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Abstract
Rapid advances in medical imaging Artificial Intelligence (AI) offer unprecedented opportunities for automatic
analysis and extraction of data from large imaging collections. Computational demands of such modern AI
tools may be difficult to satisfy with the capabilities available on premises. Cloud computing offers the promise
of economical access and extreme scalability. Few studies examine the price/performance tradeoffs of using
the cloud, in particular for medical image analysis tasks. We investigate the use of cloud-provisioned compute
resources for AI-based curation of the National Lung Screening Trial (NLST) Computed Tomography (CT)
images available from the National Cancer Institute (NCI) Imaging Data Commons (IDC). We evaluated NCI
Cancer Research Data Commons (CRDC) Cloud Resources - Terra (FireCloud) and Seven Bridges-Cancer
Genomics Cloud (SB-CGC) platforms - to perform automatic image segmentation with TotalSegmentator and
pyradiomics feature extraction for a large cohort containing >126,000 CT volumes from >26,000 patients.
Utilizing >21,000 Virtual Machines (VMs) over the course of the computation we completed analysis in under 9
hours, as compared to the estimated 522 days that would be needed on a single workstation. The total cost of
utilizing the cloud for this analysis was $1,011.05. Our contributions include: 1) an evaluation of the numerous
tradeoffs towards optimizing the use of cloud resources for large-scale image analysis; 2) CloudSegmentator,
an open source reproducible implementation of the developed workflows, which can be reused and extended;
3) practical recommendations for utilizing the cloud for large-scale medical image computing tasks. We also
share the results of the analysis: the total of 9,565,554 segmentations of the anatomic structures and the
accompanying radiomics features in IDC as of release v18.

Introduction
Medical imaging researchers are confronted with the ever-increasing sizes of datasets. Such datasets may be
produced in the course of clinical trials or as part of other dedicated data collection and sharing activities.
Gaining insights from the images often requires annotation of the regions of interest and post-processing to
extract quantitative information1. These quantitative measurements can then be used to evaluate putative
imaging biomarkers, conduct multi-omics analyses by fusing imaging with other sources of data characterizing
the disease, and conduct population studies2, among other applications. Manual annotation of the regions of
interest in the images is often prohibitive due to the sheer size of the datasets. Even expert annotations may
have deficiencies due to inter-reader variability, differences in the reader training and conventions defining the
segmented region. With the recent advances in automated annotation tools, there is emerging evidence that
Artificial Intelligence (AI)-based curation can be an effective tool for large-scale image annotation. However,
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applying these automated methods efficiently to massive datasets remains a key challenge. This study
investigates the use of cloud-based computational resources and their potential to democratize access to
AI-based large-scale annotation.

National Lung Screening Trial (NLST)3,4 is one of the largest publicly available cancer screening imaging
datasets. It contains over 10 terabytes of Computed Tomography (CT) images for over 26 thousand patients.
The NLST collection is rather heterogeneous, containing screening CT images collected at over 30 cancer
centers using scanners from 4 manufacturers. NLST images are accompanied by rich clinical metadata,
including some of the attributes describing imaging findings (e.g., CT slice containing abnormality’s greatest
diameter), allowing investigation of various secondary hypotheses, as demonstrated by Zeleznik et al.5 among
others.

The original NLST collection does not contain any volumetric segmentations of either abnormalities or
anatomic structures, limiting its secondary analysis. As discussed elsewhere6, volumetric segmentations of the
regions of interest - both anatomic organs and malignancies - significantly improve the utility of the dataset,
since it is a common preprocessing step in the more complex analysis pipelines that investigate the utility of
imaging biomarkers in various applications, and can be used for extracting various image-based features. The
availability of segmentations enables investigation of secondary hypotheses associating clinical findings with
the image content, and improves the searchability of the data, allowing the building of cohorts based on the
presence of certain anatomy in the image. Furthermore, the application of a segmentation model to a large
dataset can be used to evaluate its generalizability and robustness. Recently, NLST became available within
the National Cancer Institute (NCI) Imaging Data Commons (IDC)7. By hosting all of its data within the cloud
IDC aims to make it easier to analyze its content using scalable cloud resources.

TotalSegmentator8 is a recently introduced Deep Learning (DL) model designed to segment up to 104
anatomic structures (but not the tumors) from CT scans. In this study, we demonstrate how cloud computing
resources can be used to apply TotalSegmentator to enrich the NLST collection. With the NLST collection
containing over 200,000 CT scans, sequential application of the developed workflow to NLST on a
conventional workstation would take well over a year. Parallel computing solutions such as GPU clusters are
available at many labs, and may be available for free or at a low cost to affiliated researchers. But institutional
compute resources vary widely in terms of access, performance, and system configurations. They also require
sustained investment for maintenance and the hardware must be updated periodically to remain current and
there may be contention between groups within a lab for access to compute resources. Many institutions that
currently or historically have operated their own high performance computing installations are reconsidering
their investments in data centers and support personnel. These considerations create a strong motivation for
better understanding the options for scalable and predictably available cloud resources to expedite the
analysis. In the cloud scenario, anyone with financial resources can perform this analysis, without gaining
permission from the owners of any institutional resources or ensuring that appropriate hardware, drivers, and
other installation configurations are compatible with the TotalSegmentator requirements. TotalSegmentator is a
sophisticated AI application that not only adds value to cancer imaging data by enriching it with the annotations
of anatomic structures, but also can serve as a proxy to assess the performance and economics of cloud
computing. We fully expect that the per-segment radiomic feature quantitative data that resulted from our
analysis could be used together with NLST clinical data to explore cancer research hypotheses, but this paper
does not explore that type of analysis.

As we describe more fully below, cloud computing refers generally to large collections of computer resources
housed in warehouse-sized data centers and made available for short or long-term rental as an alternative to
the more traditional so-called on-premises model of purchasing and operating computers. There are many
dimensions to compare these approaches, such as ease of use, return on investment, operational control, data
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security, and scalability. In this study, we focus on the practicality and cost of the cloud computing option
because to our knowledge, these factors have not been previously reported for large scale AI analysis of
publicly available cancer imaging data and our experience may help guide future investigation in this area.

We present a detailed investigation of the development and optimization of a computational workflow to
perform NLST segmentation efficiently - both in terms of processing time and costs - using the Google Cloud
Platform and the components of the NCI Cancer Research Data Commons (CRDC)9 - a cloud-based data
science infrastructure that provides secure access to a large, comprehensive, and expanding collection of
cancer research data.

We describe a series of experiments to refine the workflow and guide the optimization choices, ultimately
leading to the successful application of the workflow to the entire cohort of images suitable for the analysis.
This study demonstrates the potential of the cloud to improve our ability to scale computationally demanding
image analysis tasks and apply the latest advances in DL to large datasets at acceptable costs. As we
demonstrate in this study, cloud-based computing resources make it possible to reduce processing time by
many orders of magnitude as compared to sequential analysis at a rather affordable cost. We evaluated
various tradeoffs affecting the processing time and the monetary cost of the computation, culminating in
practical recommendations for conducting large image analysis experiments using the cloud.

Materials and Methods

TotalSegmentator processing pipeline

TotalSegmentator8 version 1 is a recently introduced model based on the nnU-Net framework10 that can be
used to segment 104 anatomic structures (27 organs, 59 bones, 10 muscles, and 8 vessels) from CT
examinations. The model was trained and evaluated on datasets collected at the University Hospital Basel
(1024 and 4004 CT volumes, respectively, for the training and evaluation dataset), containing scans for
patients with a range of pathologies, with most images acquired using equipment from the same manufacturer.
The original evaluation of the TotalSegmentator model established high segmentation accuracy on the dataset
used for model development. It examined correlations of CT attenuation and segmented structure volume with
subject age in the test cohort. The model is shared via a publicly available GitHub repository, accompanied by
a command-line tool that can be used to apply the model to an input image stored in DICOM or NIfTI formats.
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Figure 1: Summary of the TotalSegmentator analysis workflow implementation (based on the concept in Figure 1
of Wratten et al.11). A: conceptual outline of the analysis workflow indicating the flow of data and processing steps. B:
traditional pipeline implementation suitable for execution in a pre-configured computational environment. C: workflow
manager-enabled implementation simplifies the execution of the pipeline on cloud resources (“twoVM” configuration of
the workflow shown).

Application of the TotalSegmentator to the IDC NLST collection involves the following steps, also shown in
Figure 1A:

1. Input data selection CT studies often contain multiple acquisitions, which may include projection or
localizer images not suitable for volumetric analysis. Furthermore, some CT acquisitions may not be
possible to reconstruct into coherent 3D volumes due to, for example, incomplete or corrupted data. In
general, only a subset of the CT series would be compatible with TotalSegmentator analysis.

2. Step 1: Data retrieval DICOM files corresponding to the CT series being analyzed need to be
efficiently retrieved from IDC cloud buckets.

3. Step 2: Input format conversion The NLST collection was shared in its native DICOM format.
Although TotalSegmentator can read well-formatted CT volumes directly from DICOM, to account for
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variability in the NLST dataset we chose to use dcm2niix12, a more robust and fault-tolerant conversion
tool and provide NIfTI files in a consistent format to TotalSegmentator.

4. Step 3: Segmentation The application of TotalSegmentator to a suitable volumetric CT series requires
appropriate hardware configuration with a sufficiently powered GPU or CPU and enough memory.

5. Step 4: Radiomics feature extraction Basic radiomics features (e.g., volume, mean attenuation, or
sphericity) can be used to summarize the basic characteristics of the segmentations, which in turn can
be useful in identifying failure cases and outliers. Radiomics features also provide value in enabling
secondary analysis of the NLST collection, for example, to investigate acquisition-, age- or sex-related
patterns, as was done by Wasserthal et al.13.

6. Step 5: Output format conversion For consistency with IDC practices, we convert the results into
DICOM Segmentation format in order to achieve interoperability with IDC tools to archive and visualize
the results of the analysis, extract metadata as necessary for the exploration and searching of the
analysis results, and achieve FAIR representation of such data for archival purposes7.

Given the processing steps above, and the size of the NLST collection, there is strong motivation to parallelize
analysis and reduce processing time. In this study, we address this challenge by using cloud computing
resources.

Ethics declarations

This study analyzed Computed Tomography images of human subjects contained within the publicly available
National Lung Screening Trial collection (NLST)3,4,14. Given that the study involves de-identified publicly
available data, it qualifies as NIH Exempt Human Subject Research under Exemption 4.

Cloud computing for large-scale analysis

Following Weinman15, cloud is defined by the five salient characteristics: common infrastructure,
location-independence, online accessibility, utility pricing, and on-demand resources. In practice, there is a
steep learning curve associated with the common infrastructure provided by cloud providers. There are also
practical concerns related to achieving utility pricing along with on-demand scalability.

First, at the time of this writing, commercial cloud providers do not have mechanisms to enable users to stop
usage after a user-defined budget is reached. Instead, there are complex quotas for individual resources and
alert mechanisms to provide automatic notifications. Those alerts, however, may arrive with significant delays
and do not allow bound spending.

Second, estimation of costs, in the general case, can be very difficult. The use of the cloud typically involves a
broad range of services with a complex cost structure. Worse, hitting a quota such as a limit on API requests
over a given time period on a specific resource may artificially slow down certain computations, even while
other parts of the workflow that depend on these results continue to operate and incur costs (e.g. a VM may be
idle, but incurring costs, while waiting for an API to become available again). Such interdependencies between
quotas and overall costs can make it difficult or impossible to use data from limited test cases that do not reach
the quota limit to estimate the costs of running larger jobs where such quota limit is reached.

Instead of using the public cloud services directly, our approach used the infrastructure built on top of the
generic capabilities provided by the cloud providers to support scientific analysis workflows. We implemented
the processing pipeline described earlier as a portable workflow compatible with the CRDC Terra (available
under FireCloud within CRDC; further referred to as Terra for the sake of brevity) and Seven Bridges Cancer
Genomics Cloud (SB-CGC) cloud resources (CRDC CRs)9. CRDC CRs are analytical components of CRDC
that aim to simplify access to cloud-ready tools and enable cloud-based analysis of the data available in
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CRDC. Among the three CRDC CRs available, we selected Terra and SB-CGC due to their support of scalable
workflow execution. These platforms were developed to run bioinformatics pipelines in an interoperable and
reproducible way and to simplify use of the storage, access control, and logging functionality of the underlying
cloud resources available from the providers. Both Terra and SB-CGC simplify the use of the cloud by
allocating compute resources on behalf of the user, running the code, providing a place to organize the data,
and releasing the resources immediately after a job is finished.

Terra

Terra16 is a managed service developed by the Broad Institute in collaboration with Microsoft and Verily for
executing bioinformatics pipelines. Terra is deployed under many rebranded versions resulting from different
partnerships with various organizations under the National Institute of Health (NIH) demonstrating the
popularity of the platform: FireCloud17 with the National Cancer Institute (NCI), AnVIL18 with the National
Human Genome Research Institute (NHGRI), BioData Catalyst19 with National Heart, Lung, and Blood Institute
(NHLBI), eLwazi20 Open Data Science Platform for health applications in Africa with National Institution of
Biomedical Imaging and Bioengineering (NIBIB).

Terra workflows are defined using Workflow Definition Language (WDL). WDL workflows include a declaration
of the input files (“input”, desired virtual machine specifications, Docker image(s) encapsulating individual
processing steps (“Docker” parameter of the “runtime” configuration), the commands to run inside the Docker
container(s), and the expected output files. Moreover, a workflow may contain more than one task, each of
which can run in its own Docker container on its own virtual machine, enabling efficient use of compute
resources. Workflow execution is parameterized via a data table containing references to inputs. The data
table is populated with the URLs referencing the outputs when workflow execution is completed. WDL21 is
maintained by the OpenWDL open source community, and is “programming language lite”, meaning it offers a
subset of traditional programming language features, and it is not tied to a specific programming environment
and is independent of the underlying execution platform.

While the workflows can be executed on any high-performance computing cluster or a cloud provider, Terra is
currently deployed with the Google Cloud Platform (GCP) as the only cloud provider for allocating compute
resources. Microsoft Azure as an option is currently in public preview at the time of writing this manuscript.
Terra parses the instructions in WDL using the Cromwell workflow engine21, which assigns the jobs using
Google Cloud Lifesciences API22 and monitors their status. Terra provides a high level of flexibility in
configuring the virtual machines for executing the individual tasks of the workflow, allowing the user to
customize the number of virtual CPUs, RAM, and GPUs.

Seven Bridges Cancer Genomics Cloud

SB-CGC23 is a cloud-based research platform developed by Velsera under a contract from NCI. SB-CGC relies
on Common Workflow Language (CWL) for supporting workflows. CWL workflows consist of tools - scripts
dedicated to run a specific task in a Docker container. Workflows consist of tools composed in a linear or
scattered manner. CWL workflows enable reproducibility by declaring the inputs and expected outputs, and the
characteristics of the runtime environment. Similar to WDL, CWL is an open source initiative24, is
vendor-neutral, not tied to a specific programming environment, and is independent of the underlying execution
platform. CWL tools or workflows can run on a laptop, on a high-performance computing cluster, or any cloud
provider25.

SB-CGC, at the time of writing this manuscript, offers integration with Amazon Web Services (AWS) as the
primary cloud provider for allocating compute resources, with many pre-configured AWS VM instance types
(customization of the VM by the user is not possible). While GCP is also supported, the VM instances are
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limited to the N1 family and do not include any GPU-enabled configurations. SB-CGC implementation of CWL
can also be deployed locally or in a hybrid mode26.

Seven Bridges Genomics (SB) established partnerships with two entities besides CRDC: CAVATICA27 with the
Center for Data Driven Discovery in Biomedicine at Children’s Hospital of Philadelphia, and BioData
Catalyst19,28 with National Heart, Lung, and Blood Institute (NHLBI).

NCI Imaging Data Commons

IDC (https://imaging.datacommons.cancer.gov/) is a cloud-based environment providing public access to a
broad range of cancer imaging data along with the tools to simplify the use of this data7. Along with Genomics,
Proteomics and Canine Data Commons, IDC is a data node component within CRDC. As of version v18
released April 2024, IDC hosts over 66TB of publicly available cancer imaging and image-derived data. IDC
hosts the entire NLST collection as DICOM files available for download using standard S3 API from cloud
storage buckets, with the content mirrored between Google Cloud Platform (GCP) and Amazon Web Services
(AWS) buckets. To support search of the data, IDC hosts DICOM metadata extracted from the NLST DICOM
images in Google BigQuery - a scalable query and analysis service based on Google Dremel technology29.
BigQuery organizes data in tables that can be queried via a dialect of the Standard Query Language (SQL).

Analysis workflow development

In the following, we first discuss the approach to implementation of the individual steps of the workflow, which
correspond to the steps of the processing pipeline discussed earlier. Next, we detail the process for developing
and refining the cloud-based implementation of the workflow. WDL and CWL workflow systems utilized by the
Terra and SB-CGC platforms, respectively, aim to simplify the scaling of the analysis to a large number of
samples. The development of WDL/CWL workflows does require upfront investment to containerize individual
processing steps and formalize the pipeline according to the specifications. Once the workflow is developed,
however, the user is shielded from its complexities and can enjoy portability, scalability, and improved
robustness of the analysis11,30, as illustrated in Figure 1C. In the following we discuss the details of the
implementation for the individual steps of the workflow. Note that versions of all of the packages and tools used
by the workflow are provided for completeness, but are also fixed in the Dockerfiles. Dockerfiles are available
in CloudSegmentator workflows/TotalSegmentator/Dockerfiles, which contains all of the source code artifacts
discussed in this report (here and in the following references to the source code components, we utilize paths
relative to the root of the repository of CloudSegmentator release 1.2.031).

Data selection In this step we select the images (DICOM series) suitable for the analysis by
TotalSegmentator. Since NLST contains not only CT data, but also other modalities such as Slide Microscopy
and annotations for 571 of studies introduced by32, we first filtered for CT modality only and ignored any series
that was either a localizer or containing less than 50 slices (this threshold was selected somewhat arbitrarily to
eliminate potentially problematic series). To select series that could be reconstructed into volumes, we
excluded those that had inconsistent values for ImageOrientationPatient, PixelSpacing,
SliceThickness, spatially overlapping slices, or inconsistent distance between slices. The latter utilized the
threshold of 0.01 mm for the maximum allowed inter-slice distance difference. The query was applied to the
BigQuery dicom_all table of the IDC v17 release, producing the list of SeriesInstanceUIDs
corresponding to the DICOM series deemed suitable for the analysis. The complete query is available in
CloudSegmentator workflows/TotalSegmentator/sqlQueries/nlstCohort.sql .

Step 1: Data retrieval NLST CT images are stored in the GCP/AWS storage buckets and must be
downloaded for conversion. While downloading is a trivial step, it must be done efficiently due to the very large
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overall size of data that must be analyzed. For transferring DICOM files from the cloud bucket we used the
idc-index python package (https://pypi.org/project/idc-index) to download DICOM data from IDC buckets given
the list of SeriesInstanceUIDs. idc-index wraps the s5cmd command line tool (https://github.com/peak/s5cmd)
for efficiently downloading data via S3 API.

Step 2: Input format conversion DICOM CT files corresponding to the individual series were converted into
NIfTI format using the open-source dcm2niix converter12 v1.0.20230411. Conversion was configured to
compress the output NIfTI file (“-z y” option) and merge 2D slicers from the same series regardless of echo,
exposure, etc (quoted from the documentation) (“-m y”). We selected dcm2niix due to its demonstrated
robustness, long history of development and user support.

Step 3: Segmentation TotalSegmentator v1.5.6 was applied to the output of the previous step. We chose to
use v1 as opposed to the more recent v2 of the model for two reasons. First, v2 was not yet released at the
time we started our initial experiments. Second, and more importantly, v2 introduced restrictions on the use of
the model for commercial applications. Our goal was to make the results of our study available with minimal
restrictions. TotalSegmentator can be used on both CPU and GPU platforms, allowing us to compare the
cost-performance implications for VMs with or without GPUs. Inference results in NIfTI format were
compressed using lz4 (https://github.com/lz4/lz4).

Step 4: Radiomics feature extraction Image feature extraction was included as a workflow step to support
evaluation and checks of the segmentation results, and to support and simplify other uses that only require
segmentation-extracted features. For this purpose, we utilized pyradiomics33 v3.0.1 configured to extract 28
first-order and shape features listed in CloudSegmentator
workflows/TotalSegmentator/resources/radiomicsFeaturesMaps.csv. The first-order Kurtosis feature value was
incremented by 3 to be compliant with its Image Biomarker Standard Initiative (IBSI) definition34.

Step 5: Output format conversion We utilized open source converters included in the dcmqi library35 to save
segmentation results and radiomics features as DICOM Segmentation (SEG) and DICOM Structured Reports
(SR) following template TID1500 “Image measurements'', respectively. TotalSegmentator structure labels were
mapped to the SNOMED-CT36 terms, per DICOM conventions. Conversion of the NIfTI to DICOM SEG was
done using the dcmqi itkimage2segimage tool parameterized with the source DICOM CT series for the
propagation of the composite context37 and mapping from the labels encountered in the NIfTI to SNOMED-CT
terms. To enable conversion of the pyradiomics extracted features into DICOM SR, individual feature names
were mapped to the IBSI terminology34, followed by the application of the dcmqi tid1500writer tool for
conversion. Resulting files were compressed using lz4 and transferred to a cloud bucket.

The workflow above was first implemented as a Jupyter notebook38 using Google Colab - a cloud-hosted
Jupyter notebook service developed and hosted by Google - resulting in a fully functional prototype available in
CloudSegmentator workflows/TotalSegmentator/Notebooks/endToEndTotalSegmentatorNotebook.ipynb. Next,
we parameterized the resulting notebook using the open source Papermill39 tool. Papermill makes it possible to
parameterize and execute python notebooks, thus allowing their use for batch analysis. In our case, the
resulting notebook was parameterized with the list of the DICOM series to be processed.

Deployment and optimization of the analysis workflow on CRDC Cloud Resources

Once the functional prototype of the workflow was finalized in the form of a Jupyter notebook, we proceeded
with experimental deployment of the workflow in the Terra and SB-CGC environments. All of the components
discussed in this section are available within the accompanying CloudSegmentator source code repository31

(https://github.com/ImagingDataCommons/CloudSegmentator).
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First, we prepared Docker images containing the tools needed by the workflow. We defined several variants of
the images containing different subsets of the pipeline steps. This was done to evaluate the impact of
scheduling individual tasks of the workflow between GPU and CPU VM configurations on the overall cost. Only
the task containing TotalSegmentator inference can benefit from the GPU. Scheduling individual tasks of the
single workflow instance across different VMs will, however, result in additional data transfers and scheduling
overheads. Most cloud providers offer preemptible or spot VMs, which are available at significant discounts as
compared to the standard VMs, but can be stopped at any time by the hosting service based on the usage
demand. Executing all of the tasks on a single preemptible VM will increase the overall uninterrupted time
requirement, and will lead to increased possibility of interruption. We designed different configurations of the
workflow to enable experimental evaluation of these options. For each of the workflow configurations below, we
defined a Docker image (see CloudSegmentator workflows/TotalSegmentator/Dockerfiles) and a Python
notebook (see CloudSegmentator workflows/TotalSegmentator/Notebooks):

1. oneVM (shown in Figure 1B): all steps of the workflow are executed as a single task, which is executed
on a single VM as is usually done in a traditional pipeline.

2. twoVM (shown in Figure 1C): the workflow steps are split into two tasks: 1) downloading the DICOM
images, converting those into NIfTI format, and performing TotalSegmentator inference (steps 1-3 of
the pipeline), and 2) radiomics feature extraction and conversion of the inference results (steps 4-5).
Tasks can be executed on two different VMs.

3. threeVM: the workflow is split into three tasks: 1) input download and format conversion, 2) inference,
3) radiomics feature extraction, and output format conversion. Each of the tasks can be executed on a
separate VM.

Next, we prepared definitions of the analysis workflows using WDL and CWL to enable their execution on the
Terra (see CloudSegmentator workflows/TotalSegmentator/Terra/splitWorkflow) and SB-CGC platforms (see
CloudSegmentator workflows/TotalSegmentator/SevenBridges/splitWorkflow), respectively. Conceptually, both
WDL and CWL workflow definitions are composed of one or more tasks. For workflows consisting of multiple
tasks, Terra/SB-CGC can automatically route the outputs of an intermediate task as inputs for the subsequent
task. The definition of each task includes the following components:

1. runtime: VM environment for executing the task, which includes CPU, GPU, RAM, memory, and
storage requirements, and the Docker image that will be used to create the container to execute the
task. Both SB-CGC and Terra make it possible to prescribe the use of preemptible VMs, which may be
stopped (preempted) at any time. While Terra can restart a job with another preemptible VM up to a
number defined by the configuration parameter, SB-CGC always restarts the preempted job with a
regular non-preemptible VM.

2. command: instructions defining the processing steps that will be performed in a given task. In our
case, each of the tasks is defined by a Python notebook and is executed and parameterized using
Papermill.

3. input and output: variables parameterizing execution of a given task and capturing the results.

The choice between the CPU or GPU platform for executing the individual tasks can be controlled from the
workflow definition, which makes it easy to evaluate trade-offs related to the use of GPU or preemptible VMs.

Once the components above are established, it is possible to use the workflows either via the notebooks or by
deploying in the Terra or SB-CGC environments from the Dockstore40 interface (see
https://dockstore.org/organizations/ImagingDataCommons/collections/CloudSegmentator). In both cases, the
workflow is parameterized with the list of DICOM CT series selected from IDC and defined by their
SeriesInstanceUID identifiers.
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Considerations for cloud-based workflow execution

Execution of a workflow in a cloud environment is highly configurable, contributing to both its flexibility and
complexity. The ability to predict, bound and minimize the costs of workflow cloud-based execution is critical. In
this section, we discuss some of the major configuration options that impact cloud costs. The following are
based on our observations primarily from Google Cloud, although most of them may be generalizable to other
cloud providers.

VM configuration Cloud VMs can be configured with different classes of CPU families. Most of the AI models
can benefit from GPU accelerators for inference. Cloud providers offer a variety of CPU and GPU
architectures, but limited guidance on optimizing cost/performance trade-offs. Preemptible, or spot VMs are
offered at a 50-90% (https://cloud.google.com/spot-vms) discount compared to their non-preemptible
counterparts. Both Terra and SB-CGC support preemptible VMs and can automatically restart tasks that were
preempted. Embarrassingly parallel computations, such as segmentation of the individual DICOM series, can
be adapted to tolerate preemptions by optimizing the size of the batch and number of restart attempts.

Egress While most cloud providers do not charge for ingress - the movement of data into their cloud
environment - almost all charge for egress - the movement of the data out of the cloud. Furthermore, egress
costs may be encountered even when the data moves between different zones or regions within the same
cloud provider. As of this writing, depending on the selection of the source and destination regions while
moving the data even across the resources of the same cloud provider, egress costs can vary between $0.01
and $0.23/GB41. Such charges may be unexpected to the users who are new to the cloud and may be
significant. It is therefore very important to confirm the understanding of the egress costs associated with a
given computational workflow and optimize the latter to reduce egress costs to the minimum possible with a
given cloud provider.

Storage Cloud-based solutions provide a multitude of data storage services that differ based on their
performance and pricing characteristics, ranging from the VM-attached Solid State Drive (SDD) and Hard Disk
Drive (HDD) storage to archival-grade storage buckets optimized for infrequent access. Again, tradeoffs can be
difficult to navigate while configuring a computational workflow. The choices of a specific storage solution may
have implications on the costs of other services (e.g., slower storage may lead to longer processing times, and
increasing costs associated with VM tenancy). Among different classes of attached disk storage, traditional
HDD is the cheapest. To optimize for the costs, and since the TotalSegmentator or radiomics feature extraction
is not IO-intensive, we chose HDDs over SSDs.

Compute Regions Users of the cloud need to be cognizant of the concept of compute region, which defines
geographical location of the VMs. Pricing of cloud resources varies across cloud compute regions. Determining
optimal selection of such resources is not straightforward, since GCP does not provide a comprehensive
overview of pricing of the VMs or GPUs across regions, and such pricing is dynamic. To help with estimating
pricing for a specific region, Google provides a Pricing Calculator tool
(https://cloud.google.com/products/calculator) and an API (see https://cloudpricingcalculator.appspot.com/). We
leveraged the API and utilized a notebook CloudSegmentator
util/pricingOptimization/Top_20_cheapest_GPUs.ipynb), to survey pricing across regions and to guide compute
region selection. It is important to note that the pricing API operates under the assumption that compute
resources are available in every region. In practice, we found it necessary to manually confirm resource
availability in each region via the GCP console.

Quotas To reduce the possibility of extreme cost overruns, cloud providers utilize safeguards known as quotas
- maximum allocation limits for the specific cloud resources, or the use of specific APIs. Users with appropriate
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permissions can either request modifications to the default quota values, or modify those directly (depending
on the specific quota).
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Table 1: Mapping between the terms used in Terra and SB-CGC and the nomenclature adopted in our study. List
of timestamped events reported by Terra and SB-CGC during the lifetime of a task execution, and the mapping to the
corresponding time intervals adopted in our study. Gray zones are the times that SB-CGC does not separate with the
same precision as Terra does.

Terra task execution status Equivalent SB-CGC task
execution status Nomenclature adopted in our study

Pending

Duration

Queued duration

allocationAndSetupTime
batchWallClockTime

RequestingExecutionToken

PreparingJob

WaitingForValueStore

RunningJob

waiting for quota

Worker
"google-pipelines-worker-xxxxxx"
assigned in {region} on a
"custom-2-13312" machine

Running
duration

Pulling
"gcr.io/google.com/cloudsdktool/
cloud-sdk:354.0.0-alpine"

Pulling
"imagingdatacommons/{docker
image tag}@sha256:xxxx"

ContainerSetup

Background

Localization

UserAction Execution
duration coreAnalysisTime

CheckingForMemoryRetry

deallocationTime

Delocalization

Worker released

Complete in GCE / Cromwell Poll
Interval

UpdatingCallCache

UpdatingJobStore



API usage costs The use of API-based cloud-based services incurs usage costs. Any use of APIs at scale
should be preceded by a careful evaluation to understand these costs. It is important to recognize that API
costs are at times offset by the “free tier” allowance. Specifically, in the context of accessing data from IDC,
one may utilize BigQuery for data selection directly from the processing workflow. As of writing, BigQuery
queries are free as long as the amount of the processed data is within 1 TiB in a given month (see
https://cloud.google.com/bigquery/pricing#free-tier). Our implementation utilized BigQuery prior to workflow
execution to select DICOM series suitable for analysis, as shown in Figure 1. To enable lookup of the files
corresponding to the DICOM series defined by SeriesInstanceUID we utilized the idc-index, which packages
key DICOM metadata attributes and can be used as a cost-free alternative to BigQuery for basic search
operations. Workflow performance optimization

To evaluate the performance of different workflow configurations, we captured or calculated the following
utilization metrics and compared them between workflow execution on Terra and SB-CGC.

CPU, GPU, Disk To assess the efficiency of resource allocation, we monitored the utilization of CPU, RAM,
and GPU during the analysis. This information from initial observations was then used to assign the minimum
necessary number of vCPUs, and size of RAM.

Egress Our preparatory analysis showed that the cost of the NVIDIA T4 GPU located in the same region as
the Terra workspace bucket (us-central1) was prohibitive (50% more than in other locations such as
australia-southeast1, us-west4, asia-east1, asia-northeast1, and europe-west2). To explore the tradeoffs
between GPU cost savings and egress charges transferring data across regions we performed experiments
applying “twoVM” and “threeVM” configurations to small subsets of data. We calculated the egress charges
using a combination of FISS API (https://github.com/broadinstitute/fiss) and processing billing logs stored in
Google’s bigquery for Terra
(https://support.terra.bio/hc/en-us/articles/360037862771-How-much-did-my-workflow-cost). On SB-CGC, we
utilized the sevenbridges-python API (https://github.com/sbg/sevenbridges-python) to analyze costs separately
in each of the compute, storage, and egress categories.

Preemption rate To assess the frequency of VM preemptions, we calculated the preemption rate, which we
defined as the total number of preemptions divided by the expected number of VMs required to perform a task
in a batch. We also analyzed the distribution of these preemptions by task, along with the duration of allocated
instances running uninterrupted before being preempted.

Wall Clock time We defined wall clock time differently for the cohort and individual batches (see Table 1 for
reference). cohortWallClockTime was defined as the time from the submission to the completion of analysis.
On the other hand, batchWallClockTime was defined as the time from the time the workflow platform queuing
the batch for processing to the completion of the processing (see Table 1). This distinction was necessary due
to the peculiarities of the workload management systems of both Terra and SB-CGC, which limit the maximum
number of workflows that can be executed at the same time.

Resource allocation/deallocation times Although there is no official documentation on the workflow
execution stages in Terra, we found 19 distinct values of status reported by the FISS API, while SB-CGC API
lists only 4 stages. We normalized these timestamps as shown in Table 1. We defined allocationAndSetupTime
as the time from job acceptance by the platform until the necessary input files for job execution are localized.
The coreAnalysisTime was defined as the duration of executing the Colab notebook is executed by Papermill,
and deallocationTime as the time from the conclusion of the core analysis until the platform marks the job as
finished.
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Processing workflow execution logs To determine the optimal resource allocation strategy, we assessed
and compared the costs associated with each configuration type (“oneVM”, “twoVM” and “threeVM”). We then
separated the costs by task and investigated the contributions to the overall cost by the individual components
(i.e., GPU, CPU, RAM, egress, etc.). Terra’s FISS API and SB-CGC sevenbridges-python API were used to
retrieve workflow and task metadata for the workflows executed on the respective platforms. Both APIs report
costs as well at the task level. Terra provides an option to access billing logs via BigQuery
(https://support.terra.bio/hc/en-us/articles/360037862771-How-much-did-my-workflow-cost). Using SQL
queries, billing data was used to retrieve costs associated with the individual workflows, tasks, and cloud
components (CPU, GPU, RAM, etc). Plots were generated either using matplotlib and seaborn Python
packages, and Tableau. For post-processing of the workflow metadata, we used a colab notebook
(CloudSegmentator workflows/TotalSegmentator/Notebooks/PostProcessingTerra.ipynb) with Docker-based
local run time (https://research.google.com/colaboratory/local-runtimes.html) on a JetStream242 VM (available
via ACCESS43 credits allocation) with 8 vCPUs 30 GB RAM.

Exploration of the analysis results Once the computation was completed, we set up the environment to
interactively explore and visualize the resulting dataset. We retrieved and decompressed artifacts generated by
individual batches (DICOM SEG and SR objects containing analysis results) from the Terra workspace bucket,
uploaded the resulting objects to a Google Cloud Storage bucket, and ingested them into a Google HealthCare
API DICOM store. Metadata from all DICOM objects was extracted and exported to a BigQuery table using
Google Healthcare API DICOM Store BigQuery export functionality. OHIF (Open Health Imaging Foundation)
viewer44 (https://github.com/OHIF/Viewers) in combination with the Google Looker Studio dashboard were
used to visualize and examine the generated results for each of the cohorts during the incremental
development.

Comparison between the cost of on-demand GCP VMs and on-premises analysis

In order to put the cloud-based performance in perspective, we estimated time and cost of performing the
analysis of the final cohort using the computational resources available within our institution - Mass General
Brigham (MGB) Enterprise Research InfraStructure (ERIS). Characteristics of these computational resources
and pricing available for the members of the institution are publicly available at
https://rc.partners.org/about/who-we-are-risc/enterprise-research-infrastructure-services. ERIS provides
access to 5 GPU-equipped nodes, each with 8 NVIDIA V100 GPUs that are priced at $0.01/min/GPU (see
https://rc.partners.org/kb/article/3650). In addition, CPU-only cluster contains 5 nodes with a total of 328 cores
and 1.8 TB RAM. The CPU nodes are available free of charge (see https://rc.partners.org/kb/article/4036).

Results
Our cloud-based analysis of the NLST cohort employed a staged approach, starting with a subset of 1037
series (the cohort established earlier by Krishnaswamy et al.32, further referred to as “1k cohort”), followed by
10,000 series (“10k cohort”) and ultimately to all eligible series in NLST (“126k cohort”). We scaled the analysis
in stages so that we could identify and remediate deficiencies in our workflow before analyzing the entire
cohort and experiment with the various configuration choices that were not trivial. Further, this staged approach
allowed us to mitigate cost overruns and detect unexpected situations (e.g., workflows that are in a
non-responsive state) while running the workflow on the cloud. While evaluating the various configuration
options for executing the workflow and refining our approach leading to the final experiment, we utilized a
combination of empirical choices for some of the parameters and conducted a more principled comparison for
others. We selected this pragmatic strategy given the overwhelming number of options available to the user
while performing large-scale computation on the cloud.
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Our final implementation is available under a permissive license in this GitHub repository:
https://github.com/ImagingDataCommons/CloudSegmentator. We used release v1.2.0 of the software31 for the
final processing of the NLST collection. We made a collection of our CWL and WDL workflows available in
Dockstore (https://dockstore.org/organizations/ImagingDataCommons/collections/CloudSegmentator),
accompanied by the brief instructions for importing the workflows to a platform of the user’s choice in our
GitHub repository.

Figure 2: UpSet plot summarizing the combinations of the characteristics of the DICOM series from the NLST
collection that were identified to have inconsistent geometry. Histogram on the top shows the distribution of the
series that have the combinations of characteristics identified by the blue dots connected with the lines in the bottom right
section of the plot. Histogram on the left summarizes the frequency of occurrence of the specfic geometric issues
identified. The definition of the rules to identify these series was done by using an SQL statement (see CloudSegmentator
workflows/TotalSegmentator/sqlQueries/nlstCohort.sql) against the DICOM metadata available in IDC. Items outlined in
red correspond to the DICOM series groups constituting the largest portion of those that have inconsistent geometry.
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Figure 3: Distribution of the number of slices per DICOM series in the final 126k cohort used in the analysis.
The tail of the distribution (n=3,249) corresponds to the DICOM series with the largest number of slices that were
included in the 10k and 126k cohorts.

Evaluation of the input selection query

We conducted a systematic evaluation of the SQL query efficacy in filtering out the problematic image series
by selecting cohorts of increasing sizes as follows. The SQL query underwent refinements based on insights
gained from each experiment.

1k cohort: This cohort was selected using the baseline query introduced in a prior study by Krishnaswamy et
al,32 which resulted in 1037 series selected (further referred to as “1k cohort”). 2 (0.19%) series bypassed the
SQL query filters but failed the dcm2niix conversion step due to inconsistent slice intervals, prompting
adjustment of the query. Conversion of certain JPEG-compressed series (TransferSyntaxUID of
'1.2.840.10008.1.2.4.70' and '1.2.840.10008.1.2.4.51') resulted in failures. The query was then adjusted to
exclude such problematic series by incorporating the TransferSyntaxUID DICOM attribute. Note that the
original query by Krishnaswamy et al. included only cancer-positive patients from NLST. This restriction was
removed in the revised query for building the subsequent cohorts.

10k cohort: This cohort of 10,000 CT series was formed by applying the revised query and including all 3,249
series which had more than 300 slices – to stress the GPUs and resource allocation. The remaining 6,751
series were selected randomly. All series were successfully processed without any failures at the NIfTI
conversion step.

126k cohort: As of IDC release v17, NLST collection contains a total of 203,087 CT series from 73,113 studies
corresponding to 26,254 patients14. We removed series identified as localizers (65,181/203,087, 32.1%), JPEG
compressed series (161/203,087, 0.1%), series with missing ImagePositionPatient attribute (3/203,087,
0.002%) and series with less than 50 slices (7,669/203,087, 3.78%). Further, 1.96% of the series
(3,985/203,087) were eliminated due to inconsistent geometry. The contributions of various problematic series
are summarized in Figure 2. The final cohort included 126,088 series from 71,661 studies corresponding to
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26,194 patients, with the majority of the series containing between 100 and 350 slices (122,839/126,088,
97.4%), see Figure 3. While processing this selection, 35 series failed the dcm2niix conversion. Four of those
failed due to gantry tilt warnings, while the remaining 31 series exhibited inconsistencies in ImageType values
within a series. One series encountered failure due to missing pixel data in two DICOM files.

Overall optimization of the VM configuration and workflow execution

Before conducting any of the computational experiments we studied the available choices for CPU and GPU
architectures and the selection of the compute regions to optimize the time/cost performance of the
computation, as discussed below.

Virtual Machine configuration Since the performance of a VM depends on the CPU architecture, we chose
the most efficient VMs available on the platform. On Terra, we chose the N2D VM class (based on the
AMD-Rome CPU architecture) for CPU-only tasks. The N2D VM class has a CoreMark
(https://www.eembc.org/coremark/) score of 1.46 (1 vCPU), the highest among the CPU classes available on
Terra (N1, N2, and N2D). On the other hand on SB-CGC we chose the c5 VM class – based on Intel Cascade
Lake CPU architecture. N2D had the best price to performance among the options on Terra, and c5 was the
most efficient among the AWS instance options on SB-CGC (c4, c5, m4, m5, r4, and r5). In addition,
concurring with the suggestions available in the Terra documentation
(https://terra.bio/speed-up-your-machine-learning-work-with-gpus), we found that the NVIDIA Tesla T4 GPU
was the most cost-efficient among the GPUs available on Terra (K80, P4, P100, T4, and V100) and SB-CGC
(T4 and V100). Initial observations showed that for series with greater than or equal to 300 slices, the amount
of memory in the 4 vCPU16 GB RAM VM configuration was not sufficient for extracting radiomics features
using multithreading. Whenever a batch contained a series that had 300 or more slices, an 8 vCPU and 32 GB
RAM VM was assigned (see CloudSegmentator workflows/TotalSegmentator/Notebooks/Preprocessing.ipynb).

Configuration of resources for parallel workflow execution Prior to each of the experiments we assessed
the pricing of the resources needed for computation across the available cloud regions, and adjusted the
selection based on the availability. Access to GPU resources within individual regions is controlled by a quota,
which for the T4 GPUs had the default value set by Google Cloud at 16 for each of the regions. Once the
desired compute regions were identified for a given experiment, we proceeded to request quota increases
(between 500 and 1,024 from the default quota values) for those regions to allow for increased parallelism of
the computation. While using Terra, this quota increase has to be requested through the GCP customer
support interface and is subject to review by the GCP administrators
(https://support.terra.bio/hc/en-us/articles/360029071251-How-to-troubleshoot-and-fix-stalled-workflows).
SB-CGC users are required to submit such quota increases via the SB-CGC customer support and not directly
to AWS.

It is important to note that the maximum possible parallelism of the workflow execution is also bounded by the
limit of 3,000 workflows (in our implementation, each batch corresponds to a separate workflow) at a time on
Terra (https://support.terra.bio/hc/en-us/articles/360055105051-Overview-How-the-workflow-system-works).
Similarly, SB-CGC has a quota limit of 80 batches at a time
(https://docs.cancergenomicscloud.org/docs/about-task-execution#queueing).

1k cohort: Comparison of Terra and SB-CGC

To guide selection of the optimal platform and workflow configuration, we evaluated “oneVM”, “twoVM”, and
"threeVM" on both Terra and SB-CGC, considering four key factors: cost, quotas, preemption rate, and
analysis time.
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The initial experiment of processing the 1k cohort was performed on June 8, 2023 (dates are important to allow
for their consideration in the context of the pricing on the specific date).

Figure 4: Summary of the key metrics analyzing the 1k cohort across Terra and SB-CGC platforms using the
three VM configurations. A: total cost; B: cost per batch; C: VM preemption rate (%) for the individual
configuration-specific processing steps; D: batch wall clock time. Boxplot shows median value, gray rectangle
corresponds to the range of 25th to 75th percentile, whiskers are 1.5*IQR, and colored dots correspond to the data points
and include minimum and maximum values.

“twoVM” emerged as the most cost-effective among all configurations on both Terra and SB-CGC, as
summarized in Table 2 and Figure 4. Terra achieved lower overall costs at $6.37, with a 56.2% cost reduction
in comparison to SB-CGC. The median cost per 12-series batch on SB-CGC was $0.16 - more than double
that of Terra at $0.07. On Terra, the processing was interrupted by preemptions during Input Conversion and
Inference once, and 11 times during the Feature Extraction and Output conversion (see Figure 4C). However,
on SB-CGC no preemptions occurred during either of the steps. The median batchWallClockTime of 1.82 hrs
on Terra was slightly higher than 1.71 hrs on SB-CGC (see Figure 4D).

“threeVM” ranked second, incurring costs only slightly higher than “twoVM”. Terra demonstrated an overall
53.4% cost reduction over SB-CGC (see Figure 4A) and a lower per-batch processing cost. Compared to
“twoVM”, the "threeVM'' configuration was 14.1% more expensive on Terra ($7.27 vs $6.37) and 16.6% more
on SB-CGC ($15.60 vs $14.55). Similar to the “twoVM” experiment, we observed a small number of
preemptions on Terra but not on SB-CGC. The median batchWallClockTime of 1.50 hrs on Terra was slightly
lower than 1.77 hrs on SB-CGC.

“oneVM” was the least optimal in terms of costs and wall clock time to complete the analysis of the 1k cohort.
Overall cost savings performing the analysis on Terra were even more prominent, with a 73.1% cost reduction
compared to SB-CGC (see Figure 4A). The median cost per batch on SB-CGC of $0.89 was more than four
times that of $0.22 on Terra (see Figure 4B). The preemption rate increased for both platforms, but this time
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was much higher for SB-CGC: over 79% vs 10.34% on Terra (see Figure 4C). The median
batchWallClockTime of 1.84 hrs on Terra was slightly lower than 2.09 hrs on SB-CGC.

Figure 5: Breakdown of the overall costs by the individual Stock Keeping Units (SKU) items for the 1k cohort
analysis experiment on Terra.

Following our analysis of the 1k cohort, we opted for the “twoVM” configuration and Terra platform for the
subsequent experiments. This choice was largely influenced by the cost-efficiency, particularly that of GPUs,
despite the higher preemption rate of the "twoVM'' configuration (see Figure 5) and comparable processing
time on Terra compared to SB-CGC. In addition, as mentioned previously, Terra’s 3000 batch limit quota is
more suitable for scaling than the SB-CGC limit of 80.

10k cohort: Refinement of the workflow

The 10k cohort analysis was performed on January 23, 2024. In preparation for the experiment, the regions for
GPUs were updated to select the cheapest regions as of January 20, 2024, to account for the change in
pricing by Google since the initial experiment. We utilized a heuristic that selected regions that were within
150% of the cost of the cheapest region, which resulted in the following regions: us-west4, us-east4,
europe-west2, asia-northeast1, asia-southeast1, and europe-west4.
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Figure 6. Comparison of the key performance metrics across the cohort sizes analyzed on Terra with the
“twoVM” configuration. A: preemption rate (%); B: cost per batch (12 series); C: distribution of wall clock times (the time
elapsed from the moment Terra/SB-CGC accepts the job until the job is finished).

The 10k cohort was split across 834 batches for processing. Processing of 6 series in 6 batches failed due to
insufficient robustness of the error handling during radiomics feature processing, leading to the aborted
processing of the entire batch. As a result, a total of 72 series were not processed. Implementation was
updated to improve robustness for the subsequent experiment.

The total cost of processing the 10k cohort was $97.23. This was 58.4% more than the projected cost from the
1037 cohort results: assuming linear scaling, the expected total costs would be $61.4, given the total costs of
$6.37, or $0.00614/series, observed for the 1k cohort. The median cost per batch in the 10k cohort was $0.11 -
higher than the median of $0.07 for the 1k cohort (see Figure 6). The preemption rate increased compared to
the 1k cohort during Input Conversion and Inference (10.79% vs 1.15%) and similarly during Feature
Extraction and Output conversion (14.63% vs 12.64%). Despite a higher preemption rate, analyzing the 10k
series cohort finished in 4.02 hrs compared to 4.90 hrs for the 1k cohort due to increased parallelism. The total
coreAnalysisTime for the 10k cohort was approximately 48 days while it was ~4 days for the 1k cohort (see
Table 3). The median batchWallClockTime of 1.85 hrs for the 10k cohort was comparable to 1.82 hrs for the 1k
cohort (see Figure 6).

Barring the aforementioned error handling issue there were no other major complications during scaling from
1k to 10k cohort. After adjusting the code, we launched the analysis for the entire cohort of 126,088 series.
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Table 2: Summary of the processing times and costs for the evaluated workflow configurations across the Terra and
SB-CGC platforms. Processing steps correspond to those in Figure 1: Step 1: Data retrieval, Step 2: Input conversion, Step
3: Inference, Step 4: Feature extraction, Step 5: Output conversion. Highlighted in green are the rows corresponding to the
configuration/platform that demonstrated optimal performance in analyzing 1k cohort, and the final cohort processing.

Workflow
conf. Platform Processin

g steps

Total
cost,
USD

Coh
ort

Batch
es

Cost per
batch, USD

median (IQR)
[range]

batchWall
ClockTime,

hours
median
(IQR)

[range]

cohortW
allClockT

ime

Preempti
ons, %

oneVM

Terra

1-5 $18.72

1k 87

$0.22
(0.20-0.23;
0.13-0.31)

1.84 hours
(1.71-2.00)
[1.20-2.94]

2 hrs 57
min 9

twoVM
1-3

$6.37
0.07

(0.07-0.08)
[0.06-0.25]

1.82 hours
(1.57-2.25;
1.33-4.89)

4 hrs 54
min

1

4-5 11

threeVM

1-2

$7.27
$0.08

(0.08-0.09;
0.05-0.12)

1.50 hours
(1.41-1.61;
0.85-2.31)

2 hrs 19
min

0

3 3

4-5 2

oneVM

SB-CGC

1-5 $69.48
$0.89

(0.80-0.95;
0.26-1.19)

2.09 hours
(1.91-2.19;
1.36-2.82)

3 hrs 48
min 69

twoVM
1-3

$14.55
$0.16

(0.15-0.19;
0.13-0.24)

1.71 hours
(1.63-1.84;
0.99-2.25)

3 hrs 44
min

0

4-5 0

threeVM

1-2

$15.60
$0.18

(0.16-0.21;
0.14-0.26)

1.77 hours
(1.70-1.91;
1.02-2.33)

3 hrs 22
min

0

3 0

4-5 0

twoVM Terra
1-3

$97.23 10k 834
$0.11

(0.09-0.14;
0.05-0.38)

1.85 hours
(1.66-2.14;
0.81-4.02)

4 hrs 1
min

90

4-5 122

twoVM Terra
1-3

$1,011.05 126k 10508
$0.10

(0.09-0.11;
0.04-0.29)

1.79 hours
(1.56-2.11;
0.99-4.25)

8 hrs 13
min

707

4-5 178



126k cohort: Final analysis

Analysis of the final 126k cohort was performed on January 26, 2024. We split the cohort into 10,508 batches
and allocated the compute resources the same way as we did for the 10k cohort. No batches failed completely
but 35 series failed the dcm2niix conversion. There were no other processing errors.

Table 3: Summary of costs, cohort size, wall clock, and total compute times while scaling from 1k to 10k and
ultimately to 126k series cohorts using twoVM Configuration on Terra. Note that total core analysis time excludes the
time for allocation, setup, and deallocation of a VM, as summarized in Table 1.

Cohort
size,

DICOM
series

Slices per
series,
median

(inter-quar
tile range)
[min-max]

Total size
of the files
processed

Virtual
Machines

used*

Cohort
Wall Clock

Time

Cumulativ
e batch

Wall clock
time

Cumulativ
e core

analysis
time**

Total Cost
Average
Cost per
series

1k
157
(39)

[101-342]
89 GB 87 x 2 4 hrs 54

min
7 days 12
hr 43 min

4 days 1 hr
45 min $6.37 $0.00614

10k
171
(107)

[50-801]
1.23 TB 834 x 2 4 hrs 1 min 67 days 5

hrs 2 min
48 days 9
hrs 28 min $97.23 $0.00972

126k
155
(47)

[50-801]
10.61 TB 10,508 x 2 8 hrs 13

min

823 days
15 hrs 46

min

522 days
10 hrs 26

min
$1,011.05 $0.00802

* Each batch analyzed in the twoVM configuration required the use of a GPU equipped VM for the inference step and a
CPU VM for the radiomics feature extraction step, thus the total number of the VMs used is twice the number of batches
for each cohort, excluding preempted VMs.
**The results for 10k and 126k cohorts listed in Figure 10 presented in Fedorov et al.7 differ from the values in this table as
workflow definitions and GCP pricing evolved since the earlier publication. The total compute time was incorrectly reported
in that figure for the 126k cohort. While the cumulative coreAnalysis time was reported for 1k and 10k cohorts, for the 126k
cohort cumulative batchAnalysis time was reported. The total compute time for the 126k cohort should have been reported
as 460 days 6 hrs 19 min instead of 785 days 13 hrs 1 min.

The total cost for the 126k cohort was $1,011 which was 82.5% of the projected cost from the 10k cohort
results (given the cost of $97.23 for 10,000, or $0.00097/series, the projection would be $1,226). The median
cost per batch in the 126k cohort was $0.10 (see Figure 6). The preemption rate decreased as compared to
what we observed in the 10k cohort both during Input conversion and inference (707/10,508 or 6.73% vs
10.79% for the 10k cohort), Feature Extraction and Output Conversion (178/10,508 or 1.69% vs 14.63% for
the 10k cohort). Analyzing the entire 126k series cohort finished in 8.22 hrs with a total core computation time
of ~522 days (see Table 3). The median batch wall clock time of 1.79 hrs for the 126k cohort was slightly lower
compared to 1.85 hrs in the 10k cohort (see Figure 6).
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Figure 7: Distributions of the individual per-batch processing step times for the 126k cohort (10,508 batches)
analysis on Terra using the “twoVM” configuration. See further details in Table 4 Top: allocationAndSetup,
coreAnalysis, deallocation, and Docker pull (included in allocation time) times; Bottom: breakdown of the core analysis
step into further substages within each task. One outlier batch was excluded for both plots. Deallocation time includes
copying output files from the VM to the Terra workspace bucket, releasing the VM, and updating Cromwell’s job store.
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Table 4: Contribution of the various components to the overall processing time. Highlighted rows correspond to
the most time-consuming steps.

Workflow
component
(“twoVM”

configuration)

Breakdown of batchWallClockTime Breakdown of coreAnalysisTime

Stage Time, minutes
median (IQR) [range] Step Time, minutes

median (IQR) [range]

Input Conversion
and Inference

Allocation
and setup

9.2
(7.0-16.5)
[5.09-102]

N/A

Core
Analysis

18
(17.0-18.8)
[6.7-28.1]

Downloading DICOM files
0.49 min
(0.36-0.72
[0.14-8.0]

DICOM to NIfTI Conversion
0.93 min
(0.77-1.12)
[0.44-2.97]

Inference
15.76 min
(0.77-1.12)
[15.0-16.6]



An in-depth analysis of wall clock time components, as shown in Figure 7 and Table 4, revealed interesting
patterns. On average, the time to allocate a GPU VM for the inference step (9.2 min) was higher than that of
the CPU VM allocation in the subsequent step (4.6 min). coreAnalysisTime was the main contributor to the
batchWallClockTime. Note that in the inference task allocation/deallocation time (~15 min median) was
comparable with the core processing time (18 min median), which may justify further investigations for the
selection of a more optimal batch size. The Radiomics feature extraction step appears to be the main
contributor to the overall processing time (over 72% of the median cumulative core analysis time of ~68 min).
Conversion of data to and from DICOM representation adds a negligible amount of time to the overall
processing.
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lz4 compression of NIfTI
files

0.01 min
(0.012-0.015)
[0.005-0.03]

Deallocation
6

(3.9-9.0)
[0.5-27.8]

N/A

Feature
Extraction and

Output
Conversion

Allocation
and setup

4.6
(2.8-9.5)
[1.4-41.6]

N/A

Core
Analysis

52
(46.3-58.8)
[22.3-125]

Conversion of NIfTI
segmentations into DICOM

SEG

0.71 min
(0.64-0.86)
[0.29-2.47]

Radiomics Features
Extraction

49 min
(43.8-56.1)
[20.7-120]

Conversion of radiomics
features JSON into DICOM

SR

0.77 min
(0.72-0.87)
[0.31-1.60]

lz4 compression of DICOM
SEG and SR files

0.032 min
(0.029-0.036)
[0.013-0.147]

Deallocation
6.5

(4.0-9.5)
[0.5-21.5]

N/A



Figure 8: Summary of the computational time lost due to VM being preempted as a function of the processing
stage and preemption event. Summary show corresponds to the processing of the 126k cohort using the “twoVM”
configuration on Terra.

Table 5: Summary of the preemptions observed during the 126k cohort analysis using the “twoVM” workflow
configuration.

Task Preempted Attempt Preemptions Time to preemption, min
median (IQR) [range]

Steps 1-3 (Data retrieval, Input
Conversion and Inference)

1 693
20.4 min
(12.6-28.3)
[2.1-97]

2 39
16.2 min
(6.2-32)
[3.7-67)

3 2 8.3 min
[6.1-10.5]

Steps 4-5 (Feature Extraction and
Output Conversion)

1 175
33.8 min
(22.5-48.3)
[2.4-95]

2 3 18.5 min
[18.3-24]

Preemptions of the VMs result in reduced efficiency in the use of computational resources since the analysis
performed up to the preemption will be discarded. We investigated the frequency of preemptions and the time
lost (see Figure 8 and Table 5). Overall, the total number of preemptions was <10% relative to the total number
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of batches. Out of those batches that were preempted, over 90% were preempted only once, with the median
time to preemption (i.e., computation time lost) of 20.4 and 33.8 min for the inference and feature extraction
stages, respectively.

Figure 9: Summary of the cross-region GPU allocation for the final cohort analysis. Allocation is summarized at
one-hour intervals since the launch of the 126k cohort (10,508 batches) processing using “twoVM” configuration on
Terra.

Execution logs provide a wealth of information to investigate various aspects of the processing. Figure 9
provides a detailed depiction of GPU allocation (excluding the preempted attempts) by Terra over the 8.22
hours of processing the 126k cohort in 10,508 batches. The graph reveals that a minimum of 1,750 GPUs were
consistently in use from the second hour through the seventh hour of the computation. The peak GPU usage
was observed in the second hour at 2,982 GPUs. By the final hour, the GPU count had significantly reduced to
65, coinciding with the majority of batches transitioning into the Feature Extraction and Output Conversion
task.

Figure 10 shows the relationship between the TotalSegmentator inference time and the number of slices in a
given CT series. The inference time was under 2 minutes for most of the series, with a median of 79 seconds
(IQR 69-87; range 32-207). There was a significant correlation (p<0.0001) between the number of slices and
inference time.
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g

Figure 10: Distribution of DICOM series size and the inference times in the 126k cohort. Investigation of the
factors that led to the observed multimodal distribution is of interest.

Figure 11: Breakdown of the major cost contributors for the performed analysis experiments. The summary
corresponds to the major computational components across the cohort sizes analyzed using the “twoVM” configuration
on Terra.
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We examined the cost contributions of various compute components across the three cohorts (see Figure 11).
Despite the increase in GCP prices between the 1k cohort and subsequent experiments, the cost contributions
of the six components - GPU, CPU, RAM, egress, external IP charge, and disk - remained relatively consistent
across all three experiments. As anticipated, the GPU was the largest contributor, accounting for 39-46% of the
total costs. The CPU and RAM followed, contributing approximately 30% and 20% respectively.

Review of the analysis results

Terra limits the kind of operations one can do outside of running workflows. We could not create DICOM stores
in the GCP project created by Terra. Therefore, we decompressed the DICOM SEG and DICOM SR objects
generated from Terra into Google Cloud Storage buckets as outlined in the methods section. This step took
approximately 4 days for the 126k cohort. We could have parallelized and sped up this operation by developing
another workflow on Terra but it was not part of this experiment. Next, we used Google Healthcare API to
import the data from the buckets into a DICOM store. The DICOM metadata was then exported into a
BigQuery table for further exploration. It is noteworthy that the process of importing data into the DICOM store
from Storage buckets and exporting DICOM metadata for the final cohort took less than an hour. We deployed
an instance of the OHIF Viewer44 to connect to the resulting DICOM store to facilitate a review of the
segmentation results. We also prepared a Google Looker Studio dashboard, which exposed a small subset of
DICOM metadata available in the aforementioned BigQuery table to enable examination of the segmentation
results.

The setup discussed above was used to examine analysis results produced during different stages of
development.

Comparison between the cost of on-demand GCP VMs and on-premises analysis

Since the T4 GPU architecture we used in the cloud-based analysis is not offered by ERIS, we made an
assumption that V100 GPU is twice as efficient as T4, the cost of performing the computation on ERIS would
be comparable to that on Terra. On Terra, it took a total of ~3,150 hours of coreAnalysis time for Input
Conversion and Inference. At 200% efficiency on V100, and assuming the entire cluster is reserved, it would
have taken ~1,575 hrs or cohortWallClockTimeof 1 day 15 hrs among the 40 GPUs. At $0.01/min/GPU this
would cost ~$945. CPU-only nodes at ERIS are available as shared resources, and can be used free of
charge. Feature Extraction and Output Conversion step’s coreAnalysisTime on Terra took 8,271 hrs for 4 vCPU
16 GB RAM instances and 1,118 hrs for 8 vCPU 32 GB RAM instances. Based on this, we project that ERIS
CPU-only cluster with 5 nodes and a total of 328 cores would have taken 5 days and 8 hrs
((8,271*4+1,118*8)/328). Note that these estimates do not account for any possible delays due to scheduling
or waiting for the availability of these shared resources.

Data availability
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Figure 12: Visualization of a sample CT series and the corresponding segmentation. The case shown is for NLST
PatientID 100004, time point 0. Left: Visualization using OHIF v3 viewer integrated within IDC Portal, as can be
accessed at
https://viewer.imaging.datacommons.cancer.gov/v3/viewer/?StudyInstanceUIDs=1.2.840.113654.2.55.17414483492421
8414213677353968537663991&SeriesInstanceUIDs=1.2.840.113654.2.55.19594668240305884590476850282646619
4287,1.2.276.0.7230010.3.1.3.313263360.11967.1706318547.125050. Right: Visualization of the same CT and SEG
series using 3D Slicer 5.6.2 (SlicerIDCBrowser extension was used to download data from IDC, QuantitativeReporting
extension was installed to support loading of DICOM SEG into the Slicer scene).

The final set of the analysis results was deposited into IDC as a new TotalSegmentator-CT-Segmentations
analysis results collection45 and is available for interactive exploration at
https://portal.imaging.datacommons.cancer.gov/explore/filters/?analysis_results_id=TotalSegmentator-CT-Seg
mentations. Manifests corresponding to the files containing the results along with the instructions for download
are available as part of the data descriptor accompanying this analysis results collection45. Figure 12 shows
visualization of a sample result.

Discussion
In this study, we demonstrated the potential of Terra and SB-CGC platforms, and cloud computing in general,
for automating AI-based curation applied to large datasets, on the example of the TotalSegmentator
segmentation model applied to the NLST collection. While AI is not a substitute for human expertise in all
annotation tasks, at least some applications, such as imaging-based population studies, image region-based
feature extraction for cross-omics analyses, or content-based retrieval, can benefit from the automatic
volumetric annotations. To our knowledge, there is no practical alternative to obtain annotations of the anatomy
generated in this study utilizing human experts at this scale.

Our comparison of the costs and time of performing the presented analysis using on premises resources
demonstrates that while costs may be comparable with the cloud, the scale of resources available, at least at
our institution, is not. It is important to note that our estimates are arguably biased towards the on premises
option by making somewhat unrealistic assumptions, such as complete access to the entire cluster for 1.5
days. It might be of interest to conduct experimental evaluation of executing the developed workflow using on
premises resources. The workflows developed - in principle - should be interoperable with the cluster batch
scheduling systems.

The choice between on premises and cloud-based analysis is complex. This study aims to demonstrate the
capabilities of cloud analysis for a specific use case. Considerations for other use cases will vary from ours. At
the same time, cloud-based analysis may be the only option for the researchers who do not have the luxury of
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access to on premises clusters, which require significant effort to maintain and upgrade. Cloud-provisioned
computational resources can help improve equity for researchers and institutions that cannot afford their own
local computational facilities. On the other hand they also provide great flexibility for researchers who have the
financial resources to take advantage of cloud computing features. In addition, institutions that currently invest
heavily in on premises computing may be able to offer more cost-effective and adaptable computing services
via specialized cloud providers in comparison to traditional methods, although there are many considerations
beyond the price/performance computing issues explored in this study.

While the process of developing the workflow may appear daunting from the lengthy description provided in
this preprint, the initial implementation was completed by an engineer (VKT) who did not have prior experience
with either medical imaging, Google Cloud Platform, Terra or DICOM within just a few months (under the
guidance and with the support of the more experienced members of the team). Further, with the source code of
CloudSegmentator accompanying this report, we attempt to simplify the process of utilizing CRDC CRs for
alternative segmentation tasks. We plan to introduce additional segmentation tools into the repository, and
improve usage instructions and examples.

To date, Terra and SB-CGC platforms have primarily been used for genomics applications, with no publicly
available examples of utilizing them for cancer imaging research. Both platforms operate as computational
sandboxes fostering team collaboration while providing granular control over permissions. By making workflow
methods publicly accessible either through publishing on Dockstore or enabling access on their respective
platform app stores it becomes possible to not only simplify access to the complex analysis tools, but also
promote transparency and reproducibility, and encourage further innovation in the field by allowing others to
replicate and improve upon these methods.

In comparing Terra and SB-CGC platforms – within the scope of the present study – both are capable of
running end-to-end workflows and allocating compute resources to individual tasks with varying requirements.
However, Terra emerged as the more cost-efficient and flexible option in our initial 1k cohort experiment across
all three configurations of the workflow execution that we examined. Terra offers a wider range of VM options,
allows retrying a preempted task with another preemptible VM, and can allocate compute resources from any
GCP region. It also provides access to detailed billing reports allowing us to gain insights about spending and
optimize costs, allows modifications of the quota limits without interacting with the technical support. In
addition, it has a superior data model that conveniently organizes output file locations for downstream
processing. In contrast, SB-CGC's abstraction limits the flexibility, restricts users to a single compute region,
restricts access to billing and quotas, and requires the use of the ‘sevenbridges’ API for data organization. We
note that those users who have a technical background will likely appreciate Terra's granularity, while those
with limited technical experience might prefer SB-CGC's ease of development aided by the GUI and
automatically written CWL code. Overall, Terra's advantages make it our clear choice for large-scale analysis.

In our comprehensive assessment of the considered workflow configurations, the "twoVM" approach on Terra
stood out as a reliable and cost-effective solution, something that was particularly noticeable during the
incremental scaling of the processed cohort size. Our experiments underscored Terra's scalability and cost
efficiency. It is perhaps not surprising that the "oneVM" is the least cost-effective configuration since GPU use
contributes significantly to the overall costs while being only utilized during the Inference step. While
TotalSegmentator can run on a CPU, our initial results indicated that it is several times slower, and therefore it
is more expensive in total than using a VM with a GPU. We did not run the full cohort to explore the
cost/performance tradeoffs for various GPU types, but based on initial experiments we chose the NVIDIA T4 as
a reasonable option for the full cohort experiment. Using preemptible VMs significantly reduces the overall
costs for both CPU and GPU instances. The results from the "threeVM'' configuration experiments, however,
illustrate an interesting aspect of the price/performance behavior of this workflow. It might appear that
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delegating the downloading of DICOM files and conversion to a non-GPU VM would be more cost-effective.
However, our experiments demonstrated that the downloading and conversion of the images is so rapid that
delegating this task to a CPU-only VM does not lead to cost savings.

Our selected toolset significantly enhanced efficiency in maintaining the code and optimizing costs. By using
DICOM metadata interrogated via SQL queries we prevented wasteful attempts to process ~38% of the NLST
image series that were unsuitable for the TotalSegmentator model. We achieved substantial cost savings by
using cheaper preemptible VMs, dynamically allocating resources based on task and batch requirements, and
selecting the most inexpensive GPUs globally. Our use of Colab notebooks and GitHub for version control
streamlined codebase management. In combination with Papermill, this allowed us to keep WDL/CWL files
lean, decouple notebook development, and generate output notebooks that included logs for troubleshooting.
We also found DockerHub to be the most reliable, fast, and efficient option for hosting Docker images
compared to other repositories (comparison against other container registries was not shown). lz4, a fast
compression tool helped mitigate egress costs, compressing DICOM SEG files by over 90%. Linking GitHub to
Dockstore helped maintain versioning and facilitated seamless integration of the CWL and WDL files. Finally,
converting the artifacts generated by TotalSegmentator and the radiomics features into standardized DICOM
format enabled interoperability with Google Healthcare API, which in turn simplified quality checks of the
produced analysis results.

One may wonder about how generally applicable are the approaches and tools utilized in this study. Our
workflows are currently suited for processing publicly available de-identified image data from IDC, with no
restrictions on locations where data can be processed. While the infrastructure is perfectly suitable for
processing non-public data, additional considerations must be taken into account. The data may need to be
de-identified before the analysis on the Terra and Google Cloud resources. It is the responsibility of the user to
ensure compliance with all the rules and regulations governing the data being analyzed. GPUs available
outside the US may be priced more competitively, however, it may not always be possible to use regions
outside of the US due to the governance restrictions applied to specific datasets. While our analysis utilized
public GCP cloud resources, in principle, one could apply the developed workflows using private cloud or on
premises compute resources.

Our workflows relied heavily on the availability of various managed services such as DockerHub for hosting
Docker images and GitHub for the management of config files and jupyter notebooks. If there is a requirement
to keep Docker images and Jupyter notebooks private, or hosted on cloud storage, costs may increase rapidly
as cloud providers charge both for storage and egress when Docker images are downloaded. Our
implementation is currently relying on Google services. To a degree, we mitigate the perceived risk of cloud
vendor lock-in by utilizing standard interfaces for communicating with the cloud services. Data retrieval is done
over S3 API for downloading files, and over DICOMweb while accessing DICOM data from the Google
Healthcare API by the image viewers. BigQuery search operations are done using SQL.

Beginner users of Terra or SB-CGC aiming to develop new workflows will benefit from at least introductory
knowledge of computing components, coding, Docker, and cloud. Jupyter notebooks are becoming ubiquitous
in research. The transition from the notebook to Terra/SB-CGC will require some understanding of Docker
technology. Containerizing the code and its dependencies may be challenging, particularly when access to the
attached GPU is necessary. On the other hand, it should be rather easy to adjust workflows developed by
others (including those that we shared), where containerization has already been completed. Once a workflow
is refined, it will enable scalable analysis while keeping time and costs low by allocating computing resources
as needed.
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In the future, we plan to apply workflows like this to more of the images available in IDC and share the results
publicly. Depending on the feedback from the community, we will consider extracting other types of radiomics
features - beyond first order and shape - for the segmented structures. Optimization of radiomics feature
extraction might be of interest given it is the main contributor to the overall processing time and cost. In the
present study we did not investigate optimization of the batch size, which might further improve utilization of
the resources. A more rigorous comparison of the cloud and on premises analysis and comparison of different
cloud backends (AWS and Azure) is warranted.
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