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ABSTRACT 22 

 23 

Physical exercise represents a primary defense against age-related cognitive decline and 24 

neurodegenerative disorders like Alzheimer's disease (AD). To impartially investigate the underlying 25 

mechanisms, we conducted single-nucleus transcriptomic and chromatin accessibility analyses 26 

(snRNA-seq and ATAC-seq) on the hippocampus of mice carrying AD-linked NL-G-F mutations in 27 

the amyloid precursor protein gene (APPNL-G-F) following prolonged voluntary wheel-running 28 

exercise. Our study reveals that exercise mitigates amyloid-induced changes in both transcriptomic 29 

expression and chromatin accessibility through cell type-specific transcriptional regulatory networks. 30 

These networks converge on the activation of growth factor signaling pathways, particularly the 31 

epidermal growth factor receptor (EGFR) and insulin signaling, correlating with an increased 32 

proportion of immature dentate granule cells and oligodendrocytes. Notably, the beneficial effects of 33 

exercise on neurocognitive functions can be blocked by pharmacological inhibition of EGFR and the 34 

downstream phosphoinositide 3-kinases (PI3K). Furthermore, exercise leads to elevated levels of 35 

heparin-binding EGF (HB-EGF) in the blood, and intranasal administration of HB-EGF enhances 36 

memory function in sedentary APPNL-G-F mice. These findings offer a panoramic delineation of cell 37 

type-specific hippocampal transcriptional networks activated by exercise and suggest EGF-related 38 

growth factor signaling as a druggable contributor to exercise-induced memory enhancement, 39 

thereby suggesting therapeutic avenues for combatting AD-related cognitive decline. 40 

 41 

 42 

INTRODUCTION 43 

 44 

The beneficial effects of physical exercise on neurocognition are widely observed in human patients 45 

with Alzheimer's disease (AD) and animal models1. The underlying mechanisms are not completely 46 

understood and likely multifaceted through a combination of metabolic, endocrine, immunological, 47 

and neuronal changes2,3. Transcriptional regulation is particularly interesting because it is a general 48 

component of signaling pathways elicited by metabolic, hormonal, or neuronal cues, which is 49 

implicated in neurodegenerative diseases such as AD4. In addition, transcriptional regulation has a 50 

relatively long-lasting effect compared to allosteric regulation or posttranslational modifications of 51 

proteins, which is temporally in keeping with the long-lasting effects of physical exercise on 52 

neurocognition5. Considering that the hippocampus controls memory and that memory dysfunction 53 

is a hallmark feature of cognitive decline in AD, we performed single-nucleus multi-omics analyses 54 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2024. ; https://doi.org/10.1101/2024.05.02.592289doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.02.592289
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

of the hippocampus to provide a panoramic view of the transcriptomic and chromatin accessibility 55 

responses to long-term physical exercise. 56 

 57 

METHODS 58 

 59 

Mice 60 

C57BL/6J wild-type (WT) and APPNL-G-F mice were housed in standard 12 h light/ 12 h dark 61 

conditions. For wheel-running, mice were put into cages with a running wheel. The sedentary 62 

control group was put into the same type of cages but with a locked wheel. Two mice were housed 63 

per cage to avoid social isolation except when mice must be separated and singly housed 64 

occasionally due to bullying or fighting. The wheel-running activity was monitored in real time by the 65 

Actimetrics ClockLab data collection system. Gefitinib (AdooQ Bioscience A10422) and Wortmannin 66 

(AdooQ Bioscience A11161) were dissolved in DMSO and diluted in saline, followed by oral gavage 67 

at 50 mg/kg and 0.5 mg/kg, respectively, once every other day. Recombinant mouse HB-EGF 68 

protein (Novus NBP2-35069) was dissolved in saline and administered intranasally in awake mice 69 

at 3 ug/mouse (around 100 ug/kg) with pipettor at about 3 ul per nostril with alternating rest periods 70 

and a total administration volume of 10 ul per day6. The sex, age, and duration of the running were 71 

indicated in figure legends for each experiment. Animal protocols were approved by the Institutional 72 

Animal Care & Use Committee (IACUC) at Baylor College of Medicine. 73 

 74 

Behavioral tests 75 

All the behavior tests were carried out between 12 PM and 7 PM in a dim light environment (300 76 

lumens) except the light-dark test. For the object-in-place test, the task comprised an acquisition 77 

and a test phase separated by a 24 h delay. Each mouse was habituated in an arena 78 

(40�cm�×�40�cm�×�30�cm) without objects for 5 min to minimize confounding anxiety and 79 

novelty factors. In the acquisition phase, each subject was placed in the center of the arena, which 80 

contained 4 different objects in the corners 10 cm away from the walls. Mice were allowed to 81 

investigate the objects for 5 min and returned to the home cage. All objects were cleaned with 82 

alcohol between each mouse. In the test phase, each subject was replaced in the arena with 83 

swapped positions for 2 objects, and the subjects were allowed to investigate the objects for 5 84 

minutes. Swapped objects were randomly chosen for each mouse. The discrimination index was 85 

calculated as (total exploration time on the novel objects – total exploration time on the familiar 86 

objects) / (total exploration time on the novel objects�+�total exploration time on the familiar 87 

objects). Considering that normal aging is probably associated with only a mild cognitive decline, we 88 

used a modified object in-place test to increase the difficulty of the test and, therefore, to expose the 89 

cognitive difference between the exercise group and the control group in the wild-type mice7. Briefly, 90 

the mouse was allowed to freely explore for 10 min in an arena with 5 Lego-built objects of different 91 

shapes and colors (sample phase). After 24 h, two of the objects were relocated. The mouse was 92 

re-introduced to the arena and was allowed to explore for 5 min (choice phase). Mouse behaviors 93 

were videotaped, and the discrimination index in the choice phase was calculated as the ratio of the 94 

time spent exploring the objects with the new location versus the total time spent exploring any 95 

object.  96 

 97 

Novel object recognition (NOR) test was performed as previously described 8. Briefly, mice were 98 

habituated in an arena (22 cm x 44 cm) for 5 min. During the training session, two identical objects 99 

built from Lego were placed on the right and left sides of the arena. During the first day, mice were 100 

placed in the center of the arena and allowed to explore freely for 5�min. Mice were returned to 101 

their home cages. After 24 h, on the test day, one of the objects was replaced by a novel object 102 

(built from Lego) with a different color and shape, and mice were allowed to explore the arena for 103 

5�min. Animal behavior during the training and test session was tracked by a top camera and 104 

analyzed by ANY-maze software (Stoelting). The discrimination index was calculated as 105 

(exploration time on the novel object - exploration time on the familiar object) / (exploration time on 106 

the novel object�+�exploration time on the familiar object). Exploration behaviors were defined as 107 

sniffing or touching (>1�s) the objects while looking at the objects.  108 
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 109 

The Y-Maze short-term spatial memory was measured according to the established procedure 9. 110 

The Y-maze was made of white opaque acrylic and had three arms (height: 20 cm; length: 30 cm; 111 

width: 8 cm) 120 degrees apart. Spatial cues were placed on the walls in line with the axes of the 112 

familiar and novel arms. The paradigm consisted of a 5-minute encoding trial during which one arm 113 

was blocked off, followed by a 1-h intertrial interval, then a 5-minute retrieval session. The start arm 114 

remained the same in both the encoding and retrieval trials, while the exposed arm during the 115 

encoding trial was considered the familiar arm, and the blocked arm was considered the novel arm. 116 

The apparatus was wiped with 70% ethanol and dried between each mouse to remove odor cues. 117 

The discrimination index was calculated as the comparison between the times spent in the novel 118 

and familiar arms during the retrieval paradigm.  119 

 120 

The social interaction and social memory test was performed in a three-chamber apparatus (40.5cm 121 

x 60 cm x 22 cm) that had three chambers (left, center, and right) of equal size with 10�×�5�cm 122 

openings between the chambers. Mice were given 5 min habituation in the chamber and two 123 

consecutive 10�min tests: the first test measured sociability by subjecting the mouse to an intruder 124 

under one mesh pencil cup and an empty pencil cup, and the second test measured social novelty 125 

by subjecting mice to a novel intruder under the empty pencil cup. A camera and the ANY-maze 126 

software program were used to track the mouse in the three-chambered box while the experimenter 127 

scored the approaches to the object or partner mouse using a wireless keyboard. Intruders (sex-, 128 

age- and weight-matched) habituated to the mesh pencil cups in the apparatus for 1�h per day for 2 129 

days before testing. Intruder mice were used up to three times, with one test per day.  130 

 131 

The Morris water maze (MWM) test was performed as described previously 8. The MWM was 132 

virtually divided into four quadrants. During the training session, a transparent rescue platform was 133 

submerged under the painted water (0.5 cm –1 cm) and placed in a fixed position between the 134 

south and east quadrants of the pool. On the first day of training, mice were first allowed to stand on 135 

the platform for 10�s. After that, mice were gently placed into the water facing the wall and allowed 136 

to explore for 1�min. Mice were then guided to the rescue platform if they did not find it. Mice were 137 

allowed to take a rest on the platform for 10�s, and then re-trained from a different start position 138 

with the same procedure. After four training trials, they were dried using a paper towel and returned 139 

to home cages. Twenty-four hours later, mice were trained again following the same procedure 140 

without the initial habituation session. Mice were trained for five consecutive days. At the end of the 141 

fourth trial on day 5, mice were returned to home cages for a rest. One hour later, mice were put 142 

into the water maze from the west quadrant and let the mice explore the water maze for 1�min, 143 

where the platform had been removed. Mouse behaviors were videotaped and analyzed by the 144 

Noldus EthoVision XT. The rescue platform was located in the target quadrant. Mouse memory is 145 

evaluated by the escape latency and percentage of time spent in the target quadrant. Escape 146 

latency was defined as the time spent before finding the platform. Escape latency during the 5-day 147 

training sessions served as an independent measurement of spatial learning and memory.  148 

 149 

The open-field arena (OPA) test was performed using the Versamax animal activity monitor 150 

equipped with infrared photo beams as horizontal X-Y sensors and/or Z sensors. Mice were placed 151 

in the center of the open-field arena (40�cm�×�40�cm�×�30�cm) and allowed to explore for 152 

40�min. The locomotor activity and location of the mice were scored automatically by VersaMax 153 

software. The percentage of time spent in the center area measures anxiety levels. For the elevated 154 

plus maze (EPM) test, we used a plus-shaped platform that was elevated to 40�cm above the floor. 155 

Two opposite arms of the maze were walled (15�cm high), whereas the other two arms were open 156 

with a 5�mm high ridge to prevent falling. Each arm was 8�cm wide and 25�cm long. The test 157 

lasted for 10�min and was started by placing a mouse in the center part of the maze, facing one of 158 

the two open arms under a dim environment (300 lumens). An overhead camera and the ANY-maze 159 

software program were used to track the mouse. The time spent in the open arms was used as a 160 

measure for anxiety. The light-dark (LD) test was performed in a box developed from the open field 161 

chamber by placing a dark chamber occupying one-third of the open field box. The light area was 162 
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connected by a small opening to allow mice to move from one area to the other. The test lasted for 163 

10�min in a bright environment and started by placing a mouse in the bright area. The activity and 164 

location of the mouse were scored automatically by VersaMax software. The number of transitions 165 

between dark and light zones and the time spent in the light and dark areas were the index for 166 

anxiety.  167 

 168 

Histology, RNAscope, and ELISA 169 

Mice were anesthetized with isoflurane (3-4% for induction, 1.5-2.5% for maintenance) for 170 

transcardiac perfusion with cold PBS and 4% paraformaldehyde. Overnight-fixed brains were 171 

immersed in 30% sucrose, embedded in the optimal cutting temperature (OCT) compound, and 172 

frozen in isopentane in dry ice. Coronal brain sections (30�µm) were prepared on the Leica 173 

CM1850 cryostat slicer. The coronal sections were collected in cryoprotectant solution (25% 174 

glycerol, 25% ethylene glycol, 50% PBS pH 7.4). Anti-β-Amyloid (6E10) antibodies (Biolegend, 175 

803001;1:500), Fluor 488 goat anti-mouse IgG(H+L) (Life Technologies, A11029; 1:1,000) were 176 

diluted in TBS blocking buffer separately before use. Antigen retrieval was performed for 6E10 177 

antibody by formic acid treatment (90%formic acid for 5 min for 5 min at room temperature (25 °C)). 178 

Brain sections were incubated with the primary antibodies at 4 °C overnight. Sections were then 179 

washed three times in TBS at room temperature  and incubated further with fluorescence-180 

conjugated secondary antibodies for 1�h at room temperature. These sections were then washed 181 

three times in TBS at room temperature, mounted with DAPI Fluoromount-G (SouthernBiotech, 182 

0100-20), and sealed with the coverslip. Immunofluorescence of brain sections was viewed and 183 

captured with the Zeiss Axio imager.M2m microscope (Axiovision 4.8) and processed by ImageJ 184 

software (v 1.53e). The immunoreactive areas were quantified using ImageJ as previously 185 

described10. The average data of at least three sections per mouse was used to reduce the variance 186 

among tissue sections. A two-way ANOVA followed by a post-hoc Fisher's LSD test was used to 187 

analyze the quantification data.  188 

 189 

For RNAscope analysis, mice were anesthetized for transcardiac perfusion with cold PBS and 4% 190 

paraformaldehyde. Overnight post-fixed brains were immersed in 30% sucrose, embedded in OCT, 191 

and frozen in precooled isopentane. Coronal brain sections (around 12 μm) were prepared on the 192 

Leica CM1850 cryostat slicer. The coronal sections were collected. Stxbp1 was assayed using 193 

RNAscope following the standard protocol from ACD with minor modifications. In brief, brain 194 

sections were rinsed with PBS to remove OCT. The brain sections were incubated at 60�°C for 30 195 

min. Then, the brain sections were post-fixed in 4% PFA at 4�°C for 15 min. After the post-fixation, 196 

the brain sections were dried in ethanol. The brain sections were then incubated with hydrogen 197 

peroxide at room temperature for 10 min. The sections were rinsed for 2 min three times in distilled 198 

water, and then the brain sections were retrieved in RNAscope 1× target retrieval reagent at 199 

100�°C for 5 min. The slides were then rinsed in distilled water for 2 min three times and re-dried in 200 

100% alcohol for storage. The pretreated brain sections were incubated with protease III for 30 min 201 

at 40�°C. The protease III was removed, and the brain sections were rinsed in distilled water for 2 202 

min three times. The brain sections were hybridized with the probe of Stxbp1 (ACD) for 2 h at 203 

40�°C. After that, the brain sections were rinsed for 2 min three times in the wash buffer to remove 204 

the excessive probes. The RNAscope Multiplex FL v2 Amp1 was added to the brain sections and 205 

incubated at 40�°C to amplify the signal for one probe. The brain sections were rinsed with wash 206 

buffer after 30 min. The probe signals were detected using the RNAscope Multiplex Fluorescent 207 

Detection Reagents V2 (ACD 323110). Brain sections were treated by the Multiplex FLV2 HRP 208 

blocker and washed in PBS for 2 times. Brain sections are viewed and captured with the Zeiss Axio 209 

imager M2m microscope and processed by ImageJ software. To quantify the expression of Stxbp1, 210 

we measured the counts of the signal dots in each cell within the specific regions using ImageJ 211 

software. At least 10 neurons were counted for each mouse, and the averaged number from those 212 

cells represents the expression intensity for each mouse. The results were calculated as counts per 213 

cell. A student's two-tailed t-test was used to analyze the quantification data. 214 

 215 

Mouse serum HB-EGF levels were determined by the Mouse HB-EGF ELISA kit (ABclonal, 216 
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RK02882). Blood was collected through the tail vein using a microvette capillary blood collection 217 

tube. Samples were incubated at room temperature for 40 min, and centrifuged at 3,000 g for 15 218 

min to collect serum. ELISA is performed according to the manufacturer's instructions. 219 

 220 

snRNA-seq and snATAC-seq 221 

Mice were euthanized with CO2 after wheel-running for 3 months at the age of 6 months old. The 222 

hippocampus was isolated immediately, washed with cold D-PBS, and snap-frozen with liquid 223 

nitrogen. Hippocampi from 3 mice were pooled together before nuclei isolation and capture for each 224 

of the analyses (snRNA-seq and snATAC-seq). The nuclei isolation for snRNA-seq and snATAC-225 

seq were performed in different batches from different mouse cohorts. The Frankenstein protocol 226 

was adopted to isolate nuclei from frozen tissues (dx.doi.org/10.17504/protocols.io.3fkgjkw). Briefly, 227 

the hippocampus was sliced into 2-5 mm3 pieces on ice, and the samples were transferred to a 1 ml 228 

Dounce homogenizer with prechilled nuclei isolation buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM 229 

MgCl2, and 0.01% NP40). The tissue was homogenized with five strokes of the loose pestle and 10 230 

strokes of the tight pestle. The homogenate was filtered through a BD Falcon 40 µm cell strainer 231 

and centrifuged at 300g for 5 minutes at 4 °C. The supernatant was discarded. The nuclei pellet 232 

was resuspended with D-PBS with 20% percoll (GE) and centrifuged at 500 g for 15 minutes at 4 °C. 233 

The supernatant was discarded, and the nuclei pellet was resuspended D-PBS with 1% BSA for 234 

snRNA-seq and with the Nuclei Buffer for snATAC-seq. Nuclei concentration was measured with a 235 

hemocytometer, and the samples were further processed using the NovaSeq system at the Single 236 

Cell Genomics Core at Baylor College of Medicine for 10x single cell 3' v3 RNAseq and 10x Single 237 

Cell ATAC sequencing. An average of 10k cells were targeted for capture per sample per assay, 238 

with over 50,000 reads per cell. snRNA-seq and snATAC-seq were performed separately on 239 

different cohorts of mice, generating 246,765,198 reads from 34,950 nuclei for snRNA-seq and 240 

211,976,010 reads from 31,793 nuclei for snATAC-seq after quality control. 241 

 242 

snRNA-seq data initial processing 243 

Sequenced reads were first processed and quality controlled using the Cell Ranger Single Cell 244 

Software Suite provided by 10x Genomics (version 3.1.0). Reads were aligned to the mouse 245 

genome (mm10), and read counts per gene for every cell in a sample were obtained. We used 246 

CellBender (version 0.1.0, https://github.com/broadinstitute/ CellBender.git) to identify nuclei with 247 

ambient RNA further using the remove-background function with the 'total-droplets-included' set at 248 

1,000,000. Nuclei kept by both Cell Ranger and CellBender were retained for subsequent analyses. 249 

A total of 37303 nuclei were included (8804 APP_EX, 10411 APP_RT, 6891 WT_EX, 11197 250 

WT_RT). Seurat pipeline was used to analyze the kept nuclei by first removing cells with more than 251 

5% of reads mapped to mitochondrial genes and those with less than 500 genes or more than 5500 252 

genes. On the remaining 32285 cells, the top 2000 variable genes were identified and used to 253 

perform dimension reduction using PCA with a maximum of 200 PCs. The first 50 PCs were then 254 

used for further clustering and UMAP. To decide the cell populations, we used clustering with a 255 

resolution of 0.5. The top marker genes were identified empirically using the FindMarkers function. 256 

To identify differentially expressed genes (DEG) between the genotypes in each cell population, we 257 

first subset the cells of the particular cell population and then used the FindMarkers function from 258 

Seurat.  259 

 260 

Gene Set Enrichment Analysis (GSEA) v4.2.2 Mac App was used. Two libraries specific to mouse, 261 

mouse pathway (893 gene sets) and GO libraries (12526 gene sets) were obtained from http://ge-262 

lab.org/gskb/; along with C2 (6290 gene sets) and C5 (14998 gene sets) from MSigDB 263 

(https://www.gsea-msigdb.org/ gsea/msigdb/ index.jsp) were used in the analysis. GSEPreparked 264 

analysis was adopted with the ranked files generated from logFC of all genes except for the ones 265 

with no expression in each cell type obtained from the FindMarkers function from the Seurat 266 

package. The logFC was calculated with SCTransformed data in the Seurat object. GSEA was run 267 

for each cell type in three contrasts: APP_EX vs. APP_RT, APP_RT vs. WT_RT, and WT_EX vs. 268 

WT_RT. Parameters used in the GSEA were: max size = 5,000; min size = 5; collapsing mode for 269 

probe sets => 1 gene = max_probe; normalization mode = meandiv. The GSEA analysis results 270 
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were examined at different thresholds: 1. Soft threshold with p < 0.001; 2. Median threshold with 271 

FDR < 0.25 and p < 0.001; 3. Harsh threshold with FDR < 0.1 and p < 0.001; 4. Extreme threshold 272 

top 10 in normalized enrichment score (NES) (positive/negative) and FDR < 0.25 and p < 0.001. 273 

Three gene sets were shortlisted for further analysis. They were picked out of all gene sets that 274 

were significantly over-represented at the median threshold in more than 4 cell types and were 275 

reversed in NES in APP_EX vs. APP_RT and APP_RT vs. WT_RT contrasts.  276 

 277 

Sub-clustering analysis was done in excitatory neuron (EN) nuclei using Seurat version 3.2.2. No 278 

further filters were applied for nuclei in the sub-clustering analysis. The SCT assay matrix of all 279 

excitatory neuron nuclei was used. Variable features were identified within the chosen cell type's 280 

nuclei with the function FindVariableFeatures with the vst method, and the top 2,000 features were 281 

used in the analysis. Then, dimensionality reduction was run using the RunPCA function. Data was 282 

visualized by UMAP with dim 1:30. Then EN nuclei were clustered with the function FindNeighbors 283 

with dims 1:30 and FindClusters at resolution 0.2. Sub-cluster markers curated from literature11.  284 

 285 

snATAC-seq data initial processing  286 

The data from sorted bam files created by CellRanger (version 3.1.0) was processed with package 287 

snaptools to generate the bin-by-nuclei matrix for ADEX, ADRT, WTEX, and WTRT samples 288 

separately, following the online tutorial: https://github.com/r3fang/SnapTools. Bam files were 289 

processed by the snap-pre function with parameters settings as min-mapq = 30, min-flen = 50, max-290 

flen = 1000, keep-chrm = TRUE, keep-single = FALSE, keep-secondary = False, overwrite = True, 291 

num = 20000, min-cov = 500. Then snap-add-bmat function was used to call the bin matrix with bin-292 

size-list set as 5,000. All samples were then combined for analysis with the package snapATAC 293 

following the pipeline tutorial https://github.com/r3fang/SnapATAC/ 294 

blob/master/examples/10X_brain_5k/README.md. Original filters of nuclei were set as UMI >= 3 & 295 

<= 5; promoter_ratio >= 0.15 & <= 0.6; peak_region_fragments > 1,000 & < 20,000; 296 

frag_in_peak_ratio > 0.15. Bins in the blacklist or mitochondrial chromatin or over top 95% coverage 297 

among all bins were filtered out. Dimensionality reduction was done with the function 298 

runDiffusionMaps with num.eig set as 50. Clustering was done with the function runKNN (eigs.dims 299 

set as 1:30 and k as 15) and the function runCluster (leiden version 0.3.5 and resolution as 1.5). 300 

Bins were binarized for further analysis. Peaks were then called on bins in each cluster with 301 

buffer.size set as 500. Peaks were then merged by the function reduce. Lastly, peaks were scaled 302 

by the function scaleCountMatrix with the RPM method. Snaptools and SnapATAC are installed 303 

from GitHub: https://github.com/r3fang/SnapATAC (Snaptools version v1.2.3 and SnapATAC 304 

version 1.0.0). 305 

 306 

The peak-by-nuclei matrix was then imported to the Seurat pipeline for further analysis. Peaks from 307 

the blacklist, unwanted chromosomes, and small clusters (Cluster 18, 19, and 20) were filtered out. 308 

Furthermore, nuclei with less than 1,000 peaks were removed. UMAP was run again in Seurat to 309 

generate the embedding for visualization. ACTIVITY matrix for gene-by-nuclei matrix was generated 310 

by summing up peaks within 2kb upstream of the TSS (transcription starting site). Based on the 311 

ACTIVITY matrix, marker plots and enrichment analysis were carried out to determine the final cell 312 

type annotations. Sub-clustering analysis was done in excitatory neuron nuclei using Seurat version 313 

3.2.2. No further filters were applied for nuclei in the sub-clustering analysis. The ACTIVITY matrix 314 

of all excitatory neuron nuclei was used. Variable features were identified within the chosen cell 315 

type's nuclei with the function FindVariableFeatures with the vst method, and the top 30,000 316 

features were used in the analysis. Then, dimensionality reduction was run using the RunLSI 317 

function. Data was visualized by UMAP with dim 1:30. Then EN nuclei were clustered with the 318 

function FindNeighbors with dims 1:30 and FindClusters at resolution 0.2. Sub-cluster markers11.  319 

 320 

Integrated multi-omics data processing 321 

The snRNA-seq and snATAC-seq data were integrated following the Seurat integration pipeline. 322 

The assay used for snRNA-seq was RNA, and for snATAC-seq, it was ACTIVITY. Anchors were 323 

found with the function FindTransferAnchors with variable genes from RNA data as features, 324 
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reference.assay as "RNA", query.assay as "ACTIVITY", reduction method as cca, and dims with 325 

1:40. ATAC data was then imputated with the function TransferData using anchors found, weight 326 

reduction with LSI method, and variable genes as variable features from RNA object. Then snATAC 327 

and snRNA data were merged with the function merge. RunPCA was performed on integrated data 328 

with all features in the combined data and RunUMAP with dim 1:30.  329 

 330 

Trajectory analysis was done in oligodendrocytes following the monocle3 trajectory analysis pipeline 331 

(monocle3 version 1.0.0). Oligodendrocyte nuclei were sub-clustered into two sub-clusters with 332 

FindNeighbors (dims 1:30) and FindClusters (resolution 0.05). The bigger sub-cluster with 10,480 333 

nuclei out of all 11,252 nuclei was used in trajectory analysis. The learn_graph and order_cells were 334 

applied with default monocle3 settings. Calculated pseudotime was then binned in equal 50 frames 335 

for analysis. In plotting, each bin on the x-axis was represented by the middle value of each binned 336 

frame. Proportions for nuclei within each bin were calculated by the formula shown below:  337 
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Module scores were calculated by the Seurat function AddModuleScore for nuclei in each of the 50 338 

binned pseudotimes. Oligodendrocyte marker lists are from literature 12. Newly formed 339 

oligodendrocyte markers: Tcf7l2, Casr, Cemip2, Itpr2; Myelin forming oligodendrocyte markers: Mal, 340 

Mog, Plp1, Opalin, Serinc5, Ctps1; Mature oligodendrocyte: Klk6, Apod, Slc5a11, Pde1a.  341 

 342 

Differential Accessible Regions detection by a Siamese neural network model 343 

Due to the lack of power in using statistical tests to discover DARs, we instead trained a simple 344 

neural network to distinguish different conditions, followed by interpreting the trained model to 345 

extract the differentially accessible regions. We detected DARs for each cell type separately. 346 

Preprocessed and cell-type annotated snRNA-seq and snATAC-seq were loaded as Seurat v3 347 

objects. Then, cell-type-specific snRNA-seq and snATAC-seq Seurat objects were created to 348 

perform omics data integration by Seurat v3. After integration, anchor cell pairs inferred by Seurat 349 

were saved, together with a highly-variable gene matrix (vst method, 5000 genes) and highly-350 

accessible peaks matrix (detected in more than 5% of the cells). Gene matrix, peak matrix, anchor 351 

pairs, and genotype label were provided to train a customized Siamese neural network (explained in 352 

the next section). After training, the network was able to project all cells from different omics data 353 

into a common low-dimensional space, where snRNA-seq and snATAC-seq data are mixed, and 354 

different genotypes are separated from each other. With the goal of separating genotypes achieved, 355 

we believe the neural network has identified peaks that vary among genotypes. To extract these 356 

peaks from the black box model learned, we first applied the Activation Maximization algorithm 357 

(explained later) to construct 12 pseudo-cell snATAC-seq data which are identified by the model 358 

with a high possibility of belonging to each genotype. Then t-test was applied to find the peaks that 359 

are important exclusively in only one genotype. Directions of these peaks in APP_RT vs. WT_RT 360 

and APP_EX vs. APP_RT were determined by checking our real snATAC-seq data. Finally, peaks 361 

with log2 foldchange smaller than log2(1.1) or not falling in gene regions were removed. With all the 362 

above being done, we got a set of differential accessible regions among different genotypes in each 363 

cell type. In detecting DARs in this way, we believe it can bear the noises of single-cell data and 364 

utilize the information from snRNA-seq data. The regions found by this method were validated in the 365 

original data. 366 

 367 

Customized Siamese neural network to separate multi-omics data by genotypes  368 

The goal of this neural network is to separate genotypes while mixing snRNA-seq and snATAC-seq 369 

data. After training, we will be able to find important peaks that can separate genotypes not only 370 

based on chromatin accessibility but also transcriptome. To do this, we created a model based on 371 
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scDGN13 neural network framework, including several modules. 372 

 373 

The encoder module is used to project datasets into a common lower dimensional space and 374 

contains two fully connected layers that produce the hidden features � 

 � ���������� ; ���� 
; ���
 for 375 

snRNA-seq or � 

 � �������
�� ; ���
 ; ���  for snATAC-seq, where �  represents the parameters in 376 

these layers. The label classifier, �����
; ���
 and ��
��
; ��
 , ensures genotypes are separated in 377 

the common space. The goal of the domain discriminator ����
; ��
 and ����
; ��
 is to determine 378 

whether a pair of inputs ((xi,xj), (xi,yj), (yi,xj), (yi,yj)) are from the same domain or not. The overall 379 

objective function to be minimized is: 380 

! �  "������#�

; ���
, �#
 %  &"�����#�


; ��
, ���#�

; ��
 ,  

where #� , #� ' (�, �), & can control the trade-off between the goals of domain invariance and higher 381 

classification accuracy. Inspired by Siamese networks, the domain loss adopts a contrastive loss for 382 

a pair *� and *�, where * ' (�, �): 383 
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 - �6, 
where U=0 indicates the two cells are from the same modality, but different genotypes, and U=1 384 

indicates that they are identified as anchors by Seurat. �
��7
 is the cosine embedding loss, and m 385 

is the margin that indicates the prediction boundary. Overall, the aim of the objective function is to 386 

minimize the label classification loss and the domain loss. In this way, genotypes are separated, 387 

and important peaks are learned by the model based on not only snATAC-seq but also snRNA-seq 388 

data. 389 

 390 

Activation Maximization to find important peaks 391 

With genotypes separated, we used activation maximization to extract important peaks for each 392 

genotype. Given a particular genotype i and a trained neural network �, activation maximization 393 

looks for important input genes �� and peaks �� by solving the following optimization problem: 394 

�� � ��
�

� log����
 - &:�:�,  �� � ��



� log����
 - &:�:�. 
Twelve such pseudo-cells were constructed for each of the 3 genotypes, including WT_RT, 395 

APP_RT, and APP_EX. A t-test was performed to identify exclusively important peaks in genotypes, 396 

and their log-fold-change is determined by our snATAC-seq data.  397 

 398 

Homer motif analysis and regulatory network construction 399 

With exercise reversed DARs of each cell type, we ran Homer14 findMotifsGenome function to 400 

perform known motif enrichment analysis. All parameters are set to default. The summary plot 401 

containing the p-value and peak ratio in each cell type, and reverse direction is drawn with ggplot2 402 

in R. With discovered motifs in each cell type, we collected their downstream genes from TRASFAC 403 

database. Network per cell type was constructed, with edges indicating TF-downstream gene 404 

relationship. The networks were saved as .gml files and visualized in Cytoscape with color indicating 405 

log fold changes in the two comparisons.  406 

 407 

Integrated analysis with spatial transcriptomics data 408 

The count matrix of spatial transcriptomics data was filtered by removing spots with tissue coverage 409 

of less than 30% in the HE images and then removing genes that were detected in less than 10 410 

spots. The edgeR function "cpm" was used for the normalization of the filtered matrix. The output 411 

log cpm matrix was used for the following analysis. For assigning cells in the snRNA-seq data back 412 

to the locations in the spatial transcriptomics data, we suppose that the reference atlas has n 413 

positions with p genes, and the snRNA-seq data set has m cells with the same number of p genes. 414 

We aimed to assign the m cells into n positions using a linear regression model with L1 norm and 415 

generalized L2 norm via graph Laplacian. We created a random walk normalized graph Laplacian 416 

matrix based on the location information and anatomical structures from the ST data. If two spots 417 

belong to one anatomical structure and the distance between the spots is smaller than a specific 418 

threshold, then the spots will be connected in the Laplacian matrix. Our model uses a linear method 419 

to measure the differences in gene expression levels in assigning cells to locations. The optimal 420 

solution minimizes the differences between gene expression levels of individual cells and gene 421 
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expression levels of locations. For each individual cell, we want to minimize the following objective 422 

function, 423 

 424 

where � ' <���is the single-nucleus expression matrix, = ' <���
 is marker genes expression matrix 425 

of reference atlas (spatial transcriptomics data), L is normalized graph laplacian computed based on 426 

the location distance matrix and anatomical structures. The L1 norm penalization encourages 427 

sparsity on the coefficients, which guarantees that one cell can only be assigned to a small number 428 

of locations. The generalized L2 norm encourages the smoothness of the coefficients, which 429 

guarantees that cells with similar gene expression levels are more likely to be assigned to closer 430 

locations. To map the snRNA-seq data back to the mouse hippocampus, the reference profile was 431 

first established by using the spatial transcriptomics expression atlas of 500 highly variable genes at 432 

the 6-month age retrieved from Navarro et al. Reconstructed spatial expression patterns were 433 

validated by well-known genetic markers, such as Prox1 and Ociad2. Reconstructed patterns of 434 

marker genes were consistent with the FISH images from Allen Brain Atlas. 435 

 436 

To reconstruct spatial expression patterns, we used the following steps: (1) Read the gene 437 

expression matrix from snRNA-seq and expression matrix from reference atlas (spatial 438 

transcriptomics data). (2) Construct the Laplacian matrix based on the location information. (3) Use 439 

CVX to solve the convex function with L1 norm and generalized L2 norm. (4) Assign cells to target 440 

locations based on the distribution of marker genes in the objective function. (5) Reconstruct the 441 

spatial patterns based on the expression profiles in the snRNA-seq data and cell locations from the 442 

mapped results. Fill the expression profiles from the snRNA-seq data in the assigned locations.  443 

  444 

To calculate cell proportion in different anatomical regions, we first performed glm-SMA algorithm to 445 

assign the cells from snRNA-seq data back to the locations from the spatial transcriptomics data. 446 

Then, we counted the cell number in different anatomical regions and calculated the cell proportion 447 

of each cell type in DG and CA regions. To confirm the result was not generated by chance, we 448 

randomly shuffled the genotypes in the APP_EX and APP_WT samples and repeated the shuffling 449 

100 times. Then, we recalculated the cell proportions and did the student t-test. Granule cell 450 

proportion increased in the DG region from AD_EX samples with a p-value < 2.2e-16. 451 

 452 

Statistical analysis 453 

Statistical analyses were performed using SPSS (V.21.0, IBM) unless described otherwise in the 454 

above sections. No statistical methods were used to pre-determine sample sizes. Instead, sample 455 

sizes were determined based on previous publications for the relevant assays. Normality was tested 456 

by the Shapiro-Wilk test (n < 10) or D'Agostino-Pearson omnibus test (n > 10). For non-normal data 457 

or data with nonequivalent variances, the comparisons between two or multiple groups were tested 458 

with the Mann-Whitney test or the Kruskal-Wallis test, respectively. All tests were two-sided. All 459 

measurements were taken from distinct biological samples (mice or human subjects). Most 460 

comparisons between the two groups were analyzed using a two-sided, unpaired t-test. Body 461 

weight with multiple time points or Morris water maze tests were analyzed with repeated-measures 462 

ANOVA with Tukey's post hoc test. For statistical significance, a two-tailed unpaired t-test, or one-463 

way repeated ANOVA with Fisher's LSD test multicomparisons, was used for experiments with two 464 

groups. The behavior test experimenter was blinded to the exercise or pharmacological treatment 465 

conditions during the early stage of analysis, such as counting the time duration from video clips. 466 

The statistical analysis and data plotting was then done by experimentalists who knew both 467 

genotype and treatment information. Animals were excluded and euthanized before behavior tests if 468 

they showed distress, infection, bleeding, or anorexia. All data were expressed as mean ± SEM. All 469 

data were individually plotted (Prism 9, GraphPad). The exact numbers of animals are reported in 470 

the figure legends. P < 0.05 is set as significance. 471 

 472 

Sex as a biological variable 473 
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We used both male and female mice and clarified the sex in the figure legends and methods 474 

sections. Most experiments were done in male mice, while female mice were also used. We did not 475 

find sex differences. 476 

 477 

Data access 478 

The snATAC-seq (GSE237884) and snRNA-seq (GSE237885) data will be available at NCBI's 479 

Gene Expression Omnibus (GEO) under the GSE237925 SuperSeries after this manuscript is 480 

officially published. 481 

 482 

Data availability 483 

Data is available upon request to the corresponding authors. 484 

 485 

Code availability 486 

Code is available upon request to the corresponding authors. 487 

 488 

RESULTS 489 

 490 

Exercise improves memory functions and induces cell-type-specific transcriptomic changes. 491 

We used the C57BL/6J homozygous knock-in mice containing the Swedish (NL), Beyreuther/Iberian 492 

(F), and Arctic (G) mutations in the gene for amyloid precursor protein (APPNL-G-F)15,16 as a model for 493 

AD because it lacks the artificial hyperactivity phenotype from APP overexpression, which 494 

resembles human AD pathophysiology17,18. For chronic physical exercise, we used voluntary wheel-495 

running to minimize stress on mice. Wild-type (WT) and APPNL-G-F mice were put in cages with 496 

running wheels at 3 months old. After exercise for around 6 months exercise, the exercise groups 497 

(WT_EX and APP_EX) shared similar wheel-running exercise volumes and lost similar amounts of 498 

body weight compared to their respective rest controls (WT_RT and APP_RT) (Suppl Fig S1a-b). 499 

The chronic exercise improved memory functions in APPNL-G-F mice but not in WT mice in the 500 

classical object-in-place test (Fig 1a-c) and Y-maze test (Fig 1d-f) at the age of 10 months. Total 501 

travel distances in these tests remained similar between WT and APPNL-G-F mice (Suppl Fig S1c-d). 502 

Although exercise appeared to have no effects in WT mice in these standard tests, a modified 503 

object-in-place test with 5 objects7 demonstrated a clear memory-enhancing effect of exercise in 504 

WT mice (Fig 1g-i). In summary, chronic wheel-running exercise improves learning and memory in 505 

both WT and APPNL-G-F mice, with a more robust effect on the APPNL-G-F mice.  506 

 507 

We reason that the molecular changes in the brain would precede the behavioral changes and 508 

exercise for too long might cause secondary changes that are outcome rather than the cause of the 509 

behavioral changes. Therefore, we subjected the hippocampus from 6-month-old WT and APPNL-G-F 510 

mice to nuclei isolation and capture after exercise training for 3 months. The snRNA-seq and 511 

snATAC-seq analyses were performed in different batches with different mice. For each analysis, 512 

hippocampi from 3 mice were pooled together before nuclei isolation and capture. After quality 513 

control, we obtained 31,793 nuclei for snATAC-seq and 34,950 nuclei for snRNA-seq, which were 514 

clustered into 6 major cell types, including excitatory neurons (EN), inhibitory neurons (IN), 515 

oligodendrocytes (OLG), oligodendrocyte progenitor cells (OPC), astrocytes (AST), and microglia 516 

(MG) (Fig 1j-k). Exercise did not cause obvious changes in the overall cellular composition in WT or 517 

APPNL-G-F mice (Suppl Fig S2a). We focus on the exercise effect (APP_EX vs. APP_RT and 518 

WT_EX vs. WT_RT comparisons) and the amyloid effect (APP/RT vs. WT/RT comparison). 519 

Differentially expressed genes (DEGs) from these comparisons were identified from each cell type. 520 

Exercise led to over 3 - 6 folds more DEGs in APP mice than in WT mice in most cell types (Suppl 521 

Fig S2b, Suppl Table S1-6), consistent with more robust improvement of the cognitive functions in 522 

APPNL-G-F mice compared to WT mice. 523 

 524 

Exercise caused a predominant upregulation of gene expression, while amyloid led to a 525 

predominant downregulation of gene expression (Suppl Fig S2b-c). DEGs altered by exercise or 526 

amyloid were enriched in different functional pathways in a cell type-specific manner (Suppl Fig 527 
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S2c-d, Suppl Table S7-9). For example, DEGs in microglia were enriched in the complement and 528 

IL5/IL6 signaling pathways; those in oligodendrocytes were enriched in prostaglandin signaling; 529 

those in OPCs were enriched in the IL12/STAT4 signaling; those in astrocytes were enriched in lipid 530 

metabolism, angiogenesis, and cytoskeletal regulation; and those in neurons were enriched calcium 531 

signaling, protein translation, and mRNA processing (Suppl Fig S2d). Notably, the receptor tyrosine 532 

kinase signaling, especially insulin, c-KIT, epidermal growth factor receptor (EGF), and the 533 

downstream phosphoinositide 3-kinases (PI3K) signaling pathways were universally enriched 534 

across multiple cell types (Suppl Fig S2d).  535 

 536 

Exercise counteracts amyloid-dependent transcriptomic changes in growth factor signaling. 537 

The exercise-induced genes (APP_EX vs. APP_RT) showed a robust negative correlation with the 538 

amyloid-induced genes (APP_RT vs. WT_RT) across all cell types (Fig 2a). Over 833 reversed 539 

DEGs were found in at least one cell type, with significant changes in both comparisons but in 540 

opposite directions. Most of these DEGs were upregulated by exercise and downregulated by 541 

amyloid (Fig 2b), suggesting that exercise 'reversed' the amyloid-induced transcriptomic changes 542 

by activating transcription. Interestingly, less than 9 reversed genes were shared by any 4 clusters 543 

(Fig 2c), suggesting that the reversal effects are highly cell type-specific at the gene level. However, 544 

at the pathway level, the EGF receptor (EGFR) and insulin pathways stood out as the top common 545 

functional pathways with the reversal pattern across most cell types (Fig 2d-f, Suppl Table S10-11).  546 

 547 

The EGFR/insulin pathway was suppressed by amyloid and upregulated by exercise (Fig 3a and 548 

Suppl Fig S3). Stxbp1 is a top gene in neurons with a reversed expression pattern within the 549 

EGFR/insulin pathway and encodes a syntaxin-binding protein involved in synaptic vesicle cycling. 550 

RNAscope verified that hippocampal Stxbp1 was suppressed by amyloid and upregulated by 551 

exercise (Fig 3b-c). EGFR and insulin signaling share many downstream players, including PI3K, 552 

AKT, and MAPK (Fig 3d-e). The EGFR/insulin signaling pathway functions downstream of several 553 

growth factors, such as insulin-like growth factor (IGF), fibroblast growth factors (FGF), hepatocyte 554 

growth factor (HGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF), 555 

and platelet-derived growth factor (PDGF) (Fig 3e). In summary, exercise counteracts amyloid-556 

induced repression of the growth factor signaling in multiple cell types. 557 

 558 

Exercise counteracts amyloid-induced transcriptional regulatory networks.  559 

snATAC-seq identified differentially accessible regions (DARs) in response to exercise or amyloid 560 

deposition in each cell type (Suppl Fig S4a). The top enriched pathways and motifs in these DARs 561 

were cell type-specific (Suppl Fig S4b-c). Among the enriched transcription factors (TFs) are those 562 

related to growth factor signaling, cell proliferation, and neuron differentiation, including EGR1, MYB, 563 

ATOH1, and ASCL1 (Suppl Fig S4c). Consistent with transcriptomics data, exercise-induced and 564 

amyloid-induced genome accessibility changes displayed negative correlations across all cell types 565 

(Fig S4d). Unlike the transcriptomics data, DARs with the reversal phenotype were more evenly 566 

distributed in both directions (Fig 4a). However, motif analyses of these reversed DARs revealed 567 

direction-specific transcription regulator networks centered on TFs (Fig 4b). DARs upregulated by 568 

amyloid and downregulated by exercise were referred to as "U>D" (from 'Upregulation' to 569 

'Downregulation'), while those DARs downregulated by amyloid and upregulated by exercise were 570 

referred to as "D>U" (from 'Downregulation' to 'Upregulation'). TFs involved in growth and 571 

differentiation, such as EGR1, MYB, MEF2, and ASCL1, show direction-specific enrichment in 572 

neurons (Fig 4b). These TFs are downstream of growth factors, PI3K, or MAPK signaling pathways 573 

and are involved in synaptic plasticity or cell growth19–22. WT1 and NEUROG2, transcription factors 574 

in cell growth and neurogenesis23–25, were enriched in the D>U DARs in both excitatory neurons and 575 

inhibitory neurons. ATOH1, the transcription factor essential for cerebellar granule cell formation26, 576 

was enriched in D>U DARs of excitatory neurons, and U>D DARs of inhibitory neurons (Fig 4b). 577 

DARs of both directions were enriched with the ETS family of TFs in microglia, the SOX family of 578 

TFs in oligodendrocytes, and the LHX family of TFs in astrocytes (Fig 4b).  579 

 580 

Transcriptional regulatory network analysis of the excitatory neurons suggested that EGR1, WT1, 581 
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MYB, and MEF2 are central TFs that reversed amyloid-mediated transcriptomic changes by 582 

activating transcription in response to exercise (Fig 4c-d and Suppl Fig S5). The downstream 583 

genes of these central TFs in the network overlapped significantly with genes in the EGFR/insulin 584 

pathway (Suppl Table S12-13). Many transcription factors can serve as transcription activators and 585 

repressors in a context-dependent manner. Therefore, it makes sense that the same transcription 586 

factor network can drive opposite reversal directions. In inhibitory neurons, ELK1/4 and TCF4 587 

replace EGR1/MYB as key TFs working with MEF2A and WT1 for exercise-induced transcriptional 588 

remodeling (Fig 4e-f and Suppl Fig S6). By comparison, the network analysis suggests that the 589 

SOX family TFs work with ELK4 to drive the reversal of the APP-induced oligodendrocyte over-590 

maturation by exercise (Fig 4g-h and Suppl Fig S7), in line with the known role of the SOX family in 591 

oligodendrocyte differentiation27. Similar patterns were observed in other cell types, with cell type-592 

specific TFs driving distinct downstream genes that converge on the EGFR/insulin pathway (Suppl 593 

Fig S8-S10 and Suppl Table S12-13). In summary, exercise stimulates cell type-specific 594 

transcriptional regulatory networks, counteracting amyloid-induced transcriptomic changes by 595 

activating growth factor signaling. 596 

One cellular manifestation of growth factor signaling activation is neurogenesis. Granule cells (GC) 597 

in the dentate gyrus (DG) of the hippocampus constitute the primary niche for adult hippocampal 598 

neurogenesis28. A more focused analysis of the snRNA-seq data within the hippocampal excitatory 599 

neurons revealed that exercise causes a more drastic gene expression change in the GC 600 

population than the pyramidal cell population (Fig 5a-c), leading to a higher proportion of granule 601 

cells within the EN cluster (Fig 5d). Trajectory analysis of neurons did not recapitulate the 602 

neurogenesis process, probably due to the scarcity of nascent neurons in the adult brain. Therefore, 603 

we sought to resolve the snRNA-seq data spatially to address whether exercise-induced differences 604 

show spatial preference towards DG GCs. We integrated the EN snRNA-seq data with the previous 605 

spatial transcriptomic data29 to group EN nuclei into sub-hippocampal regions, such as DG (8813 606 

nuclei) and CA1 (3379 nuclei) (Suppl Fig S11). We found that exercise increased the GC 607 

proportion in the DG, but not IN proportion in the DG (Fig 5e). Production of immature GCs (imGCs) 608 

is a hallmark of adult hippocampal neurogenesis. To predict imGCs, we applied the logistic 609 

regression model trained on mice prototype imGCs (with a gene signature of Ascl1, Dcx, Tubb3, 610 

Neurod1, and Tbr1)30 to our snRNA-seq data. The imGCs proportion was reduced by amyloid, 611 

which was rescued by exercise (Fig 5f). These results suggest that multiple growth factor signaling 612 

and neurotrophic pathways participate in exercise-stimulated neurogenesis in the DG. 613 

 614 

In addition to neurons, oligodendrocytes stood out as another cell type with a growth and 615 

proliferation phenotype amenable to exercise. We integrated snRNA-seq and snATAC-seq and took 616 

the co-embedding space for trajectory analysis31 (Fig 5g). The trajectory recapitulated 617 

oligodendrocyte maturation because the expression signature of the new, myelin-forming, and 618 

mature oligodendrocyte showed a monotonic correlation with the pseudo-time scale (Fig 5h). 619 

Amyloid increased the proportion of mature oligodendrocytes (Fig 5i), which is in line with previous 620 

reports that amyloid oligomers promote oligodendrocyte differentiation and lead to thicker myelin32,33. 621 

We speculate that this over-maturation phenotype could be due to senescence or a lack of 622 

replenishment. Interestingly, exercise reduced the mature oligodendrocyte proportion while 623 

increasing myelin-forming and new oligodendrocyte proportions (Fig 5i).  624 

 625 

Growth factor signaling contributes to the memory-enhancing effects of exercise. 626 

The single-nucleus multi-omics suggest that several TFs-centered networks contribute to exercise-627 

stimulated activation of growth factor signaling pathways in different cell types. To address whether 628 

the EGFR-related growth factor signaling is required for exercise-mediated cognitive improvement, 629 

we administered EGFR inhibitor Gefitinib at 50 mg/kg and PI3K inhibitor Wortmannin at 0.5 mg/kg 630 

through oral gavage once every other day from 4 to 8 months old in APPNL-G-Fmice while they were 631 

subjected to wheel-running starting at 4 months old. These pharmacologic manipulations did not 632 

affect the wheel-running exercise volume (Fig 6a-b) or body weight (Fig 6c). However, the drugs 633 

efficiently blunted the exercise-mediated cognitive improvement in the object-in-place test (Fig 6d-e), 634 

Y-maze test (Fig 6f-g), social memory (Fig 6h-j), and Morris water maze test (Fig 6k-l) without 635 
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affecting sociability (Fig 6i) or the total locomotor activity during these tests. The inhibitors did not 636 

alter anxiety-related behaviors in the elevated plus maze test, open field arena test, or light-dark test 637 

(Fig 6m-o). Interestingly, the inhibitors also blunted exercise-induced improvement in amyloid 638 

pathology (Fig 6p-q), suggesting that EGFR signaling activation and its related anabolic stimulation 639 

are required for exercise-induced amyloid clearance and cognitive benefits. 640 

 641 

We sought to identify the upstream signals for exercise-induced growth factor signaling. Among 642 

ligands for the EGFR family34, heparin-binding EGF-like growth factor (HB-EGF) stood out with 643 

significant gene expression upregulation in mouse muscles35 and human muscles after physical 644 

exercise36 (Fig 7a). HB-EGF gene expression is also upregulated in blood cells after exercise in 645 

human blood37. In a proteomics analysis of human blood samples, HB-EGF is the only detectable 646 

EGFR ligand upregulated by exercise38 (Fig 7b). HB-EGF is known to cross the blood-brain 647 

barrier39. We confirmed that the blood HB-EGF levels were elevated after chronic exercise in APPNL-
648 

G-F mice (Fig 7c). To address whether HB-EGF has cognitive benefits, we intranasally administered 649 

HB-EGF in sedentary APPNL-G-F mice at 3 ug/mouse once every other day from 4 to 7 months old. 650 

HB-EGF did not affect body weight (Fig 7d) but improved cognitive functions in the object-in-place 651 

test (Fig 7e-f), Y-maze test (Fig 7g-f), and social memory (Fig 7i) without affecting the sociability 652 

(Fig 7j) or locomotor activity during the three-chamber test (Fig 7k). HB-EGF also reduced escape 653 

latency during the multiple-day Morris water maze test (Fig 7l) but did not cause significant 654 

differences in the probe test on the last day (Fig 7m). HB-EGF did not alter anxiety-related 655 

behaviors in the open field arena test or light-dark test (Fig 7n-o) but reduced the overall beta-656 

amyloid deposition (Fig 7p-q). These results suggest chronic intranasal HB-EGF treatment in mice 657 

can ameliorate amyloid-induced cognitive decline and reduce amyloid deposition. 658 

 659 

DISCUSSION 660 

 661 

Our results offer a comprehensive overview of transcriptomic and chromatin accessibility changes 662 

across different cell types within the mouse hippocampus in response to chronic voluntary exercise. 663 

Two recent publications present snRNA-seq analyses conducted on mouse brains. One study 664 

examined the whole brain following 12 months of voluntary wheel-running exercise40, while the other 665 

focused on the hippocampus after 4 weeks of wheel-running exercise41. These investigations were 666 

conducted on wild-type mice without amyloid deposition and did not include snATAC-seq analyses. 667 

Our utilization of APPNL-G-F mice, coupled with snATAC-seq integration, illuminates the upstream 668 

transcriptional factor networks governing hippocampal responses to exercise in the presence of 669 

amyloid deposition. Our profiling reveals that exercise reverses amyloid-induced transcriptomic 670 

alterations by activating gene transcription. Exercise-induced transcriptional regulatory networks 671 

show specificity to cell types for upstream transcription factors. Yet the downstream target genes 672 

collectively converge on growth factor signaling pathways, particularly the EGFR/insulin pathway, 673 

which is associated with elevated HB-EGF levels in the blood. The cognitive benefits of exercise are 674 

blocked by pharmacological inhibition of EGFR/insulin signaling, while chronic intranasal 675 

administration of HB-EGF enhances memory function in sedentary APPNL-G-F mice. Therefore, the 676 

insights gained from single nucleus multi-omics analysis of exercise effects on the brain have 677 

opened the door to a potential therapeutic approach for AD by activating growth factor signaling.  678 

 679 

Growth factors, including BDNF, IGF-1, VEGF, and GH,  have been implicated in the neurotrophic 680 

or synaptogenic effects of exercise42,43. Our findings suggest that HB-EGF is a novel growth factor 681 

involved in the process. Our results align with prior studies showing HB-EGF administration can 682 

enhance the generation of new neurons or oligodendrocytes44,45. Consistently, HB-EGF was shown 683 

to interact with APP and promote cellular neuritogenesis46. These findings do not rule out other 684 

signaling pathways in exercise-induced cognitive improvement. Interestingly, EGFR inhibitors were 685 

reported to have beneficial effects in AD, with some conflicting results 47,48. We find that a combined 686 

EGFR inhibitor and PI3K inhibitor blocked the effects of exercise training, which may act 687 

independently of the baseline effects of the EGFR inhibitor itself. EGFR effects on AD appear to be 688 

age-dependent and mediated by glial cells47. There is currently no available data on the effects of 689 
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EGFR inhibitors in the APPNL-G-F mouse model at the baseline. Although we focus on HB-EGF 690 

based on muscle and blood omics datasets available in the literature, many brain cell types can 691 

produce EGF factors, which could be an additional source of elevated EGFR signaling. Further 692 

research is needed to elucidate the source of HB-EGF and the effects of EGFR inhibitors or 693 

agonists on AD progression. 694 

 695 

The current study has several limitations. Firstly, the pharmacokinetics and pharmacodynamics of 696 

intranasal HB-EGF administration remain unclear. We speculate that intranasal administration may 697 

result in brain-enriched distribution, activating EGFR signaling and potentially mimicking the effects 698 

of exercise training in promoting neuritogenesis or neurogenesis. Secondly, it is uncertain whether 699 

treatment with Gefitinib and Wortmannin reduces EGFR and PI3K signaling in the hippocampus and 700 

whether this would negatively impact cognitive functions or amyloid pathology in the baseline 701 

condition without exercise training. Hence, it cannot be conclusively stated that the effects of 702 

EGFR/PI3K inhibition are attributed explicitly to exercise. Lastly, hippocampal samples from three 703 

mice were pooled for the single-nuclei omics analysis to enhance cost efficiency, albeit at the 704 

expense of statistical power. Future advancements in techniques may enable more cost-efficient 705 

comprehensive profiling. Despite these limitations, the identification of EGFR signaling from non-706 

biased omics datasets, the EGFR/PI3K inhibitors-mediated abrogation, and the intranasal HB-EGF-707 

mediated recapitulation of exercise-induced cognitive improvements and amyloid pathology 708 

collectively support a positive role of the EGFR signaling pathway in the cognitive benefits of 709 

exercise in the presence amyloid deposition. 710 

 711 

A fundamental function of growth factor signaling is stimulating anabolic metabolism49, which may or 712 

may not lead to cellular proliferation or organellar growth. Our results suggest that anabolic 713 

resistance might be a prevalent feature of the aging brain, contributing to cognitive decline and the 714 

pathogenesis of AD, but potentially mitigated by exercise. Thus, the opposing dynamics of growth 715 

and senescence could explain the inverse correlation between cancer and AD observed in the 716 

elderly human population 50.  717 

 718 
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 863 

Figure 1. Exercise improves memory without altering the overall hippocampal cellular 864 

composition. Discrimination index and exploration time of the standard object-in-place memory test 865 

(a-c) and the Y-maze test (d-f) in male WT and APPNL-G-F (APP) mice at 10 months old after 6 866 

months wheel-running exercise (EX) or rest (RT) (n = 12 for WT_RT; 8 for WT_EX; 10 for APP_RT; 867 

and 9 for APP_EX). Asterisks indicate significant differences with the two-way ANOVA and Fisher's 868 

LSD multiple comparisons test. (g-i) Discrimination index and exploration time of a modified 5-object 869 

in-place test in 4-month-old male WT mice after 2 months wheel-running (n = 12 for RT, 13 for EX). 870 

Bar graphs show the mean with S.E.M. Asterisks indicate significant differences by 2-sided t-test. (j) 871 

Violin plot of cell type-specific marker gene expression levels. (k) UMAP of major cell types of the 872 

hippocampus based on snRNA-seq and snATAC-seq datasets. Excitatory neurons (EN), inhibitory 873 

neurons (IN), microglia (MG), astrocytes (AST), oligodendrocytes (OLG), and oligodendrocyte 874 

progenitor cells (OPC). APP/Exercise (APP_EX), APP/Rest (APP_RT), WT/Exercise (WT_EX), 875 

WT/Rest (WT_RT).  876 

 877 

Figure 2. Exercise counteracts amyloid-dependent transcriptomic changes. (a) Scatter plot of 878 

gene expression showing a negative correlation between exercise effects (APP_EX vs. APP_RT) 879 

and amyloid effects (APP_RT vs. WT_RT) across different cell types. (b) Heat map of 833 880 

differentially expressed genes (DEGs) with the reversed pattern in at least one cell type. (c) Number 881 

of overlapping reversed DEGs across different cell types. (d) Overlapping pathways enriched in 882 

reversed DEGs across different cell types. (e-f) GSEA analysis of the insulin signaling pathway, a 883 

top common enriched pathway in reversed genes in different cell types.  884 

 885 
Figure 3. Exercise activates the EGFR/insulin signaling. (a) Heat map of reversed DEGs within 886 

the insulin signaling in different cell clusters. (b-c) RNAscope analysis of Stxbp1, a gene of the 887 

insulin/EGFR pathway with known function in neurotransmission and a robust reversed expression 888 

pattern in EN. Scale bar, 200 µm. n = 3 mice. Bar graphs show the mean with S.E.M. Asterisks 889 

indicate significant differences by t-test. ns, non-significant. (d) Some of the DEGs in the EGFR 890 

pathway. (e) Some of the DEGs in the insulin pathway. Images were generated from the KEGG 891 

pathway database.  892 

 893 

Figure 4. Exercise stimulates cell type-specific transcriptional regulatory networks. (a) Heat 894 

map of the relative levels of the reversed differentially accessible regions (DARs) in each cluster. 895 

DARs upregulated by APPNL-G-F (APP_RT vs. WT_RT) and downregulated by exercise (APP_EX vs. 896 

APP_RT) were referred to as "U>D", while those DARs downregulated by APPNL-G-F and 897 

upregulated by exercise were referred to as "D>U". (b) Top enriched motifs in the DARs in each cell 898 

cluster. (c-h) Top network showing direction-specific enrichment in EN, IN, and OLG populations.  899 

 900 

Figure 5. Exercise impacts excitatory neurons and oligodendrocytes. (a-b) UMAP of snRNA-901 

seq data in EN sub-clusters: Prox1+ granule cells and Ociad2+ pyramidal cells. Expression is based 902 

on library-size-normalized log values. (c) UMAP of hippocampal EN sub-clusters in each individual 903 

group. (d) The proportion of granule and pyramidal cells within the EN cluster in each group. (e) 904 

Proportions of granule cells and INs in the DG. (f) Box plot of predicted GC immature score (imGC). 905 
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514 of 534 genes in the model were found in our data, and missing genes had only small weights in 906 

the model. The log-transformed and max-normalized counts matrix were taken as the input to 907 

predict the final imGC score from the logistic regression model. Center line, median; box limits, 908 

upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. Asterisks indicate 909 

significant differences. ns, non-significant. (g) UMAP of the OLG for trajectory analysis. (h) Module 910 

score along the pseudotime trajectory of the OLG. (i) Distribution of each group on the OLG 911 

trajectory. 912 

 913 

Figure 6. EGFR and PI3K signaling are required for the cognitive-improving effects of 914 

exercise. (a) Average actogram profiles of wheel-running activity of 8-month-old male mice treated 915 

with EGFR inhibitor Gefitinib and PI3K inhibitor Wortmannin through oral gavage once every other 916 

day from 4 to 8 months old. Mice were simultaneously subjected to wheel-running from 4 to 8 917 

months old. (b) Average daily wheel-running activity (n = 7 cages per group with 2 mice per cage). 918 

(c) Body weight. (d-o) Object-in-place, Y-maze, 3-chamber sociability and social memory, Morris 919 

water maze, elevated plus maze, open field arena, and light-dark tests (n = 15 mice for RT, 15 mice 920 

for EX, and 16 mice for EX + inhibitor). 2 RT, 2 EX and 1 EX+inhibitor mice were excluding due to 921 

discrimination index were greater or smaller than ± 0.7 (p-q) Immunostaining of β-amyloid in mice 922 

treated with inhibitors. Scale bar: 600 µm. n = 6 mice per group. All bar graphs show the mean with 923 

S.E.M. Asterisks indicate significant differences by one-way ANOVA with Fisher's LSD multiple 924 

comparisons except Morris water maze was analyzed with repeated-measure 2-way ANOVA with 925 

Fisher's LSD multiple comparisons where asterisks indicate differences between RT vs. EX and EX 926 

+ inhibitor vs. EX. 927 

 928 

Figure 7. Intranasal HB-EGF mimics exercise-induced cognitive improvement. (a) Replot of 929 

gene expression levels of EGF family members in human skeletal muscles after long-term exercise 930 

training from a published transcriptomic dataset36. (b) Replot of protein levels of EGF family 931 

members in the human blood after long-term exercise training from a published proteomics 932 

dataset38. (c) Serum HB-EGF levels in APPNL-G-F male mice after chronic wheel-running exercise for 933 

6 months (n = 11 mice for RT, and 11 mice for EX). (d) Body weight gain during intranasal HB-EGF 934 

administration in female APPNL-G-F mice. Administration started at 4 months old, with once every 935 

other day (n = 13 mice for the vehicle; 13 mice for HB-EGF). (e-o) Object-in-place, Y-maze, 3-936 

chamber sociability and social memory, Morris water maze test, open field arena test, and light-dark 937 

test in female mice at 7-8-months old after chronic HB-EGF administration (n = 13 mice for the 938 

vehicle; 13 mice for HB-EGF; one mouse from the HB-EGF group was excluding from MWM due to 939 

low mobility). (p-q) Immunostaining of β-amyloid in 8-month-old female mice treated with intranasal 940 

HB-EGF for 4 months. Scale bar: 600 µm. n = 6 mice per group. All bar graphs show the mean with 941 

S.E.M. Asterisks indicate significant differences by one-way ANOVA with Fisher's LSD multiple 942 

comparisons or repeated-measure ANOVA with Fisher's LSD multiple comparisons. 943 
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