI at 
age 45, with an out-of-sample r of 0.52. For test-retest reliability, stacked models reached an excellent 
level of reliability (ICC>.75), even when we stacked only task-fMRI contrasts together. For 
generalisability, a stacked model with non-task MRI built from one dataset significantly predicted 
cognitive abilities in other datasets. Altogether, stacking is a viable approach to undertake the three 
challenges of BWAS for cognitive abilities. 
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Significance statement 
 
For decades, psychologists and neuroscientists have attempted to predict cognitive abilities from brain 
magnetic resonance imaging (MRI) data but have had limited success, casting doubt on the predictive 
ability of brain MRI. Here we proposed a machine learning method, called stacking, which allows us to 
draw information across different types of brain MRI. Using three large databases (n=2,131, 22–100 years 
old), we found stacking to make the prediction of cognitive abilities 1) closer to actual cognitive scores 
when applied to a new individual, not part of the modelling process, 2) reliable over times and 3) 
applicable to the data collected from different age groups and MRI scanners. Indeed, stacking, especially 
with fMRI task contrasts, allowed us to use MRI of people aged 45 to predict their childhood cognitive 
abilities reasonably well. Accordingly, stacking may help MRI realise its potential to predict cognitive 
abilities. 
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Main text 
Introduction 
  
Individual differences in cognitive abilities are stable across the lifespan(1) and have relatively high 
heritability(2). They are key indicators of educational achievements(3), career successes(4), well-
being(5), socioeconomic stability(6) and health outcomes(7). Recent studies have also demonstrated a 
widespread relationship between impairments in cognitive abilities and various psychopathological 
disorders(8, 9). Accordingly, relating individual differences in cognitive abilities to neuroimaging data 
has been a primary goal for cognitive neuroscientists, from both basic and applied science 
perspectives(10). This approach allows neuroscientists to scientifically quantify the presence of 
information related to cognitive abilities from each neuroimaging type or modality. It also paves the way 
for identifying neural indicators of cognitive abilities, which could be useful for understanding the 
etiology of neuro- and psychopathology(11). Indeed, a leading transdiagnostic framework for psychiatry, 
the Research Domain Criteria (RDoC), treats cognitive abilities as one of the main functional domains for 
psychopathology across diagnoses. Having a robust neural indicator of cognitive abilities, in addition to 
behavioral and genetic indicators, is central to the RDoC framework(12). 
 
The availability of large-scale neuroimaging databases(13) and the accessibility of predictive modelling 
methodologies(11, 14) have provided encouraging avenues to pursue a neural indicator of cognitive 
abilities. Accordingly, several researchers have built prediction models to predict cognitive abilities from 
brain magnetic resonance imaging (MRI) signals and evaluated the models’ performance on separate, 
unseen data in the so-called Brain-Wide Association Studies (BWAS)(11, 15). BWAS can be conducted 
using either univariate (also known as mass-univariate) or multivariate (also known as machine learning) 
methods to draw MRI information. White univariate methods draw data from one region/voxel at a time, 
multivariate methods draw MRI information across regions/voxels (11, 16, 17). These multivariate 
methods, from particular MRI modalities, appear to boost predictability for cognitive abilities (11, 16–
18). For examples, Marek and colleagues(16) conducted BWAS on several large datasets can concluded, 
“More robust BWAS effects were detected for functional MRI (versus structural), cognitive tests (versus 
mental health questionnaires) and multivariate methods (versus univariate).” 
 
Akin to Genome-Wide Association Studies (GWAS) in genetics(19) that can integrate information across 
SNPs across the genome to create a predicted, propensity score for a phenotype of interest (e.g., cognitive 
abilities), known as polygenic scores, BWAS can also be used to create a similar predicted score for each 
individual based on his/her neuroimaging data. For instance, Marek and colleagues(16) used trained 
multivariate methods to predict cognitive abilities from brain MRI data using part of the data (known as 
training set) and applied the trained model to the unseen participants (known as test set). Participants in 
the test set then had a predicted score of their cognitive abilities, based on their brain MRI data. Yet, 
BWAS for cognitive abilities has faced several challenges, including but not limited to predictability, test-
retest reliability and generalisability, as detailed below(16, 20, 21). These challenges have led to 
headlines, such as “Cognitive Neuroscience at the Crossroads”(22) and “Scanning the Brain to Predict 
Behavior, a Daunting ‘Task’ for MRI”(23). To address these issues, we(24, 25) have recently proposed a 
potential solution, “stacking”(26), which allows us to combine different modalities of MRI into one 
prediction model. In this study, we aim to formally benchmark the benefits of stacking in improving 
predictability, test-retest reliability and generalisability, using three large-scale neuroimaging 
databases(27–29). 

 
First, predictability, or out-of-sample prediction, pertains to the ability of prediction models to predict a 
target variable, e.g., cognitive abilities, based on features, e.g., functional MRI (fMRI) data, of unseen 
participants, not part of the model-building processes(30). More specifically, we refer to an application of 
a validation within one dataset. Here researchers usually take a relatively large dataset, split it into 
training and test sets, then build a model from the training set and apply the model to the test set. In 
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addition to doing one split, researchers could also apply a cross-validation strategy by splitting a dataset 
into different non-overlapping training-test folds and looping through folds to calculate the average 
performance across the test sets(31, 32). Several earlier studies(33–35) did not apply any validation when 
predicting cognitive abilities from MRI, possibly causing inflated predictability(16). With proper data 
splitting, a recent meta-analysis(15) estimated the predictability of multivariate methods on brain MRI of 
different modalities with a validation for cognitive abilities to be a Pearson’s correlation r of 0.42 on 
average.  
 
While this level of predictability is encouraging, there is still room for improvement. Given that different 
MRI modalities may convey different information about the brain, drawing information across different 
MRI modalities could allow us to improve predictability further. Stacking enables researchers to draw 
information across MRI modalities, which seems to improve predictability over relying on any single 
MRI modality (24–26, 36, 37). In this framework (see Figure 1), researchers first build ‘non-stacked’ 
prediction models separately for each MRI set of features (e.g., cortical thickness or cortical area), and 
computed predicted values from each of these non-stacked’ models. They then treat these predicted 
values as features for ‘stacked’ prediction models, allowing them to draw information across different 
MRI sets of features. Still, most studies use one single type of MRI to build prediction models. The 
popular choices include resting-state fMRI functional connectivity (Rest FC, or correlations in blood-
oxygen-level-dependent (BOLD) time series across areas during rest)(38–40), task fMRI functional 
connectivity (Task FC, or correlations in BOLD time series across brain regions during each task)(41–48) 
and structural MRI (including measures such as thickness, area and volume in cortical/subcortical 
areas)(49). While it is less common to use task-fMRI contrasts (Task Contrasts, or fMRI BOLD activity 
relevant to events in each task) to predict cognitive abilities, studies have started to show the superior 
predictability of contrasts from certain tasks, compared to other MRI modalities(24, 25, 39, 50). 
Nonetheless, previous attempts at stacking often ignored task contrasts (36, 37), and as a result, while 
improving over non-stacked models, they have not led to satisfactory predictive performance. We(24, 25) 
have started to show a boost in predictability when applying stacking to combine task contrasts with other 
MRI modalities. Here, to ensure the robustness of this approach, we examined the benefits of stacking 
task contrasts, along with other MRI modalities, on multiple large-scale datasets.  
 
Second, test-retest reliability pertains to the rank stability of measurements across different time points, 
assuming the absence of significant changes between assessments (e.g., treatment exposure, injury and/or 
disease progression)(51, 52). For instance, if some people score higher than their peers at time one, they 
should also score higher than their peers at time two. To use prediction models as an indicator for 
individual differences in cognitive abilities, the predicted values should be reliable across time. A recent 
study challenged the test-retest reliability of task contrasts(20). Here the researchers examined test-retest 
reliability of Task Contrasts in certain areas, known to be strongly elicited in each task, across two-time 
points and found a poor level of test-retest reliability across different tasks and two datasets:  the Human 
Connectome Project Young Adult (HCP Young Adults)(29), and the Dunedin Multidisciplinary Health 
and Development Study (Dunedin Study)(28). This poor level of test-retest reliability from Task 
Contrasts is concerning, especially when compared to the higher levels of test-retest reliability found from 
structural MRI, Rest FC and Task FC(20, 53, 54). In fact, structural MRI provided reliability that was 
almost at the ceiling(20). Yet these studies simply took task contrasts from certain areas; they did not 
create prediction models or use multivariate methods and stacking to draw information across the whole 
brain and across different tasks/MRI modalities. It is possible that Task Contrasts could be more reliable 
once the models consider information across the whole brain, across different tasks and across different 
MRI modalities. Following this conjecture, we(25) recently showed that multivariate methods and 
stacking substantively boosted reliability, reaching a much higher level of reliability in HCP Young 
Adults(29). To ensure the robustness of our findings, we need to test the benefits of this stacking 
approach in another, independent dataset: the Dunedin Study(28), for example. 
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Third, generalisability, or more specifically cross-cohort generalisability, pertains to the ability of 
prediction models built from one dataset to predict the cognitive abilities of participants of another 
dataset(21). Different datasets, for instance, use different MRI scanners, recruit participants from different 
cultures and age groups, or implement different cognitive-ability measurements. Thus, while 
predictability within one dataset provides the performance of prediction models within specific, 
harmonised contexts of one dataset, generalisability across datasets allows us to gauge the performance of 
prediction models in broader contexts. This means that generalisability situates closer to how deployable 
the prediction models are in indicating cognitive abilities in the real world(21). Yet, only a few studies 
have investigated the generalisability of MRI prediction models for cognitive abilities, and most have 
focused on functional connectivity during rest and/or tasks(55–57). The generalisability of stacked 
models is currently unknown.  
 
Our overarching goal is to benchmark the impact of stacking on predictability, test-retest reliability and 
generalisability of MRI prediction models for cognitive abilities. To achieve this, we used three large-
scale neuroimaging databases, including HCP Young Adults(29), Human Connectome Project Aging 
(HCP-Aging)(27) and Dunedin Study(28). The databases vary in various aspects, such as participants’ 
age (see Figure 1) and cultures, physical scanners, scanning parameters and cognitive-ability assessments. 
Note that, unlike our previous implementation of stacking(25), we also included Task FC in addition to 
Task Contrasts to capture wider information during task scanning. Specifically, here we built stacked 
models from eight different combinations of functional and structural MRI sets of features: “Task 
Contrast” including Task Contrasts from all of the tasks, “Task FC” including Task FC from all of the 
tasks, “Non Task” including Rest FC and structural MRI, “Task Contrast & FC” including task contrasts 
and task FC from all of the tasks, “All” including all sets of features, “All excluding Task Contrast” 
including every set of features except Task Contrasts, “All, excluding Task FC” including every set of 
features except Task FC, “Resting and Task FC” including FC during rest and tasks.  
 
For predictability (see Figure 1), we applied nested cross-validation (CV) within each dataset to evaluate 
the predictability of stacked models from multimodal MRI. To build the stacked models, we applied 16 
combinations of multivariate predictive-modelling algorithms (including Elastic Net(58), Support Vector 
Regression(59), Random Forest(60) and XGBoost(61)). Moreover, the nature of the Dunedin Study’s 
longitudinal measurements(28) allowed a unique opportunity for us to predict cognitive abilities from 
MRI data at the time of scanning (at the age of 45 years old), but also at much earlier times (at the age of 
7, 9 and 11 years old), as well as to predict the residual scores that reflect relative changes in cognitive 
abilities during 36 years, compared to participants’ peers(62). For test-retest reliability (see Figure 1), we 
examined the rank stability of stacked models from participants who were scanned twice in HCP Young 
Adults and Dunedin Study. Lastly, for generalisability (see Figure 1), we built stacked models from one 
dataset and evaluated their performance on the other two. Due to the different tasks used in different 
datasets, we unfortunately could only examine the generalisability of the “Stacked: Non Task” model, 
which combined all MRI modalities that did not involve tasks. 
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Results 
 
1. Predictability 
We showed performance indices of stacked and non-stacked models for each predictive-modelling 
algorithm and dataset in Figure 2-3 and Figures S1-8 and their bootstrapped 95% CI in Figure 4 and 
Figures S9-16. Overall, when predicting cognitive abilities at the time of scanning, the prediction models 
from multimodal MRI across different predictive-modelling algorithms varied in their performance, 
reflected by Pearson’s correlation (r) between predicted and observed values, ranging from around 0 to .6, 
across the three datasets. Notably, combining different sets of MRI features into stacked models 
constantly led to higher predictive performance. “Stacked: All”, which included all sets of MRI features, 
gave rise to top-performing models across algorithms and the three datasets. Additionally, using Elastic 
Net across both non-stacking and stacking layers regularly resulted in prediction models that were either 
equally good or better than other prediction models based on other algorithms (see the bootstrapped 
differences in Figure S17-26). For instance, using Elastic Net across both layers for “Stacked: All” led to 
r at mean(M)=.60 (95%CI[.56, .64]), M=.61 (95%CI[.56, .66]) and M=.55 (95%CI[.49, .60]) for HCP 
Young Adults, HCP Aging and Dunedin Study, respectively.  
 
Among the non-stacked models that predicted cognitive abilities at the time of scanning, we found varied 
predictive performance associated with different sets of MRI features. On the one hand, Task Contrasts 
from certain tasks led to top-performing models across the three datasets: the working memory task in 
HCP Young Adults and the facename task in HCP Aging and Dunedin Study. With Elastic Net, these 
three task contrasts led to r at M=.5 (95%CI[.45, .59]) for HCP Young Adults, M=.46 (95%CI[.39, .51]) 
for HCP Aging, M=.43 (95%CI[.37, .49]) for Dunedin Study. On the other hand, Task Contrasts from 
some other tasks led to poor-performing models, such as the gambling task in HCP Young Adults (r 
could not be calculated due to the models resulting in the same predicted values on certain folds), the 
Conditioned Approach Response Inhibition Task (CARIT) task in HCP Aging, r at M =.07 (95%CI[-.02, 
.15]), and the monetary incentive delay (MID) task in Dunedin Study, r at M=.16 (95%CI[.08, .22]).  
 
For Dunedin Study, the prediction models that predicted cognitive abilities at the time of scanning (i.e., 
when participants were 45 years old) performed similarly to those that predicted cognitive abilities, 
collected much earlier than the scanning time (i.e., when they were 7, 9 and 11 years old). For instance, 
the “Stacked: All” models using Elastic Net across both non-stacking and stacking layers predicted 
cognitive abilities at 45 years old and at 7, 9 and 11 years old with r at M=.55 (95%CI [.49, .60]) and 
M=.52 (95%CI [.47, .57]), respectively. And Task Contrasts from the facename task led to top-
performing models across two time points: with r at M=.43 (95%CI[.36, .48]) at 7, 9 and 11 years old, 
compared to M=.43 (95%CI[.37, .49]) at 45 years old.  
 
In contrast, the performance of models predicting the residual scores for cognitive abilities from 
multimodal MRI was much poorer. Note that the negative residual scores reflect a stronger decline in 
cognitive abilities, as expected from childhood cognitive abilities, compared to participants’ peers. The 
highest-performing model predicting the residual scores across algorithms was the model with the 
encoding vs distractor contrast from the facename task, followed by various stacked models. With Elastic 
Net, the best model that predicted the residual scores led to r at M=.21 (95%CI[.14, .27]). And with 
Elastic Net across both layers for “Stacked: All” led to r at M=.17 (95%CI[.10, .24]). While these r levels 
were statistically better than chance according to bootstrapping (see Figure 3), it was much lower than 
those from prediction models that predicted cognitive abilities at the time of scanning or much younger 
age.  
 
To understand the contribution of each MRI feature, we examined feature importance of each model 
based on Elastic Net coefficients. Given that Elastic Net features are linear and additive, the linear 
combination of Elastic Net coefficients reflects how the algorithm makes prediction. For non-stacked 
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models, S27-S28 shows the feature importance of for each MRI modality, study and target variable. 
Figure 5 and Table S1-10 show the feature importance of the top-performing, non-stacked models for 
each study and target variable. For stacked models, Figure 6 shows the feature importance of stacked 
models for each dataset when predicting cognitive abilities at the time of scanning. The top-performing 
Task Contrasts contributed stronger in the stacked models across the three datasets.  
 
Note that we provided tables of the numerical values of the predictability indices on our github page: 
https://github.com/HAM-lab-Otago-University/Predictability-Reliability-
Generalizability/tree/main/4_Supplementary. 
 
2. Test-Retest Reliability 
Figure 7 shows the test-retest reliability. Here we tested the rank stability of predicted values from 
prediction models across two sessions, as indicated by interclass correlation (ICC). Given the availability 
of the test-retest participants, we examined the test-retest reliability of the stacked and non-stacked 
models from HCP Young Adults and Dunedin Study. We provided predicted values across two scanning 
sessions for each participant in Figures 8-9 and ICC for each MRI feature before prediction modelling in 
Figures S30-S33. Overall, for both datasets, prediction models with structural MRI, including total brain 
and subcortical volume, surface area and cortical thickness, led to the highest level of test-retest 
reliability.  
 
Similar to predictability, combining different sets of MRI features into stacked models mostly gave rise to 
high test-retest reliability. “Stacked: All”, which included all sets of MRI features, resulted in an excellent 
ICC at .79 and .89 for HCP Young Adults and Dunedin Study, respectively. Moreover, we also found the 
boosting effect of stacking even when only fMRI during tasks was included in the models. For instance, 
“Stacked: Task Contrast and Task FC”, which included the contrasts and functional connectivity (FC) 
from all of the fMRI tasks within each dataset, led to an excellent ICC at .8 and .87 for HCP Young 
Adults and Dunedin Study, respectively. Similarly, “Stacked: Task Contrast”, which included the 
contrasts, but not functional connectivity (FC), from all of the fMRI tasks within each dataset, still led to 
an excellent ICC at .77 and .77 for HCP Young Adults and Dunedin Study, respectively. 
 
Among the non-stacked models that predicted cognitive abilities from fMRI (including Task Contrasts, 
Task FC and Rest FC), some models showed a good-to-excellent level of ICC. These include a contrast  
from the language task (ICC=.77) and FC during rest (ICC=.77) in HCP Young Adults and FC during the 
monetary incentive delay (MID) task (ICC=.72) and rest (ICC=.63) in Dunedin Study. Yet, some models 
from fMRI provided a poor level of ICC, including a contrast during the motor task (ICC=.38) in HCP 
Young Adults and FC, a contrast during the MID (ICC=.35) and Stroop (ICC=.28) tasks and FC 
(ICC=.24) during the emotion processing and facename tasks in Dunedin Study. 
 
3. Generalisability 
Figure 10 shows the generalisability among the three datasets. Here we tested the performance of the 
prediction models trained from one dataset in predicting the cognitive abilities of participants from 
another separate dataset, as indicated by Pearson’s correlation (r) between predicted and observed 
cognitive abilities. Given the different fMRI tasks used in different datasets, we only examined the 
generalisability of the prediction models using non-task sets of features (including rest FC, cortical 
thickness, cortical surface area, subcortical volume, total brain volume and their combination, or 
“Stacked: Non Task”). Note that even the fMRI tasks with the same name, “the facename task” and “face 
or emotion processing” tasks were implemented differently across different datasets (see Methods). 
 
The “Stacked: Non Task” model showed generalisability at M=.25 (SD=.06). This level of cross-dataset 
generalisability was significantly better than chance (see the 95%CI in Figure 10) and was similar to, 
albeit numerically smaller than, the within-dataset predictability of the models built from nested cross-
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validation (CV) (M=.4, SD=.05). There were some differences in generalisability among pairs of studies. 
Generalisability was numerically higher between HCP Young Adults and HCP Aging (M=.33, SD=.04), 
as compared to between Dunedin Study and the other two datasets (M=.22, SD=.03). 
 
Similarly, the non-stacked models with non-task sets of features showed generalisability at M=.18 
(SD=.05). Apart from cortical thickness, the generalisability of every other non-task set of features was 
significantly better than chance (see the 95% CI in Figure 10). Additionally, this level of cross-dataset 
generalisability from the non-task sets of features was similar to the within-dataset predictability of the 
models built from nested CV (M=.25, SD=.05). 
 
We also examined the similarity in predicted values among the three datasets. Here we tested the 
Pearson’s correlation (r) in predicted values between the prediction models built from the same dataset 
and those built from another dataset (Figure 10). The “Stacked: Non Task” model showed similarity in 
predicted values at M=.38 (SD= .12). This level of similarity was significantly better than chance (see the 
95%CI in Figure 10). As for the non-stacked models with non-task sets of features, we found the 
similarity in predicted values on average at M=.57 (SD=.11) and all of them were significantly better than 
chance (see the 95%CI in Figure 10). Yet, some non-task sets of features appeared to be stronger in 
similarity than others. For instance, the similarity in predicted values for the total brain volume (M=.92, 
SD=.04) and subcortical volume (M=.84, SD=.09) were numerically higher than those for rest FC (M= 
.29, SD= .10), cortical area (M= .55, SD= .09) and cortical thickness (M= .26, SD= .22). 
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Discussion 
 

Here, we examined stacking as a potential solution for improving BWAS for cognitive abilities in three 
key aspects: predictability, test-retest reliability and generalisability(16, 20, 21). Most BWASs use one 
single modality of MRI to build prediction models, but here, we drew information across different MRI 
modalities via stacking(26). Stacked models demonstrated improvement in all three aspects and 
performed better than any individual modality in isolation. For predictability, stacked models led to high 
predictability, relative to what has been reported in the literature, across the three datasets when 
predicting cognitive abilities at the time of scanning. Notably, using the Dunedin Study, we were able to 
predict participants’ cognitive abilities at ages 7, 9, and 11 using their multimodal MRI at age 45, 
relatively well (r=.52). We found this predictive performance was driven by task contrasts, followed by 
task connectivity, across the three datasets. For test-retest reliability, stacked models reached an excellent 
level of reliability across HCP Young Adults and Dunedin Study, even when we only included fMRI 
during tasks in the models. For generalisability, combining non-task MRI features into a stacked model 
led to models that were applicable to other datasets, giving a level of performance that is better than 
chance. Altogether, the results optimistically support stacking as a viable approach to address the three 
challenges of BWAS for cognitive abilities. 
 
Stacking Improved Predictability 
Combining MRI across different sets of features via stacking consistently and substantially improved 
predictability within each dataset. Indeed, we found this improved predictability across three large-scale 
datasets that varied in age, culture, scanner manufacturer, scanning parameters and cognitive-ability 
assessments(27–29). This is consistent with our previous findings(24, 25). For cognitive abilities at the 
time of scanning, stacked models with all MRI sets of features led to r up to around .6, higher than those 
of non-stacked models in the current study, as well as those reported in a recent meta-analysis (r=.42 with 
CI95%=[0.35,0.50])(15). Moreover, our stacked models that included Task Contrasts along with other 
modalities showed a much higher predictive performance (e.g., r=.604, R2=. 352 based on “Stacked: All”  
with Elastic Net across both layers done on the HCP Young Adults), compared to the stacked models that 
did not include Task fMRI in the current study as well as to the models in a previous study that also 
modelled the data from HCP Young Adults (R2 = .078)(37). This confirms a) that different MRI sets of 
features provide independent but complementary information about individual differences in cognitive 
abilities and b) that Task Contrasts, which are often ignored, could significantly help improve the 
predictive performance.   
 
The superior predictability of Task Contrasts from certain tasks, especially when predicting cognitive 
abilities at the time of scanning, was also consistent with previous work(24, 25, 39, 50). The working-
memory task in HCP Young Adults and the facename task in HCP Aging and Dunedin Study created 
non-stacked models with the highest predictability for each dataset. The more popular MRI modalities, 
Task FC and Rest FC(15), did not perform as strongly as the Task Contrasts from working-memory and 
facename tasks. And structural MRI seemed to provide much poorer predictability across datasets, 
consistent with earlier work(49). It is important to note that not all Task Contrasts produced prediction 
models with high predictability. In fact, the worst prediction models across the three studies were also 
Task Contrasts (e.g., the gambling, CARIT and MID tasks in HCP Young Adults, HCP Aging and 
Dunedin Study, respectively). This suggests the selectivity of the fMRI BOLD activity relevant to events 
for different tasks--some tasks were related to individual differences in cognitive abilities and some tasks 
were not. The best tasks here were related to either working memory or episodic memory, which might 
reflect what was being measured with the cognitive-ability assessments(17, 63), i.e., through NIH 
Toolbox(64) or Wechsler Adult Intelligence Scale (WAIS)(65). Accordingly, to further improve the 
predictability of BWAS for cognitive abilities via task contrasts, future research will need to determine 
which tasks are more relevant to cognitive abilities.  
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We also examined the predictability of stacked models in light of the Dunedin Study’s longitudinal 
measurements for cognitive abilities(28). Stacked models with all MRI sets of features were able to 
predict cognitive abilities, collected 36 years before the scanning time, at a similarly high level of 
performance to those at the time of scanning (r=.55 vs. r=.52, respectively). Yet, when predicting the 
residual scores, the stacked models with all MRI sets of features gave much lower predictability, albeit 
still significant, at r=.17. These residual scores reflect changes in cognitive abilities from childhood to 
middle age, compared to participants’ peers. This pattern of results may suggest that brain information 
revealed by multimodal MRI, obtained in the middle age (i.e., 45 years old), is more related to the stable 
trait of cognitive abilities, but less to the changes over 35 years. Perhaps this is because individual 
differences in cognitive abilities were stable over the lifespan(1), making it easier for multimodal MRI to 
capture their inter-variability over intra-individual variability. Using the Dunedin Study, we indeed found 
a high rank stability of this trait: that childhood cognitive abilities were related to middle-aged cognitive 
abilities at ICC=.78, and that the multimodal MRI predicted values of cognitive abilities based on either 
time points led to very similar scores at r=.94 (see Figure 2F and 2G). Accordingly, if the aim of BWAS 
is to capture the stable trait of cognitive abilities, the current approach of stacking multimodal MRI data 
from one time point seems appropriate.  
 
To explain how each model made predictions, we treated Elastic Net coefficients as indicators of feature 
importance. Examining the feature importance in the stacked models revealed that the top-performing 
modality, specifically the best Task Contrasts, was the strongest contributor. This pattern was consistent 
across datasets. This suggests that the top-performing Task Contrasts, such as the working-memory task 
in HCP Young Adults and the facename task in HCP Aging and the Dunedin Study, provided strong and 
unique contributions to the overall prediction of the stacked models. Examining the feature importance of 
these top-performing Task Contrasts illustrates the contribution from each brain area. We grouped brain 
areas into 13 different networks based on the Cole-Anticevic definition (66). Contributions from different 
brain networks varied depending on the specific Task Contrasts, datasets, and cognitive target variables. 
Nonetheless, some patterns emerged. For instance, Task Contrasts from brain areas within the default 
mode network were mostly associated with negative predicted scores. Conversely, Task Contrasts from 
brain regions within the dorsal attention network were associated with positive predicted scores, including 
cognitive abilities at the time of scanning, cognitive abilities 35 years prior, and the residual scores. 
Accordingly, we demonstrated the contribution from certain networks within the context of the specific 
tasks in predicting cognitive abilities. 
 
Stacking Improved Test-Retest Reliability  
Creating prediction models from separate MRI sets of features and combining them via stacking also 
improved reliability for Dunedin Study(28), especially for Task Contrasts, similar to our previous 
findings(25) with HCP Young Adults(29). This approach, in effect, addresses the poor reliability of Task 
Contrasts, found earlier in the same two datasets(20). That is, previous work(20) focused on the reliability 
of Task Contrasts at specific brain areas from certain tasks and found low test-retest reliability (also 
demonstrated here in Figure S30-31). Here instead of focusing on specific areas, we used multivariate 
methods and stacking to draw information across the whole brain and tasks and found a boost in 
reliability.  Indeed, stacked models that combined only Task Contrasts and that combined Task Contrasts 
and FC together both gave the ICC at excellent levels (i.e., ICC≥.75) across the two datasets.  
 
While the prediction models from structural MRI sets of features, e.g., surface area, total brain volume, 
subcortical volume, led to the highest level of test-retest reliability, these models provided poorer 
predictability for cognitive abilities. This high level of test-retest reliability from structural MRI is not 
surprising since we should not expect drastic changes in brain anatomy in a short period of time, 
assuming no major brain incidents (e.g., concussion or stroke) (20). In contrast, the stacked models from 
Task Contrasts and FC also provided an excellent level of test-retest reliability (albeit not as high as 
structural MRI models), but they gave much higher predictability. Accordingly, future BWAS for 
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cognitive abilities that would like to optimise both reliability and predictability might prefer stacking 
Task Contrasts and FC, or better yet stacking all the MRI data available, rather than relying on structural 
MRI.  
 
Stacking of Non-Task MRI Sets of Features Led to Better-Than-Chance Generalisability 
Unlike predictability and reliability, we could only focus on the Non-Task MRI sets of features (including 
rest FC, cortical thickness, cortical surface area, subcortical volume and total brain volume) for cross-
cohort generalisability, given the differences in fMRI tasks used in each dataset. We found that the 
"Stacked: Non Task" models, built from one dataset, predicted the cognitive abilities of the participants in 
the other two datasets better than chance. Still, if we treated the within-dataset predictability as the ceiling 
of cross-dataset generalisability, the cross-dataset generalisability of the "Stacked: Non Task" Models 
(r=.25) was numerically lower than, the ceiling (r=.4).  
 
One caveat is that the generalisability of the "Stacked: Non Task" models between HCP Young Adults 
and HCP Aging (r=.33) is numerically higher than those between Dunedin Study and the two HCP 
datasets (r=.22). Consistent with this is the numerically higher similarity in predicted values between 
HCP Young Adults and HCP Aging (r=.51) compared to between Dunedin Study and the two HCP 
datasets (r=.32). This may reflect a higher homogeneity between the two HCP datasets. While the two 
HCP datasets differed in the age of participants and certain scanning parameters (e.g., TR length), HCP 
Aging(27) was modelled after the earlier success of HCP Young Adults(29). The two HCP datasets, for 
instance, used the NIH Toolbox(64) to access cognitive abilities, while Dunedin Study(28) used  
WAIS(65). Nonetheless, testing generalisability on Dunedin study that was conducted independently 
from the Human Connectome Projects may provide a more realistic picture of how deployable the 
"Stacked: Non Task" models to indicate cognitive abilities in the real world.  
 
As for the non-stacked models, cross-cohort generalisability was mostly significant, except for cortical 
thickness. This is in line with previous studies focusing on cross-dataset generalisability of Rest FC(55–
57). The generalisability of structural MRI sets of features was more varied. Some structural MRI sets 
gave generalisability close to predictability and provided high similarity in predicted values: total brain 
volume (generalisability=.24, predictability=.23 and similarity=.92) and subcortical brain volume 
(generalisability=.21, predictability=.22 and similarity=.84). But other structural MRI sets did not: 
cortical areas (generalisability=.16, predictability =.27 and similarity=.55) and cortical thickness 
(generalisability=.10, predictability=.23 and similarity r=.26). It is hard to pinpoint whether this is due to 
the differences in scanning parameters between datasets or, instead, due to the nature of the sets of 
features. Future research with a larger number of datasets is needed to pinpoint the characteristics of the 
datasets and/or features that could lead to better generalisability. 
 
Limitations and Future Directions 
The current study has several limitations. First, it would have been desirable to examine the 
generalisability of stacked models involving Task Contrasts and Task FC in all cohorts. Stacked models 
involving Task Contrasts and FC scored high in both predictability (especially when compared to 
"Stacked: Non Task" models) and reliability. The inability to test their generalisability means that we 
cannot know for sure how deployable these highly predictable models are. Thus, for the time being, we 
advise researchers who would like to apply the stacked models with task fMRI on new data to follow the 
procedures of the original datasets as much as possible. This could be task design and scanning 
parameters among others.  
 
Second, we mainly relied on the fMRI tasks and pre-processing pipelines chosen by the original 
investigators of each dataset. However, the fMRI tasks they chose might not be optimised for 
predictability, reliability and generalisability for cognitive abilities. As suggested elsewhere(52), perhaps 
fMRI tasks need to be designed from the ground up, using tools such as item response theory, to ensure 
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that they capture individual differences well. Fortunately, some of the fMRI tasks (e.g., the working-
memory and language tasks) provided relatively high predictability and reliability for cognitive abilities. 
Based on our results, in a situation where optimisation of the tasks is unknown, stacking Task Contrasts 
and Task FC across all of the available fMRI tasks should provide the best performance possible, given 
the choice of the tasks used. Similarly, each dataset’s pre-processing approach might not be optimised for 
BWAS with cognitive abilities as a target. For instance, for Rest FC in HCP Young Adults, we treated a 
choice of the two denoising strategies as another hyperparameter to select from the training sets: the 
investigators’ recommended method, ICA-FIX (67) and an alternative method, aCompCor(68). We found 
that aCompCor(68) performed better in the training sets across different prediction algorithms (see Figure 
S29), despite not being used in the original pre-processing pipeline(29, 69, 70). While using the 
recommended pre-processing pipeline for each dataset allowed for easier reproducibility, we still need to 
test if predictability, reliability and generalisability could be further improved with more refined 
pipelines, optimised for predicting cognitive abilities.  
 
Third, while predictability, reliability and generalisability are important for multimodal MRI to be applied 
as a neural indicator for cognitive abilities(21), other aspects still need to be accomplished for cognitive 
neuroscientists to truly understand the relationship between cognitive abilities and multimodal MRI 
measures. For instance, to reveal how the prediction models draw information from each MRI set of 
features, we need prediction models with good explainability(17, 71). Yet, the current prediction models 
are optimised for predictability, but not explainability. To improve explainability, researchers, for 
instance, may need to tune the models such that each fold provides a similar pattern of feature importance 
or apply a transformation, such as Haufe’s transformation, to improve the feature-importance stability 
(72). However, optimising explainability is beyond the scope of this study. 

 
Conclusions 

Cognitive neuroscientists have long dreamt of the ability to associate individual differences in cognitive 
abilities with brain variations(10). Yet, BWASs need to be improved in their predictability, test-retest 
reliability and generalisability before they can produce a robust neural indicator for cognitive abilities(16, 
20, 21, 73, 74). Based on our benchmark, combining different modalities of MRI into one prediction 
model via stacking seems to be a viable approach to realise this dream of cognitive neuroscientists.  
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Materials and Methods 
 
1. Datasets 
In this study, we used three datasets with 2,131 participants in total (see Figure 1 for their age 
distribution):  
 
1.1. Human Connectome Project Young Adults (HCP Young Adults): HCP Young Adults S1200 
Release included multiple MRI modalities and cognitive measurements from 1,206 healthy participants 
(22-35 years old)(29, 75). We excluded participants with the “A” (anatomical anomalies) or “B” 
(segmentation and surface) flag, with any known major issues(76) or with any incomplete MRI or 
cognitive measurements(25). These exclusions left 873 participants (473 females, M=28.7 (SD=3.7) years 
old) in our analysis. 
 
1.2. Human Connectome Project Aging (HCP Aging): HCP Aging 2.0, released on 24th February 
2021, consisted of ‘typical-aging’ participants, from 36 to 100 years old, without identified pathological 
causes of cognitive decline (e.g., stroke and clinical dementia)(27). This release provided data from 725 
participants. After applying the same exclusion criteria as HCP Young Adults, 504 participants (293 
females, M=57.83 (SD=14.25) years old) remained in our analysis. 
 
1.3. The Dunedin Multidisciplinary Health and Development Study (Dunedin Study): Dunedin 
Study is a longitudinal study of the health and behaviours of 1,037 individuals, born between April 1972 
and March 1973 in Dunedin, a small city in the South Island of New Zealand(28). Dunedin Study has 
conducted many assessments on the participants since birth. The study collected MRI data of multiple 
modalities from 875 participants when they were 45 years old. After excluding incomplete MRI or 
cognitive measurements, 754 participants (373 females) remained in our analysis. 
 
1.4. Test-Retest Subsets: HCP Young Adults and Dunedin Study had a subset of participants who 
completed the entire MRI procedure twice. In HCP Young Adults, 45 participants were scanned M=139 
(SD=67.3) days apart, and the exclusion criteria left 34 participants. In Dunedin Study, 20 participants 
were scanned M=79 (SD=10.4) days apart. 
 
2. Features: Multimodal MRI  
We used the following MRI modalities: task-fMRI contrasts, task-fMRI functional connectivity, resting 
state fMRI connectivity and structural MRI.  
 
2.1. Task-fMRI contrasts (Task Contrasts) 
Task Contrasts reflect fMRI BOLD activity relevant to events in each task. We used Task Contrasts, pre-
processed by each of the three studies. 
 
HCP Young Adults: HCP Young Adults provided complete details of scanning parameters and pre-
processing pipeline elsewhere(29, 69, 70). Briefly, they implemented 720-ms TR, B0 distortion 
correction, motion correction, gradient unwrap, boundary-based co-registration to T1-weighted image, 
non-linear registration to MNI152 space, grand-mean intensity normalization, high-pass filtering with a 
cut-off at sigma = 200s, surface generation and the multimodal alignment protocol (MSMAll)(67). The 
study included seven fMRI tasks, each with two runs with different phase encodings: left-to-right (LR) 
and right-to-left (RL). HCP Young Adults applied a general-linear model (GLM) to combine the two runs 
and computed GLM contrasts in a Connectivity Informatics Technology Initiative (CIFTI) format, 
containing both cortical surface and subcortical volume. We parcellated these contrasts into 379 regions 
of interest (ROIs), consisting of 360 cortical-surface ROIs from the Glasser atlas(67) and 19 subcortical 
ROIs from the Freesurfer’s Automatic subcortical SEGmentation (ASEG) atlas (77). We then extracted 
the average value for each ROI.  
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In each of the seven tasks, we chose only one GLM contrast between the main experimental vs. control 
conditions. The study provided full task descriptions for these conditions in the release documentation(69, 
78). We used the following contrasts: face vs. shape for the face, or emotion-processing, task(79), reward 
vs. punishment for the gambling task(80–83), story vs. math for the language task(84), averaged 
movement vs. cue for the motor task(85–88), relational vs. match for the relational task(89), theory of 
mind vs. random for the social cognition task(90–93) and 2-back vs. 0-back for the working memory 
task(94). Accordingly, we obtained seven sets of 379 (i.e., ROIs) task-contrast features for HCP Young 
Adults. 
 
HCP Aging: HCP Aging used similar scanning parameters and a pre-processing pipeline to HCP Young 
Adults(27, 70, 95). There were a few differences: task fMRI was collected using TR at 800 ms (as 
opposed to 720 ms) and using the posterior-to-anterior (PA) phase (as opposed to LR and RL), and the 
investigators applied linear detrend (as opposed to high-pass filtered cut-off at sigma = 200s ) and ICA-
FIX(67).  
 
HCP Aging did not provide task contrasts, but rather pre-processed time series in the CIFTI format for 
each task. To extract task contracts from the time series, we applied the “fake” NIFTI approach(96) using 
FMRI Expert Analysis Tool (FEAT) from FMRIB Software Library (FSL)(97). Here we first transformed 
the CIFTI file into a 32767x3 NIFTI array, then conducted GLM and converted the output contrasts back 
into the CIFTI format. For the GLM, we modified the fsf-template file, given by the HCP Aging 
(https://github.com/Washington-University/HCPpipelines/tree/master/Examples/fsf_templates/HCP-
Aging). Specifically, we regressed the time series on the convolved task events using a double-gamma 
canonical hemodynamic response function (HRF). We used a default high pass cut-off in FSL at sigma = 
200s. Similar to HCP Young Adults, we parcellated the contrasts into 379 ROIs using the Glasser(67) and 
ASEG(77) atlases for cortical and subcortical regions, respectively. 
 
HCP Aging included three fMRI tasks(27). Similar to HCP Young Adults, we chose GLM contrasts 
between the main experimental vs. control conditions. We used the following contrasts for each task: 
encoding vs. distractor, recall vs. distractor and encoding vs. recall for the facename task(98–100), NoGo 
vs. Go for the Conditioned Approach Response Inhibition Task (CARIT) go-nogo task (101), and 
stimulus vs. baseline for the visual motor (VisMotor) task(27). Note the facename task taps into episodic 
memory. There were three blocks: “Encoding” when participants needed to memorise the names of faces, 
“Distractor” when participants were distracted by an irrelevant task and “Recall” when participants 
needed to recall the names of the previously shown faces. Because each block reflects different processes 
of episodic memory, we chose all possible pairs of contrasts for this task. Accordingly, we obtained five 
sets of 379 task-contrast features for HCP Aging. 
 
Dunedin Study: Dunedin Study provided complete details of the scanning parameters and pre-processing 
pipeline elsewhere(20, 53). Briefly, the Dunedin Study investigators implemented 2000-ms TR, B0 
distortions correction(102), despike(103), slice-timing and motion correction(103), boundary-based co-
registration to T1-weighted image(104) and non-linear registration to MNI space(105, 106). The study 
applied a general-linear model (GLM) using the AFNI 3dREMLfit(103)and applied the HCP Minimal 
Preprocessing Pipeline (MPP) (https://github.com/Washington-University/HCPpipelines/releases) to 
project the contrast images into Cifti format. Similar to the HCP Young Adults and HCP Aging, the study 
parcellated the contrasts into 379 ROIs using the Glasser(67) and ASEG(77) atlases using the Ciftify 
toolbox (https://github.com/edickie/ciftify). 
 
Dunedin Study included four fMRI tasks(20). The study provided us with the following contrasts: 
encoding vs. distractor for the facename task(100), face vs. shape for the face, or emotion processing, 
task(79), gain vs. neutral anticipation for the monetary incentive delay (MID) task(107) (see 
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https://www.haririlab.com/methods/dbis_vs.html) and incongruent vs. congruent for the Stroop task (see 
https://www.haririlab.com/methods/dbis_control.html).  Note the facename task in Dunedin Study was 
different from that in HCP Aging. During “Distractor”, participants in the Dunedin study had to perform 
an odd/even-number identification task (https://www.haririlab.com/methods/dbis_hippocampus.html) 
whereas participants in the HCP Aging had to perform a Go/NoGo task(27, 100). The face, or emotion 
processing, task in Dunedin Study was also different from that in HCP Young Adults. The Dunedin Study 
version included four different facial expressions: fearful, angry, surprised or neutral (see 
https://www.haririlab.com/methods/dbis_amygdala.html) and lasted 6:40 minutes, whereas the HCP 
Young Adults version had only two facial expressions: angry and fearful and lasted only 2:16 minutes. 
Altogether, we obtained four sets of 379 task-contrast features for Dunedin Study. 
 
2.2. Task-fMRI functional connectivity (Task FC) 
Task FC reflects functional connectivity during each task. Studies have considered task FC as an 
important source of individual differences(53, 108, 109). As opposed to creating contrasts from fMRI 
time series during each task as in Task Contrasts, here we computed functional connectivity, controlling 
for HRF-convolved events from each task. 
 
HCP Young Adults: Because HCP Young Adults did not provide denoised fMRI time series for each 
task, we denoised the time series ourselves. We first converted raw task fMRI data into Brain Imaging 
Data Structure (BIDS)(110) using the hcp2bids function from MICA (https://github.com/MICA-
MNI/micapipe-supplementary/blob/main/functions/hcp2bids). To pre-process the BIDS data, we applied 
fMRIPrep(111, 112) without slice-timing correction. We then used  XCP-D(113) to further process the 
data. Specifically, we used the aCompCor(68) flag and created customised regressors for task events, 
leaving the following regressors of no interest in our GLM: HRF-convolved task events, 12 motion 
estimates (i.e., x, y, z rotation and translation and their derivatives), five white-matter and five 
cerebrospinal fluid aCompCor components, a linear trend, a cosine (1/128Hz) and an intercept. We, then, 
concatenated LR and RL runs and parcellated the time series into 379 ROIs using the Glasser(67) and 
ASEG(77) atlases. Subsequently, we computed r-to-z transformed Pearson’s correlations across all 
possible pairs, resulting in 71,631 non-overlapping FC indices for each task. To reduce the dimensionality 
of task FC, we applied principal component analysis (PCA) of 75 components (37, 39, 114). To avoid 
data leakage, we conducted PCA on each training set and applied its definition to the corresponding test 
set. Note we calculated task FC for all of the tasks in HCP Young Adults except the emotion processing 
task due to its short duration (2:16 mins). Accordingly, we obtained six sets of 75 task FC features for 
HCP Young Adults. 
 
HCP Aging: Unlike HCP Young Adults, the fMRI time series for each task in HCP Aging was denoised 
by ICA-FIX(67). Accordingly, we did not implement fMRIprep(111, 112)  and XCP-D(113) to clean the 
HCP Aging time series further. Instead, we only regressed out the HRF-convolved task events from the 
time series and applied a high-pass filter at 0.008 Hz following previous work(53) using nilearn(115). For 
each of the three tasks, we applied the same parcellation, Pearson’s correlation, r-to-z transformation and 
PCA as we did for HCP Young Adults. Accordingly, we obtained three sets of 75 task FC features for 
HCP Aging. 
 
Dunedin Study: The study provided denoised time series and details on their denoising strategies 
elsewhere(53). Briefly, they applied the following regressors of no interest in their GLM: 12 motion 
estimates with derivatives, five CompCor components from white-matter and from cerebrospinal 
fluid(68), the mean global signal, and task-evoked coactivations via AFNI TENT(103). The study also 
implemented bandpass filtering between 0.008 and 0.1 Hz and censored motion artefacts with thresholds 
of 0.35-mm framewise displacement and 1.55 standardised DVARS. For each of the four tasks, we used 
the same parcellation, Pearson’s correlation, r-to-z transformation and PCA as we did for HCP Young 
Adults and HCP Aging. Accordingly, we obtained four sets of 75 task FC features for Dunedin Study. 
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2.3. Resting-state fMRI functional connectivity (Rest FC) 
Rest FC reflects functional connectivity during rest. Both HCP Young Adults and HCP Aging included 
four runs of rest FC, each at 14:33 min and 6:42 min long, respectively. Dunedin Study included only one 
run of rest FC with 8:16 min long.  
 
HCP Young Adults: We applied two denoising strategies on the fMRI time series during rest. The first 
strategy was ICA-FIX(67) which was done by the study. Specifically, we high-pass-filtered the provided 
ICA-FIX-denoised time series at 0.008Hz using nilearn(115) and concatenated them across four runs. The 
second strategy was aCompCor(68). We applied the same pre-processing steps on rest FC as we did on 
task FC for HCP Young Adults (see above), except that here we did not use HRF-convolved task events 
as regressors of no interest since there were no events. We chose to apply this aCompCor strategy in 
addition to ICA-FIX, so that rest FC and task FC for HCP Young Adults were consistent with each other.  
 
HCP Aging: The study applied ICA-FIX(67) to denoise fMRI time series during both rest and tasks, 
meaning that the denoising strategies done by the study for rest FC and task FC were already consistent 
with each other. Accordingly, we only used ICA-FIX(67) here. Like HCP Young Adults, we further 
applied high-pass filtered at 0.008Hz on the provided ICA-FIX-denoised time series and concatenated 
them across four runs. 
 
Dunedin Study: The Dunedin Study investigators applied the same denoising strategies to Rest FC as 
they did to Task FC(53) (see above), leaving bandpass-filtered time series.  
 
For each of the three datasets, we took the denoised, filtered time series and applied the same parcellation, 
Pearson’s correlation, r-to-z transformation and PCA as we did for Task FC. Accordingly, we obtained 
one set of 75 rest FC features for each of the datasets. 
 
2.4. Structural MRI 
Structural MRI reflects individual differences in brain anatomy. The three studies applied Freesurfer(77) 
to quantify these individual differences. Here we focused on four sets of features: cortical thickness, 
cortical surface area, subcortical volume and total brain volume. For cortical thickness and cortical 
surface area, we parcellated the cortical regions into 148 ROIs using the Destrieux atlas(116), leaving two 
sets of 148 features. For subcortical volume, we parcellated the subcortical regions into 19 ROIs using the 
ASEG atlas(77), leaving one set of 19 features. For total brain volume, we included five summary 
statistics from Freesurfer(77): total cortical grey matter volume (FS_TotCort_GM_Vol), total cortical 
white matter volume (FS_Tot_WM_Vol), total subcortical grey matter volume (FS_SubCort_GM_Vol), 
estimated intra-cranial volume (FS_IntraCranial_Vol) and ratio of brain segmentation volume to 
estimated total intracranial volume (FS_BrainSegVol_eTIV_Ratio). This left another set of five features. 
 
3. Target: Cognitive abilities 
Cognitive abilities were measured outside of the MRI. HCP Young Adults and HCP Aging measured 
cognitive abilities using the NIH Toolbox (64). Here we used a summary score (CogTotalComp_Unadj) 
that covered behavioural performance from several tasks, including picture sequence memory, Flanker, 
list sorting, dimensional change card sort, pattern comparison, reading tests and picture vocabulary. 
 
Dunedin Study measured cognitive abilities in several visits. We computed three scores and used them as 
separate targets. The first score is cognitive abilities, collected as part of the MRI visit at 45 years old via 
the Wechsler Adult Intelligence Scale (WAIS) IV scale(65). The second score is cognitive abilities, 
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averaged across 7, 9 and 11 years old, collected using the Wechsler Intelligence Scale for Children - 
Revised (WISC-R)(117). The third score is the residual scores for the cognitive abilities(62), calculated as 
follows. We, first, used linear regression to predict cognitive abilities at 45 years old from cognitive 
abilities at 7, 9, and 11 years old. We, then, subtracted the predicted values of this linear regression from 
the actual cognitive abilities at 45 years old, creating the residual cognitive abilities. Negative scores of 
these residual cognitive abilities reflect a stronger decline in cognitive abilities, as expected from 
childhood cognitive abilities, compared to participants’ peers. Note see Prediction models below for our 
approach to prevent data leakage when calculating this residual score. 
 
4. Prediction models  
Similar to our previous work(25), we employed nested cross-validation (CV) to predict cognitive abilities 
from multimodal MRI data (see Figure 1). Initially, we divided the data from each study into outer folds. 
The number of outer folds was determined to ensure at least 100 participants per fold. Consequently, we 
had eight outer folds for HCP Young Adults, five for HCP Aging, and seven for the Dunedin Study. For 
HCP Young Adults, which included participants from the same families, we created the eight outer folds 
based on approximately 50 family groups, ensuring that members of the same family were in the same 
outer fold.  
 
We then iterated through the outer folds, treating one fold as the test set and the remaining folds as the 
training set. This approach resulted in around 100 participants in each outer-fold test set for all three 
studies, with approximately 700, 400, and 600 participants in the outer-fold training sets for HCP Young 
Adults, HCP Aging, and the Dunedin Study, respectively.  Next, we split each outer-fold training set into 
five inner folds. We iterated through these inner folds to tune the hyperparameters of the prediction 
models, selecting the final models based on the coefficient of determination (R²), a default option in 
sklearn. To prevent data leakage between the outer-fold training and test sets when calculating residual 
scores for cognitive abilities in the Dunedin Study, we created linear regression models to predict 
cognitive abilities at age 45 from abilities at ages 7, 9, and 11 using the outer-fold training set, and applied 
these models to the corresponding outer-fold test set. 
 
Apart from using each of the sets of multimodal MRI features in separate prediction models, known as 
“non-stacked” models, we also combined different sets together via stacking, known as “stacked” models 
(see Figure 1). Here, we first computed predicted values from different sets of features from each outer-
fold training set. We then treated these predicted values as features to predict cognitive abilities, creating 
the stacked models. We tuned these stacked models using the same inner-fold CV as the non-stacked 
models. Accordingly, the training of stacked and non-stacked models did not involve outer-fold test sets, 
preventing data leakage. We created eight stacked models: “Task Contrast” including Task Contrasts 
from all of the tasks, “Task FC” including Task FC from all of the tasks, “Non Task” including Rest FC 
and structural MRI, “Task Contrast & FC” including task contrasts and task FC from all of the tasks, 
“All” including all sets of features, “All excluding Task Contrast” including every set of features except 
Task Contrasts, “All, excluding Task FC” including every set of features except Task FC, “Resting and 
Task FC” including FC during rest and tasks. Note that we used two strategies, ICA-FIX(67) and 
aCompCor(68), to denoise Rest FC for HCP Young Adults. We ultimately picked aCompCor(68) to be 
included in the stacked models since it led to a better predictive performance in the outer-fold training 
sets (see Figure S29).  
 
We applied corrections to reduce the influences of potential confounds. First, for all three studies, we 
controlled for biological sex by residualising biological sex from all MRI features and cognitive abilities. 
For HCP Young Adults and HCP Aging, we also controlled for age, in addition to biological sex, from all 
MRI features and cognitive abilities. We did not control for age in Dunedin Study because all of the 
participants were scanned at around 45 years old. Additionally, we residualised motion (average of 
relative displacement, Movement_RelativeRMS_mean) from task contrasts for HCP Young Adults and 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.05.03.589404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.03.589404
http://creativecommons.org/licenses/by-nc/4.0/


  
 

 18 
 

Dunedin Study.  We did not residualise motion from task contrasts for HCP Aging as well as task FC and 
rest FC for all studies since either ICA-FIX(67) or aCompCor(68) was already applied to each participant. 
We also standardised all MRI features. To avoid data leakage, we first applied all residualisation and 
standardisation on each outer-fold training set. We then applied the parameters of these residualisation 
and standardisation to the corresponding outer-fold test set. 
 
As in our previous article(25), we implemented four multivariate, predictive-modelling algorithms via 
Scikit-learn (118): Elastic Net(58), Support Vector Regression (SVR)(59, 119), Random Forest(60) and 
XGBoost(61). For stacked models, we needed to apply the algorithm to two layers: 1) non-stacked layer 
(Step 1, Figure 1), or on each set of features and 2) stacked layer (Step 2, Figure 1), or on the predicted 
values from each set. Accordingly, we implemented 16 (i.e., four-by-four across two layers) combinations 
of algorithms for the stacked models.   
 
Elastic Net(58) is a general form of penalized regression. Elastic Net has two hyperparameters: 1) 'α', 
determining the degree of penalty to the sum of the feature's slopes and 2) 'l1 ratio', determining the 
degree to which the sum of either the squared (known as ‘Ridge’; l1 ratio=0) or absolute (known as 
‘Lasso’; l1 ratio=1) slopes is penalised. We performed a logarithmic scale grid search on the 70 possible α 
values, ranging from 10−1 to 102, and a linear scale grid search on the 25 possible l1 ratio values, ranging 
from 0 to 1. 
 
Support Vector Regression (SVR) (59, 119) is a kernel-based algorithm. Unlike Elastic Net, SVR with 
the Radial Basis Function (RBF) allows for non-linearity between each feature and the target and 
interaction among features. We tuned the following hyperparameters: 1) ‘ε’, determining the margin of 
tolerance where no penalty is given to errors, 2) ‘γ’, determining the kernel coefficient, 3) ‘C’ or 
‘complexity,’ determining penalty for high complexity. We performed a linear scale grid search on the 10 
possible ε values, ranging from 0.02 to 0.22. We also performed a grid search on 20 possible γ values, 
using the following set: 10-8, 10-7, 10-6, 10-5, 10-4, 10-3, 3*10-8, 3*10-7, 3*10-6, 3*10-5, 3*10-4, 3*10-3, 6*10-

8, 6*10-7, 6*10-6, 6*10-5, 6*10-4, 6*10-3 as well as one over the multiplication of the number of features 
and variance of features (known as ‘scale’ in sklearn) and one over the number of features (known as 
‘auto’ in sklearn). Finally, we also performed a grid search on eight possible C values using the following 
set: 1, 6, 9, 10, 12, 15, 20 and 50. 
 
Random Forest(60) is a tree-based algorithm. The algorithm bootstraps observations and incorporates a 
random subset of features at each split of tree building. The algorithm made predictions based on an 
aggregation of predicted values across bootstrapped trees. Like SVR with RBF, Random Forest allows for 
a non-linear relationship between each feature and the target and for interactions amongst features. Here 
we used 5000 trees (‘n_estimators’) and tuned two hyperparameters: 1) ‘max_depth’, determining the 
maximum depth of each tree and 2) ‘max_feature’, determining the number of features that are randomly 
sampled at each split. We performed a grid search for 10 possible max_depth values, using the integers 
ranging from 1 to 10. We also performed a grid search for three possible max_feature values: the number 
of features itself, the square root of the number of features and log-based 2 of the number of features. 
 
XGBoost(61) is another tree-based algorithm, which also allows for non-linearity and interaction. It 
generates sequential trees where a current tree adapts from the gradients of previous trees. We used 
‘gbtree’ as a booster and tuned four hyperparameters: 1) ‘max_depth’, determining the maximum depth of 
each tree, 2) ‘γ’, determining a minimum loss reduction required to make a further partition on a leaf node 
of the tree, 3) ‘subsample’, determining the ratio of the training instance, 4) ‘learning_rate’, determining 
the speed of tree adaptation. We performed a linear scale grid search on nine possible max_depth values 
using integers, ranging from 1 to 9. We also performed a logarithmic scale grid search on the six possible 
γ values, ranging from 10-5 to 0.7. Next, we performed a grid search on three possible subsample values: 
0.6, 0.8 and 1. Lastly, performed a logarithmic scale grid search on the five learning_rate values, ranging 
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from 10-5 to 10-0.1. For other hyperparameters, we used their default values (see 
https://xgboost.readthedocs.io/). 
 
5. Predictability  
To evaluate the predictability of prediction models, we computed the predicted values of the models at 
each outer-fold test set and compared them with the observed cognitive abilities. We calculated three 
performance indices for predictability: Pearson's correlation (r), the coefficient of determination (R2) and 
mean absolute error (MAE). Note for R2, we applied the sum of squares definition (i.e., R2 = 1 – (sum of 
squares residuals/total sum of squares)) and not the square of r, following a previous 
recommendation(31).  
 
To quantify the uncertainty around these performance indices, we calculated bootstrapped 95% 
confidence intervals (CI)(120). Here, we combined predicted and observed cognitive abilities across 
outer-fold test sets, sampled these values with replacement 5,000 times and computed the three 
performance indices each time, giving us a bootstrapped distribution for each index. If the 95% CI of the r 
or R2 bootstrapped distribution were higher than zero, then the predictability from a particular prediction 
model was better than chance.  
 
To compare predictability among prediction models, we also used the bootstrapping approach(120). 
Similar to the above, we sampled, with replacement for 5,000 times, the observed cognitive abilities along 
with their predicted values from different prediction models across outer-fold test sets. In each sample, we 
computed each performance index of each prediction model and subtracted this index from that of the 
prediction model with the highest predictability of each dataset. If the 95% CI of this distribution of the 
subtractions were higher than zero, then we concluded that the prediction model we tested had 
significantly poorer performance than the prediction model with the highest predictability. We applied 
this approach separately for non-stacked and stacked models, allowing us to evaluate the best non-stacked 
and stacked models for each dataset. 
 
To understand how the prediction models drew information across multimodal MRI features, we plotted 
Elastic-Net coefficients. We chose Elastic-Net coefficients because 1) Elastic Net led to high 
predictability, as high as or higher than other algorithms (see Results), and 2) the Elastic Net coefficients 
are readily interpretable. Elastic Net creates a predicted value from a weighted sum of features, and 
therefore a stronger magnitude of an Elastic Net coefficient means a higher contribution to the prediction.    
 
Our use of nested CV led to separate Elastic-Net models, one for each outer fold, making it hard to 
visualise Elastic-Net coefficients across all participants in each dataset. To address this, we retrained 
Elastic Net using the whole data (i.e., without splitting the data into outer folds) in each dataset and 
applied five CVs to tune the model. We then plotted the Elastic-Net coefficients on brain images using 
brainspace(121) and nilearn(115). Note we modelled Task FC and Rest FC after reducing their dimension 
via PCA. To extract the feature importance at each ROI-pair index, we multiplied the absolute PCA 
scores with Elastic Net coefficients and then summed the multiplied values across the 75 components, 
resulting in 71,631 ROI-pair indices. 
 
6. Test-Retest Reliability 
Given the high predictability of Elastic Net (see Figures S17-26), we evaluated the test-retest reliability of 
the prediction models based on Elastic Net. To evaluate test-retest reliability, we used HCP Young Adults 
and Dunedin Study test-retest subjects (i.e., participants who were scanned twice) as the test set and the 
rest of the participants in each dataset as a training set. Within the training set, we used the same five CVs 
to tune the Elastic Net models, as described above. We then examined the test-retest reliability of the 
predicted values between the first and second MRI sessions, as quantified by intraclass correlation (ICC) 
3,1(122) via pingouin (https://pingouin-stats.org/):  
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where MSp is mean square for participants, MSe is mean square for error, and k is the number of time 
points. We used the following criteria to interpret ICC(123). ICC < 0.4 as poor, ICC ≥ 0.4 and < 0.6 as 
fair, ICC ≥ 0.6 and < 0.75 as good and ICC ≥ 0.75 as excellent reliability. 
 
7. Generalisability 

Similar to test-retest reliability, we evaluated the generalisability of the prediction models based on 
Elastic Net given the high predictability of Elastic Net based on bootstrapped comparisons (see Figures 
S17-26). For features, because the three datasets used mostly different fMRI tasks, we focused on the 
generalisability of non-task sets of features (including rest FC, cortical thickness, cortical surface area, 
subcortical volume and total brain volume) and their stacked model, “Stacked: Non Task”. For the target, 
we standardised cognitive abilities using a Z-score within each dataset, so that the target for each dataset 
was at the same standardised scale before model fitting. This is because Dunedin Study used WAIS-IV 
for measuring cognitive abilities, while HCP-YA and HCP-A used NIH toolbox(64). Note, for Dunedin 
Study, we only focused on cognitive abilities collected during the MRI visit at age 45 (as opposed to 
during earlier visits) as the target, given that the other two studies only provided cognitive abilities during 
the MRI visit.  

To evaluate generalisability across datasets, we treated one of the three datasets as a training set and the 
other two as two separate test sets. We computed the predicted values of the models at each test dataset 
and compared them with the observed cognitive abilities using Pearson's correlation (r). To examine if the 
generalisability was statistically significant, we bootstrapped r 5000 times. If the 95% bootstrapped CI 
were higher than zero, the r was statistically significantly better than chance. We also compared 
generalisability across datasets to predictability within each dataset using nested CVs. For predictability 
within each dataset, we combined predicted values across outer test sets and compared them with the 
observed cognitive abilities. We considered the predictability within each dataset as the ceiling of how 
high generalisability across datasets could be.  
 
To further understand the extent to which the prediction models built from one dataset are different from 
those built from another, we also examined the similarity between predictive values. Here, using 
Pearson's correlation (r), we compared the correlation in predictive values from the prediction models 
built from the same dataset and those built from another dataset. Similar to generalisability, to test if the 
similarity between predictive values was statistically significant, we bootstrapped r 5000 times. If the 
95% bootstrapped CI were higher than zero, the r was statistically significantly better than chance. 
 
Data sharing plans 
 
All codes are available at https://github.com/HAM-lab-Otago-University/Predictability-Reliability-
Generalizability.  
 
Instructions for data access can be found here:  
HCP Young Adults https://www.humanconnectome.org/study/hcp-young-adult,  
HCP Aging https://www.humanconnectome.org/study/hcp-lifespan-aging and  
Dunedin Study https://dunedinstudy.otago.ac.nz/.  
 
While we did not preregister our data-analysis plan for HCP Young Adults and HCP Aging, we 
preregistered our plan to test predictability and test-retest reliability for the Dunedin study prior to having 
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access to the dataset at 
https://dunedinstudy.otago.ac.nz/files/1639954373_Pat%20Multimodal%20brain%20concept%20paper_
NP%20TEMsigned.docx.pdf. 
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Figure and Figure Legends 

 

 

Figure 1. Overview of Study Methodology.  We used three datasets: Human Connectome Project Young
Adults (HCP Young Adults), Human Connectome Project Aging (HCP Aging) and Dunedin
Multidisciplinary Health and Development Study (Dunedin Study). A) Machine Learning Pipeline. Here,
we depict the process we used for building prediction models for testing predictability within each
dataset. Briefly, we used nested cross-validation (CV) by splitting the data into outer folds with around
100 participants in each. In each outer-fold CV loop, we then treated one of the outer folds as an outer-
fold test set and treated the rest as an outer-fold training set. We then divided each outer-fold training set
into five inner folds and applied inner-fold CV to build prediction models in three steps. In the first step
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(known as a non-stacking layer), one of the inner folds was treated as an inner-fold validation set, and 
the rest was treated as an inner-fold training set in each inner-fold CV. We used grid search to tune 
prediction models for each set of features. In the second step (known as a stacking layer), we treated 
different combinations of the predicted values from separate sets of features as features to predict the 
cognitive abilities in separate “stacked” models. In the third step, we applied the already tuned models 
from the first and second steps to the outer-fold test set. B) Predictability. Here, we examined the 
predictive performance across outer-fold test sets within each dataset. C) Test-Retest Reliability. Here, 
we used HCP Young Adults and Dunedin Study and treated participants who were scanned twice across 
MRI sessions as the test set and the rest as the training set. We then examined the intraclass correlation 
(ICC) of the predicted values in the test set between the first and second MRI sessions. D) 
Generalisability. Here, we examined the predictive performance of the models built from a different 
dataset. We treated one of the three datasets as a training set and the other two as two separate test sets. 
E) Age Distribution. Here, we show the age of participants at the time of scanning in each dataset. 
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Figure 2. Dense scatter plot illustrating observed and predicted cognitive abilities (Z scores) using
Stacked-All models with Elastic Net across two layers. Stacked All include all sets of MRI features.
Panels A-E show predicted versus observed cognitive abilities across different datasets. Panel F presents
observed cognitive abilities at ages 7, 9, and 11 compared to age 45 from the Dunedin Study. Panel G
displays predicted cognitive abilities at ages 7, 9, and 11 compared to age 45 from the Dunedin Study.
ICC=Interclass Correlation. 
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Figure 3. Predictability (Pearson’s correlation, r) of stacked and non-stacked models for each 
predictive-modelling algorithm and dataset. Higher is better. Each dot represents predictive 
performance at each outer-fold test set. For the coefficient of determination (R2) and mean absolute error 
(MAE), see Figures S1-S2, respectively. Note that, for the stacked models, we only showed those with the 
same predictive algorithm across both layers here. For stacked models with different predictive 
algorithms between layers, please see Figures S3-S8. For Dunedin Study, childhood scores reflect 
cognitive abilities, averaged across 7, 9 and 11 years old, and negative residual scores reflect a stronger 
decline in cognitive abilities, as expected from childhood cognitive abilities, compared to participants’ 
peers. SVR = Support Vector Regression; XGB = XGBoost; FC = Functional Connectivity.  
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Figure 4. Bootstrapped predictability (Pearson’s correlation, r) of stacked and non-stacked models for 
each predictive-modelling algorithm and dataset. Higher is better. Each dot and bar represent the 
median and 95% confidence intervals (CI) of bootstrapped distributions, respectively. If 95% CI was 
higher than zero (indicated by the black colour), then predictability from a particular prediction model 
was better than chance. For the coefficient of determination (R2) and mean absolute error (MAE), see 
Figures S9-S10, respectively. Note that, for the stacked models here, we only showed those with the same 
predictive algorithm across both layers. For stacked models with different predictive algorithms between 
layers, please see Figures S11-S16. For Dunedin Study, childhood scores reflect cognitive abilities, 
averaged across 7, 9 and 11 years old, and negative residual scores reflect a stronger decline in cognitive 
abilities, as expected from childhood cognitive abilities, compared to participants’ peers. SVR = Support 
Vector Regression; XGB = XGBoost; FC = Functional Connectivity.  
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Figure 5. Feature importance of the top-performing non-stacked models with with Elastic Net, as
indicated by Elastic Net coefficients. We grouped brain ROIs from the Glasser atlas (67) into 13
networks based on the Cole-Anticevic brain networks (66). In each figure, the networks are ranked by the
mean Elastic Net coefficients, with the rankings shown to the right of each figure. The network partition
illustration is sourced from the Actflow Toolbox https://colelab.github.io/ActflowToolbox/. We provide
actual values of the feature importance in Table S1-10. 
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Figure 6. Feature importance of stacked models with Elastic Net, indicated by Elastic Net Coefficients,
for each dataset, when predicting cognitive abilities at the time of scanning. A higher magnitude of a
coefficient indicates a stronger contribution to the prediction. FC = Functional Connectivity 
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Figure 7. Test-retest reliability of the predicted values of the stacked and non-stacked models, indicated
by Interclass Correlation (ICC) for HCP Young Adults and Dunedin Study. Each dot represents ICC,
while each bar represents a 95% Confidence Interval. 
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Figure 8. Predicted values of stacked and non-stacked models across two scanning sessions, ranked by
interclass correlation (ICC) for HCP Young Adults. Each line represents each participant. Lines would
be completely parallel with each other in the case of perfect test-retest reliability. 
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Figure 9. Predicted values of stacked and non-stacked models across two scanning sessions, ranked by
interclass correlation (ICC) for Dunedin Study. Each line represents each participant. Lines would be
completely parallel with each other in the case of perfect test-retest reliability. 
 
 
 

by 
be 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2024. ; https://doi.org/10.1101/2024.05.03.589404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.03.589404
http://creativecommons.org/licenses/by-nc/4.0/


  
 

 43 
 

 

Figure 10. Generalisability and similarity in predicted values among the three datasets, as indicated by
Pearson’s correlation, r.  Note that due to the different tasks used in different datasets, we only examined
the generalisability of prediction models built from non-task sets of features (including rest FC, cortical
thickness, cortical surface area, subcortical volume, total brain volume and their combination, or
“Stacked: Non Task”). For generalisability, the off-diagonal values reflect the level of generalisability
from one dataset to another, while the diagonal values reflect the predictability of the models built from
the same dataset via nested cross-validation (CV). For the similarity in predicted values, the off-diagonal
values reflect the level of similarity in predicted values between two datasets. Higher values are better.
The values in square blankets reflect a bootstrapped 95% Confidence Interval (CI). If 95% CI did not
include zero, then generalisability/similarity in predictive values was better than chance. HCP-YA = HCP
Young Adults; HCP-A = HCP Aging; DUD = Dunedin Study. 
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