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 Abstract: Diabetes and related acute and long-term complications have a profound impact on cogni-
tive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial sub-
strate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic 
patients, the symptoms and complications related to the disease worsen, contributing to lower quality 
of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are 
a fundamental and valuable tool for improving our understanding of the mechanisms underlying the 
close and reciprocal link between diabetes and CNS alterations, including the development of affective 
and cognitive disorders. Such models must reproduce the different components of this pathological 
condition in humans and, therefore, must be associated with affective and cognitive behavioral altera-
tions. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric 
comorbidities associated with diabetes; animal models are, therefore, essential for the development of 
adequate therapies. To our knowledge, there is currently no review article that summarizes changes in 
affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this 
review, we have reported the main evidence on the alterations of affective and cognitive behavior in 
the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and 
the applicable therapeutic strategy. 
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1. INTRODUCTION 

 Diabetes mellitus, a metabolic disorder characterized by 
high glucose levels in the blood, has a high prevalence, con-
tinuously increasing in all countries and exceeding 400 million 
individuals worldwide. Diabetes includes insulin-dependent or 
type 1 diabetes (T1D), attributed to a lack of insulin, repre-
senting 5% of the diabetes cases, and non-insulin-dependent 
or type 2 diabetes (T2D), characterized by an insensitivity or 
resistance to insulin, representing 95% of the diabetes cases 
[1]. Diabetes-associated hyperglycemia causes, over time, 
micro- and macrovascular complications in organs and tis-
sues, such as the eyes, kidneys, heart, and nerves. The 
macrovascular complications include myocardial infarction 
and cerebrovascular diseases, while microvascular complica-
tions include nephropathy, retinopathy, and peripheral neu-
ropathy. Macrovascular and microvascular complications of 
diabetes are described in detail in both clinical and preclini-
cal studies, while complications caused by diabetes in the 
central nervous system (CNS), although ascertained [2-4], 
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remain less explored. There is a high incidence of psychiatric 
disorders, such as anxiety, depression, and cognitive im-
pairment, among diabetes patients, especially T2D. Hyper-
glycemia, impaired insulin signaling, neuroinflammation, 
and oxidative stress appear to be the underlying mechanisms 
[5]. The likelihood of developing depression in diabetic pa-
tients is approximately double compared to healthy individu-
als [6]. In particular, among people with T2D, the average 
prevalence of depression corresponds to 28%, while in the 
general population, the prevalence of depression is estimated 
at around 13% [7, 8]. For T1D, the prevalence of depression 
is 22%, which is lower than for T2D but higher than for the 
general population [8-10]. Comorbidity of diabetes and de-
pression worsens the prognosis of both diseases and increas-
es the risk for severe cardiovascular complications and mor-
tality [11, 12]. Many studies have investigated the preva-
lence of anxiety disorders in the diabetic population [13-15]. 
In an extensive study, the incidence of any anxiety disorder 
in individuals with diabetes was reported to correspond to 
17.7% [14], while in another study, the prevalence reached 
47.0% and was also associated with greater disease severity, 
disability, and poor health state [13]. There is also strong 
epidemiological evidence linking diabetes to cognitive dys-
functions with highly variable deficits as a function of the 
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type of diabetes and the patient's age [16, 17]. Cognitive de-
cline associated with the diabetic disease increases the risk of 
developing Alzheimer's disease [17]. The comorbidities of 
diabetes and affective/cognitive disorders are widely report-
ed in both humans and rodents. Thus, the purpose of this 
review article is to collect all the available evidence related 
to the affective/cognitive alterations associated with the main 
models of diabetes in rodents, the underlying mechanisms, 
and applicable therapeutic approaches. Such information is 
essential to elucidate the pathogenesis of human diabetes and 
its complications, including the neuropsychiatric ones, ena-
bling the screening of antidiabetic molecules for successful 
translation to patients. 

2. METHODS 

 The literature search was performed from the beginning 
until September 2022, primarily on PubMed, Scopus, and 
Google Scholar databases. The keywords diabetes, rodents, 
animal models, anxiety, depression, cognition, affective be-
havior, cognitive behavior, type 1 diabetes, and type 2 diabe-
tes were used. Relevant articles were selected based on the 
following criteria: articles investigating affective and cogni-
tive behavior in rodent models of T1D and/or T2D, including 
studies focusing on the underlying mechanisms or the bene-
ficial effects of molecules proposed as possible therapeutic 
applications. Studies that defined the possible differences 
between type 1 and 2 diabetes regarding the risk of affective 
and/or cognitive complications in rodents and humans were 
also included. Research and review articles describing dia-
betic pathology in humans were included in the introduction 
section. All articles were independently screened by co-
authors to determine relevance and were included in the re-
view article if selected and deemed relevant by at least two 
co-authors. A total of 168 articles were included according to 
these criteria. 

3. RODENT MODELS OF DIABETES 

 Experimental models of type 1 and 2 diabetes in rodents 
are extensively described, and a detailed description of them 
is not within the scope of this review [18-20]. Briefly, T1D 
models include spontaneous (genetic) and chemically in-
duced diabetes. Similar to humans, in these models, T1D 
develops following the immune-mediated destruction of 
pancreatic beta cells. Spontaneous models include the non-
obese diabetic mice (NOD) and the Akita mice. The Akita 
mice have an Ins2+/C96Y mutation, which is a single nucleo-
tide substitution in the Ins2 gene. Streptozotocin (STZ) is the 
most widely used agent in chemically induced diabetes. It is 
a glucose analog that enters pancreatic cells via the type 2 
glucose transporter (GLUT2), causing beta cell destruction 
with consequent insulin synthesis and secretion impairment 
and increased blood glucose levels. Alloxan is another dia-
betogenic glucose analog causing partial degradation of the 
beta cells of pancreatic islets. There are several approaches 
for the development of animal models of T2D, genetic mod-
els (both monogenic and polygenic), rich in fat and/or sugar 
(fructose) diets, administration of low doses of STZ in new-
borns or combination of STZ with nicotinamide or HFD. 
While there are models of diabetes in rodents that are not 
associated with obesity, the majority of models are associat-
ed with obesity, reflecting the human condition where obesi-

ty predisposes to the development of T2D. Monogenetic 
models include leptin gene mutations, such as the ob/ob mice 
(primary leptin deficiency that leads to polyphagia) and the 
db/db mouse (leptin receptor dysfunction). The Zucker dia-
betic fat rat (ZDF) also has a missense mutation in the gene 
that codes for the leptin receptor and spontaneously develops 
obesity and T2D. WF rats also develop insulin resistance, 
glucose intolerance, obesity, and T2D. The polygenic models 
include the Otsuka Long-Evans Tokushima Fatty (OLETF) 
rat model, showing similar characteristics to human metabol-
ic syndrome with visceral adiposity and the development of 
insulin resistance. Other polygenic models are the KK mice 
(mildly obese, hyperleptinaemic, hyperinsulinemic showing 
insulin resistance), the New Zealand obese (NZO, hyperpha-
gia, hyperinsulinemia, obesity, and leptin resistance), the Tal-
lyHo/Jng mice (hyperglycemia, hyperinsulinemia, increased 
levels of plasma triglycerides, cholesterol and free fatty acid 
levels) and the NoncNZO10/LtJ mice (liver and skeletal 
muscle insulin resistance before developing chronic hyper-
glycemia). The Goto-Kakizaki rat model of T2D is charac-
terized by glucose intolerance and defective insulin secretion 
but is not associated with obesity. T2D also develops in ro-
dents fed a diet high in fat (HFD) or high in fat and fructose 
(HFFD) with or without a low dose of STZ administration. 

4. DEPRESSION-LIKE BEHAVIOR IN RODENT 
MODELS OF DIABETES 

 Depression is a frequent psychiatric comorbidity found in 
diabetic patients, who also show an increase in inflammatory 
biomarkers [21, 22]. Another main mechanism that associates 
the development of depression with diabetes is oxidative stress 
from disrupted redox homeostasis [23]. A close correlation 
between diabetes, oxidative stress, neuroinflammation, and 
depression was found in animal models of diabetes (Fig. 1). 

4.1. T1D 

 Depression-like behavior associated with increased oxi-
dative stress was observed in the T1D models induced by 
alloxan or STZ administration. Treatment with imipramine, a 
tricyclic antidepressant, or hydrogen sulfide, an antioxidant, 
attenuated both, depression-like behavior and ROS levels 
[24, 25]. Depression-like behavior in the T1D model induced 
by STZ has also emerged in other studies [26, 27]. Depres-
sion-like behavior improved after treatment with (+/-)-8-
hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a sero-
tonin 1A receptor agonist (5-HT1A) [26] or extract of Ophio-
cordyceps formosana, a Cordyceps spp. used in traditional 
Chinese medicine for anticancer and antidiabetic treatments. 
Ophiocordyceps formosana extract also increased serotonin 
and dopamine levels in the frontal cortex, striatum, and hip-
pocampus [27]. The levels of serotonin, 5-HT, the major 
neurotransmitter whose dysregulation is involved in the 
pathogenesis of depression, were not altered in the prefrontal 
cortex and amygdala in the STZ-induced T1D model in 
mice. However, the stress-induced 5-HT release was reduced 
in the prefrontal cortex but not in the amygdala of T1D mice, 
thus highlighting that the reduction in stress-induced 5-HT 
release in T1D mice is site-specific. The same study also 
reported that diabetic mice showed prolonged freezing in the 
open platform, corresponding to a sign of fear in the rodents, 
which was restored by insulin treatment [28].  
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Fig. (1). A schematic overview of the main pathophysiological mechanisms implicated in the alterations of cerebral homeostasis contributing 
to the development of anxiety-like, depression-like behavior, and cognitive disorders in rodent models of diabetes. (A higher resolution/ 
colour version of this figure is available in the electronic copy of the article). 
 
4.2. T2D 

 A close association between diabetes, depression, and 
oxidative stress was also found in T2D models. Rats fed a 
diet rich in fat and fructose (HFFD) showed in addition to 
obesity and insulin resistance, oxidative stress, depression, 
anxiety, and cognitive deficits. The beta-caryophyllene, a 
sesquiterpene, found in many herbs and spices, reduced insu-
lin resistance, oxidative stress, neuroinflammation, and affec-
tive/cognitive alterations. However, while the anxiolytic, anti-
oxidant, and anti-inflammatory effects of beta-caryophyllene 
were mediated by both peroxisome proliferator-activated 
receptor (PPAR)-alpha and the cannabinoid type 2 receptor 
(CB2R), the effects on glycemia, depression-like behavior, 
and memory enhancement appeared to be CB2R-dependent 
and mediated by an increase of brain-derived neurotrophic 
factor (BDNF), a neurotrophin that promotes synaptogenesis 
whose levels and activity are reduced in depressed individu-
als and are enhanced by antidepressants [29]. The HFD-
induced T2D model in rats was associated with dysregula-
tion of glucose and insulin homeostasis and high levels of 
corticosterone and inflammatory cytokines. In addition, an-
hedonia, a major symptom of depression, was observed. 
Treatment with ketamine, a dissociative general anesthetic 
with potent and rapid antidepressant properties, inhibited 
anhedonia and restored impaired synaptic activity, glucose, 
and insulin homeostasis in rats undergoing HFD [30]. Mice 
undergoing HFD also showed reduced socialization and an-

hedonia, together with alterations in the gut microbiota and 
neurotransmitters such as γ-amino-butyric acid (GABA) and 
neuropeptide Y. These changes did not respond to treatment 
with imipramine, a tricyclic antidepressant, or sitagliptin, an 
oral hypoglycemic that inhibits dipeptidyl peptidase IV [31]. 
Controversial evidence emerged in the genetic model of 
T2D, the db/db mice, in which both depression-like behavior 
[32] and the absence of depression-like behavior [33] were 
reported. However, an increase in the levels of the inflamma-
tory cytokines interleukin-1β (IL-1β), tumor necrosis factor-
α (TNF-α), and interleukin-6 (IL-6), and reduced levels of 
BDNF were found in the hippocampus of db/db mice [33]. In 
the ZDF rat model, depression-like behavior was closely 
related to hyperglycemia and stimulation of the auricular 
vagus nerve was able to revert both alterations [34]. There is 
also a reciprocal correlation between experimental models of 
depression and insulin resistance as well as between insulin 
or oral antidiabetic treatment and antidepressant activity in 
animal models of T1D and T2D [35-37]. In particular, in a 
study conducted by Sestile et al. [38] in a T2D model in-
duced by the administration of STZ in neonatal rats, insulin 
showed an antidepressant effect comparable to that of ser-
traline, an antidepressant of the selective serotonin reuptake 
inhibitors (SSRIs) class. Therefore, there is a close and recip-
rocal correlation between depression and animal models of 
T1D and T2D. Depression-like behavior was associated with 
oxidative stress in both models, while neuroinflammation 
appears to be particularly associated with T2D.  
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4.3. Insulin Signaling and Depression-like Behavior 

 Interestingly, it has been shown that neuronal insulin 
receptor knock-out (NIRKO) mice have a depression/ 
anxious-like behavior phenotype together with impaired 
brain dopaminergic neurotransmission [39]. Consistently, the 
selective ablation of insulin receptors (IR) in the hippocam-
pus and hypothalamus by viral approaches leads to emotion-
al and cognitive disorders [40, 41]. The IR in the brain, apart 
from being expressed in neurons (IR-A), is also expressed in 
glial cells (IR-B) [42]. Intriguingly, glial insulin receptor 
knock-out mice (GIRKO) also showed depression-like be-
havior [43]. Altogether this evidence highlights that the insu-
lin action in the brain is fundamental for modulating affec-
tive behavior; thus, malfunctioning of insulin signaling 
drives emotional impairments. Cerebral monoamine and 
BDNF dysregulation are the crucial molecular mechanisms 
underlying the development of depression. Diabetes is asso-
ciated with low levels of BDNF and reduced neurogenesis in 
the hippocampus [44-47], and reduced serotonin levels in the 
hypothalamus, cortex, and hippocampus [4, 48-54]. The 
mechanisms underlying low serotonin levels in the brain of 
diabetic rodents were extensively studied. They appeared to 
be based on the altered activity of monoamine oxidase en-
zymes [48, 54], membrane serotonin reuptake transporters 
[55], 5-HT1A receptors [56, 57], and branched-chain amino 
acids [58] that compete for the transport of tryptophan, the 
precursor of serotonin. Consistently, insulin increased the 
levels of serotonin and its metabolite in the brain [59], while 
the oral antidiabetic metformin, glyburide, pioglitazone, and 
sitagliptin increased serotonin levels in the hippocampus and 
cortex, serotonergic neuronal activity in the dorsal raphe, and 
mitigated depression-like behavior in rodent models of dia-
betes [57, 60]. The antidepressant effects of antidiabetic 
agents in human and animal models of diabetes have been 
extensively described and reported in the review by Essmat 
et al. [61]. Less clear were the effects of antidepressants on 
glucose homeostasis: with worsening [62-64], improving 
[65-69], or no effect [70] being reported in humans. Consist-
ently, animal models of diabetes also led to discordant re-
sults, both an improvement in hyperglycemia by the SSRI 
fluoxetine in a T1D model in the rat [71] and a worsening in 
hyperglycemia by the SSRIs fluoxetine and fluvoxamine in 
healthy mice were reported [72]. 

5. ANXIETY-LIKE BEHAVIOR IN RODENT MOD-
ELS OF DIABETES 

 Diabetic patients often show concomitant anxiety disor-
ders, and accumulating evidence indicates that the same oc-
curs in animal models of diabetes.  

5.1. T1D 

 Anxiety-like behavior has been widely reported in rats 
with STZ-induced T1D [73-82]. Some of these studies con-
currently examined changes in supraspinal monoamine lev-
els [73, 83]. Anxiety-like behavior was associated with al-
tered levels of monoamines in the prefrontal cortex and hip-
pocampus. In particular, the diabetic rats showed a reduction 
in the levels of serotonin, noradrenaline, and dopamine in the 
hippocampus and an increase in noradrenaline, a decrease in 
serotonin, and no changes in dopamine in the prefrontal cor-

tex. Treatment with cannabidiol, a phytocannabinoid in can-
nabis plants devoid of psychotropic activity, reverted anxie-
ty-like behavior and monoamine level alterations in the pre-
frontal cortex and hippocampus [83]. Apart from monoamine 
dysregulation, a deficiency in the activity of enzymes that 
regulate the purinergic and cholinergic transmissions was 
reported in T1D rats [84]. Other studies measured the levels 
of proinflammatory cytokines and corticosterone associated 
with metabolic and affective disorders in T1D models in 
rodents. Cytokine and corticosterone levels increased in the 
STZ-induced T1D model in the rat [73, 77, 85, 86]. As ob-
served between diabetes and depression, oxidative stress-
induced neurotoxicity is the common denominator between 
diabetes and anxiety. Concomitant anxiety-like behavior and 
oxidative stress in the STZ-induced model of T1D in the rat 
have been found in several studies [25, 78, 82, 86-91]. In a 
recent study by de Lima Silva et al. [91], an increase in the 
memory of fear and difficulty in extinguishing the contextual 
fear conditioning and anxiety-like behavior were observed 
after STZ administration. The study also examined oxidative 
stress showing an increase in lipid peroxidation and a reduc-
tion in glutathione levels in the hippocampus and prefrontal 
cortex of diabetic rats. The same study also showed the effi-
cacy of pregabalin, an antiepileptic that blocks the a2δ subu-
nit of the N-type calcium channel, in reverting anxiety-like 
behavior and oxidative stress in the hippocampus and pre-
frontal cortex. Similarly, in the same model of T1D in the 
rat, anxiety-like behavior proved to be associated with oxida-
tive stress (increased levels of lipid peroxidation and reduced 
levels of glutathione) in the prefrontal cortex and hippocam-
pus. The treatment with gallic acid,  an antioxidant found in 
tea, grapes, berries, and wine, reverted both anxiety-like be-
havior and oxidative stress [87]. In addition, other antioxi-
dants, such as garlic (Allium sativum), hydrogen sulphide, 
quercetin (a flavonoid found in many plants and foods, such 
as red wine, onions, green tea, apples, and berries), resvera-
trol (a polyphenol found in grapes' skin and seeds), and vit-
amin E also acted as anxiolytics in the same STZ-induced 
T1D model in the rat [25, 78, 80, 84, 88, 90] and also inhib-
ited oxidative stress in the brain [25, 88]. Exercise training, 
whose antioxidant power is well known [80], was also able 
to mitigate anxiety-like behavior in the same T1D model in 
the rat [78]. 
 The association between oxidative stress and T1D mod-
els was also observed in mice. Mice with T1D exhibited anx-
iety-like behavior and increased markers of oxidative stress, 
both of which were reverted by treatment with hydrogen 
sulfide, which also decreased the cytokine levels [92]. Oxi-
dative stress, high levels of cytokines (TNF-α, IL-1β, IL-6, 
IL-10), and dysregulation of the proliferation and differentia-
tion of oligodendrocytes and astrocytes were observed in the 
prefrontal cortex and hippocampus of T1D mice exhibiting 
concomitantly anxiety-like behavior [93]. Both the metfor-
min, a biguanide oral antihyperglycemic, and fluoxetine mit-
igated the anxiety-like behavior and the associated neuroin-
flammation and glial dysregulation [93, 94]. Insulin, gluco-
corticoids, mineralocorticoids, and type 3 serotonin receptor 
antagonists were also effective in alleviating anxiety-like 
behavior associated with STZ-induced T1D in mice [54, 95]. 
Moreover, the benzodiazepine diazepam synergized with 
corticosteroid receptor antagonists in alleviating anxiety-like 
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behavior associated with STZ-induced T1D in mice [95]. 
Aside from some differences between the drug targets ad-
dressed for the anxiolytic effect in T1D models, the evidence 
associating anxious behavior with neuroinflammation, neu-
rotransmitter, neuron and glial alterations [96], and oxidative 
stress are fairly in line with that found in depressive behav-
ior. 

5.2. T2D 

 Anxiety-like behavior was also observed in the T2D 
model OLETF fatty rat [97, 98] concomitantly with brain 
atrophy, corticolimbic shrinkage, increased cholecystokinin-
positive neurons, and reduced parvalbumin-positive neurons 
in the infralimbic and prelimbic cortex [98, 99]. Anxiety-like 
behavior associated with neuroinflammation was observed in 
the T2D model induced by HFD combined with low doses of 
STZ in the rat. Parthenolide, an inhibitor of nuclear factor kB 
(NFκB), ameliorated anxiety-like behavior and neuroin-
flammation and also rescued GABA and glutamate homeo-
stasis [100]. The HFD in rats induced anxiety-like behavior 
associated with neuroinflammation, overproduction of IL-1β 
and IL-6, cerebral oxidative stress, increased lipoperoxida-
tion, inhibition of enzymatic and non-enzymatic antioxi-
dants, and increased ROS levels. Treatment with a chamo-
mile extract reverted the anxiety-like behavior and observed 
biochemical alterations in the HFD model [101]. In the T2D 
model induced by a combination of HFD and STZ, it was 
observed that anxiety-like behavior was associated exclu-
sively with diabetic rats who had concomitant hypertension, 
but treatment with losartan, an angiotensin II receptor antag-
onist, although able to reverse hypertension, was not able to 
modify the anxiety-like behavior [102]. In the T2D model 
induced by the combination of nicotinamide and low doses 
of STZ, anxiety-like behavior was mitigated by a combina-
tion of diazepam and metformin [103]. In the rat model of 
T2D induced by HFD and a low dose of STZ, anxiety-like 
behavior was associated with oxidative stress and low levels 
of BDNF in the amygdala. The lactobacillus Plantarum, a 
probiotic found in the mouth and gut, and inulin supple-
ments, fermentable non-digestible dietary fibers that can 
improve metabolic function by intestinal microbiota modula-
tion, or their combination, reduced oxidative stress and anxi-
ety-like behavior and increased BDNF and serotonin levels 
in the amygdala highlighting the importance of the gut-brain 
axis, and in particular the gut-amygdala axis, in the psychiat-
ric consequences of T2D [104, 105]. The HFD also produced 
anxiety-like behavior in mice. The anxiety-like behavior and 
the associated decreased levels of 5-HT in the hippocampus 
did not improve following escitalopram treatment but fol-
lowing discontinuation of the HFD [56]. HFD associated 
with low doses of STZ produced oxidative stress-associated 
anxiety-like behavior even in mice. These pathological 
changes improved markedly following exercise [106]. Ge-
netic models of T2D, such as the db/db mice, also showed 
anxiety-like behavior, increased levels of inflammatory cy-
tokines (IL-1β, TNF-α, and IL-6), and reduced levels of 
BDNF in the hippocampus [33]. Oxidative stress associated 
with anxiety-like behavior was reported in the Tsumura Su-
zuki Obese Diabetes (TSOD) mouse. A diet rich in oleuro-
pein, a phenol found in the leaves of the olive tree, was able 
to ameliorate oxidative stress and anxiety-like behavior 

[107]. As depression, neuroinflammation, oxidative stress, 
and decreased levels of 5-HT and BDNF represent the mo-
lecular mechanisms underlying the mutual interaction be-
tween diabetes and anxiety. Several agents, including antide-
pressants, benzodiazepines, antioxidants, antidiabetics, 
pregabalin, cannabidiol, mineralocorticoid, and glucocorti-
coid antagonists, or simple exercise have shown anxiolytic 
effects often restoring the underlying pathological molecular 
mechanisms. 

6. COGNITIVE IMPAIRMENTS IN RODENT MOD-
ELS OF DIABETES 

 Diabetes is associated with cognitive deficits and a high-
er risk of developing Alzheimer's disease. The hyperglyce-
mia-induced neuroinflammation, oxidative stress, neural 
injury, and apoptosis represent the proposed mechanisms 
that decrease brain volume and blood-brain barrier efficiency 
and negatively affect the molecular mechanisms underlying 
memory and learning in the hippocampus: neurogenesis,  
long-term potentiation, and long-term depression (LTP and 
LTD) [3, 108, 109]. 

6.1. T1D 

 Rodent models of T1D showed evident impairments in 
cognitive performance [108, 110, 111] that depend on the 
duration of diabetes and molecular mechanisms, such as 
those underlying depression-like and anxiety-like behavior: 
oxidative stress, neuroinflammation, hypothalamic-pituitary-
adrenal axis dysregulation, and insulin deficiency [112]. In-
creased ROS production and poor antioxidant enzyme activi-
ty were reported in rats with T1D [113]. Consistently, insulin 
showed a protective effect against oxidative stress-induced 
neuron injury [114]. The cognitive impairment in the STZ-
induced T1D model also depended strictly on neuroinflam-
mation. Activation of microglia and increased levels of  
NFkB, TNF-α, IL-1β, IL-2, and IL-6 were found in the cor-
tex and hippocampus of T1D rats [115-117]. In line with the 
fact that hyperglycemia, neuroinflammation, and oxidative 
stress are the pathogenetic mechanisms that lead to cognitive 
deficits in diabetes, the treatment with anti-inflammatories, 
antioxidants, and C-peptide improved cognitive performance 
in the T1D models in rats [115, 116, 118]. Cognitive decline 
in the STZ-induced T1D model is also closely dependent on 
corticosterone levels and is restored by lowering corti-
costerone concentration to physiological levels [108, 119]. 
The elevated levels of glucocorticoids also cause synaptic 
alterations, such as the depletion of vesicles in moss fibers 
[120] and the increase and redistribution of neurophysin in 
the hippocampus [108, 121, 122]. Also, the maladaptive re-
organization in the hippocampus of rats with STZ-induced 
T1D is reverted by lowering the levels of glucocorticoids 
[108, 110]. Other synaptic alterations in the hippocampus 
associated with the STZ-induced T1D model consist of as-
trocyte proliferation and depletion of vesicles and proteins 
involved in exocytosis at the presynaptic level and an in-
crease in postsynaptic density protein 95 (PSD 95) at the 
post-synaptic level [120, 121, 123-125]. The absence of insu-
lin in T1D models not only induces cognitive impairment but 
predisposes and increases the incidence of Alzheimer's dis-
ease. Insulin enhances cognitive performance, LTP, LTD, 
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Table 1. Affective and cognitive impairments in rodent models of type 1 diabetes. 

Induction 
of T1D Species Behavioral Impairments Test Related Evidence References 

Alloxan Rats 
Increased immobility 

Increased crossing 
Forced swim 
Open field 

Treatment with imipramine decreased the immo-
bility and the number of crossings [24] 

STZ Rats 
Increased immobility 

Reduced open-arm choice 
Forced swim, tail suspension 

Elevated plus maze 

Treatment with hydrogen sulfide decreased the 
immobility, increased open-arm choice, and inhib-

ited oxidative stress in the hippocampus 
[25] 

STZ Mice Increased immobility Tail suspension 
The effects of the 5-HT(1A) receptor agonist,  

8-OH-DPAT, and fluoxetine in increasing immo-
bility were attenuated by diabetes 

[26] 

STZ Mice 
Increased immobility 

Reduced open-arm choice 
Reduced central zone retention 

Tail suspension 
Elevated plus maze 

Open field 

Ophiocordyceps formosana extract decreased 
immobility, open-arm choice, central zone reten-
tion and increased serotonin and dopamine levels 
in the frontal cortex, striatum, and hippocampus 

[27] 

STZ Mice Prolonged freezing Open platform Insulin treatment decreased freezing [28] 

STZ Rats Reduced open-arm choice Elevated plus maze Decreased serotonin  levels in hippocampus [73] 

STZ Rats 
Reduced open-arm choice 

Reduced central zone retention 
Elevated plus maze 

Open field 
Increased oxidative stress [74] 

STZ Rats 
Increased freezing 

Increased latency for inhibitory 
avoidance 

Contextual conditioned fear 
Elevated T maze 

Insulin treatment reduced anxiety-like behavior [75] 

STZ Rats Increased immobility/freezing 
behavior Shock-probe burying Reversal of the anxiety-like behavior by intra-

amygdaloid dopamine D1 receptor blockade [76] 

STZ Rats 
Increased immobility 

Reduced open-arm choice 
Reduced central zone retention 

Forced swim 
Elevated plus maze 

Open field 

Reversal of the depression- and anxiety-like be-
havior by telmisartan [77] 

STZ Rats Increased freezing Open field Exercise training reduced freezing [78] 

STZ Rats 

Reduced central zone retention 
Reduced open-arm choice 
Reduced memory retention 

Reduced stay in the target quadrant 
Increased immobility 

Open field 
Elevated plus maze 
Passive avoidance 
Morris water maze 

Forced swim 

Ellagic acid treatment attenuated anxiety/ 
depression-like behaviors, improved exploratory/ 
locomotor activities, and ameliorated cognitive 

deficits 

[79] 

STZ Rats 
Reduction in extinguishing the 

aversive memory 
Reduced open-arm choice 

Fear conditioning 
Elevated plus maze 

Vitamin E treatment attenuated anxiety-like  
behavior and fear memory [80] 

STZ Rats 

Reduced central zone retention 
Reduced open-arm choice 
Increased latency to feed 

Increased immobility 

Open field 
Elevated plus maze 

Novelty suppressed feeding 
Forced swim 

The aqueous extract of the date seed and insulin 
reverted depression- and anxiety-like behavior [81] 

STZ Rats 
Reduced open-arm choice 
Increased fear memory and  
difficulty in extinguishing it 

Elevated plus maze 
Contextual fear conditioning 

Pregabalin facilitated the acquisition of the fear 
extinction memory and produced a later anxiolytic-

like effect 
[82] 

STZ Rats 
Increased immobility 

Reduced open-arm choice 
Forced swim 

Elevated plus maze 
The higher dose of cannabidiol (30 mg/kg) amelio-

rated depression- and anxiety-like behavior [83] 

STZ Rats 

Impaired memory 
Reduced latency to step-down from 

the platform 
Decreased entries in the open arms 

Inhibitory avoidance 
Open field 

Elevated plus maze 

Quercetin ameliorated memory and anxiety-like 
behavior [84] 

STZ Rats 
Decreased central zone retention 

Decreased open-arm choice 
Increased immobility 

Open field 
Elevated plus maze 

Forced swim 

Loganin treatment showed antidepressant- and 
anxiolytic-like effect [85] 

(Table 1) Contd…. 
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Induction 
of T1D Species Behavioral Impairments Test Related Evidence References 

STZ Rats 

Decreased central zone retention 
Decreased open-arm choice 

Increased immobility 
Reduced memory retention 

Open field 
Elevated plus maze 

Forced swim 
Passive avoidance 

Sesamin improved behavioral impairments [86] 

STZ Rats 

Decreased open-arm choice 
Decreased time spent in the light 

compartment 
Increased immobility 

Elevated plus maze 
Light-dark box 

Modified forced swim 

Gallic acid showed an anxiolytic-like effect but not 
an antidepressant-like effect [87] 

STZ Rats 
Decreased open-arm choice 

Increased immobility 
Elevated plus maze 

Forced swim 
Garlic treatment showed anxiolytic- and antide-

pressant-like effect [88] 

STZ Rats 

Decreased central zone retention 
Decreased open-arm choice 

Decreased exploration of the novel 
object 

Reduced memory retention 
Decreased time spent in the target 

quadrant 

Open field 
Elevated plus maze 

Novel object recognition 
Passive avoidance 
Morris water maze 

Citrullus colocynthis improved cognitive and 
anxiety-like behavior [89] 

STZ Rats 
Increased immobility 

Decreased open-arm choice 
Tail suspension, forced swim 

Elevated plus maze 
Resveratrol treatment ameliorated anxiety-and 

depression-like behavior [90] 

STZ Rats 
Decreased central zone retention 

Increased immobility 
Decreased open-arm choice 

Open field 
Tail suspension 

Elevated plus maze 

Hydrogen sulfide ameliorated the depression- and 
anxiety-like behavior via the phosphoinositide  

3-kinase (PI3K)/protein kinase B (AKT) pathway 
[91] 

STZ Mice 
Reduced alternation 

Increased immobility 
Reduced open-arm choice 

Radial maze 
Forced swim 

Elevated plus maze 

Metformin and agmatine ameliorated memory 
impairment, depression-, and anxiety-like behavior [93] 

STZ Mice 

Reduced alternation 
Reduced central zone retention 

Reduced light zone entries 
Reduced open-arm choice 

Y maze 
Open field 

Dark/light box 
Elevated plus maze 

Fluoxetine ameliorated anxiety-like behavior and 
cognitive deficit via inhibiting astrocyte activation 

and repairing the oligodendrocyte damage 
[94] 

STZ Mice Increased burying Burying behavior MR or GR antagonists synergized with diazepam 
to induce anxiolytic-like effects [95] 

STZ Rats 
Decreased novel object exploration 
Decreased time spent in the target 

quadrant 

Novel object recognition 
Morris water maze 

Normalization of corticosterone levels ameliorated 
cognitive behavior [108] 

STZ Rats Impaired performance Morris water maze Insulin treatment prevented (but not reversed) 
learning impairment [110] 

STZ Rats Decreased performance Can test The test showed impairments of both, reference 
and working memory [111] 

STZ Rats 
Increased transfer latency 

Decreased ability to reach the  
platform 

Morris water maze The insulin-tocotrienol combination treatment 
ameliorated cognitive deficit [115] 

BB/Wor Rats Prolonged latency Morris water maze The c-peptide replacement restored cognitive 
deficit [116] 

STZ Rats Poor learning 14-unit T-maze Prevention of corticosterone increase prevented 
impairment in complex maze learning [119] 

 

and synaptogenesis [126-130] and increases beta-amyloid 
and tau-protein clearance [131] in the STZ-induced T1D 
model in mice. Therefore, the STZ-induced T1D model is 
also associated with the accumulation of phosphorylated tau 
and beta-amyloid proteins, pathogenetic markers of Alzhei-
mer's disease [132-135]. Other morphological alterations, 

such as swelling of neurons and glia in the cortex, hypothal-
amus, and cerebellum, hippocampal shrinkage, dendrites 
length shortening, neurogenesis reduction, and apoptosis 
were also found in the rodent T1D models [96, 136-144]. In 
addition to morphological alterations associated with cogni-
tive deterioration, alterations in neurotransmitter levels were 
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also observed in T1D models. The levels of serotonin, glu-
tamate, GABA, acetylcholine esterase mRNA, and ATP de-
creased in the hippocampus and/or cortex [28, 145-148]. In 
addition, changes in dopamine, calcium homeostasis, Na+, 
and K+ currents, N-methyl-D-aspartate (NMDA) receptor 
expression were also found in the hippocampus of the STZ-
induced T1D model [52, 149-151]. The evidence described 
on depression-, anxiety-like behavior and cognitive deficit in 
rodent models of T1D is summarized in Table 1. 

6.2. T2D 

 Insulin resistance in the T2D models, as well as insulin 
deficiency in the T1D models, caused LTP, LTD, synapto-
genesis, memory, and learning impairments [108, 152-154]. 
Oxidative stress also occurred in the Goko-Kakizaki T2D 
model in rats and drove mitochondrial dysfunction in the 
brain [114], which was reverted by insulin or antioxidant 
treatment [113]. Neuroinflammation is another main compo-
nent underlying neural damage occurring in T2D models in 
rodents. Activation of macrophages and microglia and in-
creased levels of TNF-α, IL-1β, and IL-6 associated with 
poor cognitive performance were found in the db/db mice 
T2D model [33]. The efficacy of rolipram, an inhibitor of 
phosphodiesterase-4 showing antidepressant activity, in pre-
venting cognitive decline occurred concomitantly with the 
decrease of the proinflammatory TNF-α and the increase of 
the anti-inflammatory IL-10 cytokines [155]. Alteration of 
the normal functioning of the HPA-axis contributes, along 
with hyperglycemia and insulin resistance, to neural compli-
cations associated with cognitive decline in T2D models 
[130]. Brain insulin receptor malfunctioning in the HFD T2D 
model caused cytoskeleton and synapse disruption, neural 

injury, and LTD inefficiency [154, 156]. Insulin resistance 
was also associated with enhanced tau phosphorylation in the 
ZDF rat T2D model [135, 157] and impairment of the clear-
ance of β-amyloid and phosphorylated tau proteins owing to 
reduced activity of the insulin-degrading enzyme (IDE), 
which also degrades β-amyloid [158]. Reciprocally, the insu-
lin or antioxidant treatment resulted in neuroprotective action 
and reduced mitochondrial dysfunction [113]. In the HFD 
T2D model, high levels of leptin were also observed [40]. 
Although leptin and leptin receptors are abundantly ex-
pressed in the hippocampus, where they potentiate LTP in in 
vivo and in vitro experiments [159-162], conditions of ele-
vated leptin concentrations, such as those observed in animal 
models of T2D [40], cause receptor resistance, abnormalities 
in signal transduction and impairments in synaptic plasticity 
[163]. The association between disrupted leptin signaling 
and impaired synaptic plasticity in the hippocampus was 
demonstrated in the ZDF rat and db/db mouse T2D models 
[164]. Morphological changes, such as astrogliosis and neu-
rogenesis loss, occurred in the CA1, CA3, and dentate gyrus 
areas of the hippocampus in the ZDF and Goto Kakizaki rat 
models of T2D [165, 166]. Neuron apoptosis was also found 
in T2D models, although less severe than in T1D models 
[167]. Aberrant calcium homeostasis causing neuron injury 
and cognitive decline was also found in the HFD T2D model 
[168]. Moreover, the effects of T2D on neurotransmission, 
calcium, and ionic currents were less investigated than in 
T1D models; however, alterations in the molecular mecha-
nisms underlying cognitive impairment in the models of the 
two types of diabetes appeared to be quite compliant. The 
evidence described on depression-, anxiety-like behavior and 
cognitive deficit in rodent models of T2D is summarized in 
Table 2. 

 
Table 2. Affective and cognitive impairments in rodent models of type 2 diabetes. 

T2D Model Species Behavioral Impairments Test Related Evidence References 

High fat/fructose 
diet Rats 

Increased immobility 
Decreased central zone and light area 

retention 
Decreased open-arm choice 
Decreased novel arm entries 

Forced swim 
Open field 

Light/dark box 
Elevated plus maze 

Y maze 

Beta-caryophyllene alleviated oxida-
tive-stress, neuroinflammation and 
behavioral impairments. The anxio-

lytic, anti-oxidant and anti-
inflammatory effects were mediated 

by both PPAR-γ and CB2R. 

[29] 

High-fat diet Rats 

Increased latency to feed 
Decreased sucrose consumption 
Decreased female sniffing urine 

Reduced entries in the center zone 
Decreased open-arm choice 

Decreased novel object exploration 

Novelty suppressed feeding 
Sucrose preference 

Female urine sniffing 
Open field 

Elevated plus maze 
Novel object recognition 

Ketamine reversed behavioral defi-
cits. The inhibitor of the purinergic 
P2X7 receptor ameliorated anxiety 

[30] 

High-fat diet Mice 
Decreased socialization 

Decreased sucrose consumption 
Three-chamber social interaction 

Sucrose preference 

The DPP-4 inhibitor sitagliptin and 
the TCA antidepressant imipramine 

did not ameliorate the depression-like 
social interaction and anhedonia 

[31] 

db/db Mice 
Increased immobility 

Increased open-arm choice 
Disrupted pre-pulse inhibition 

Forced swim 
Elevated plus maze 
Pre-pulse inhibition 

Depression-like behavior was found 
in both, juvenile and adult groups 

while the psychosis-like symptoms 
showed an age-dependent progres-

sion 

[32] 

(Table 2) Contd…. 
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T2D Model Species Behavioral Impairments Test Related Evidence References 

db/db Mice 

Reduced entries in the center zone 
Reduced open-arm choice 

Decreased novel arm entries 
Decreased novel object exploration 

Open field 
Elevated plus maze 

Y-maze 
Novel object recognition 

The expression of the inflammatory 
cytokines, interleukin-1β, tumor 

necrosis factor-α and interleukin-6 
were increased while the expression 
of brain-derived neurotrophic factor 

(BDNF) were reduced in the  
hippocampus but not the  

hypothalamus 

[33] 

ZDF Rats Increased immobility Forced swim 
Ameliorative effect by transcutane-

ous auricular vagus nerve  
stimulation 

[34] 

STZ in newborns Rats Increased immobility Forced swim Insulin and sertraline showed 
antidepressant-like effect [38] 

OLETF Rats 
Reduced open-arm choice 

Reduced time spent in the light box 
Elevated plus maze 

Dark/light box 

The missing CCKA receptor in 
OLETF rats produced anxiogenic-

like behavior 
[97] 

OLETF Rats Reduced time spent in the central 
zone Open field Corticolimbic area hypotrophy [98, 99] 

High-fat diet/STZ Rats 

Increased latency and path to reach 
the platform 

Decreased avoidance 
Reduced open-arm choice 

Reduced time in the central zone 

Morris water maze 
Passive avoidance 
Elevated plus maze 

Open field 

Parthenolide ameliorated anxiety-like 
behavior and cognitive deficit and 
restored GABA and glutamate ho-

moeostasis. 

[100] 

High-fat diet Rats 

Decreased open-arm choice 
Reduced time spent in the central 

zone 
Reduced time spent in the light box 

Elevated plus maze 
Open field 

Light/dark box 

Treatment with chamomile extract 
reverted anxiety-like behavior [101] 

High-fat diet/STZ Rats 

Decreased open-arm choice 
Decreased ambulation, distance and 

rearing 
Decreased recognition memory 

Elevated plus maze 
Open field 

Novel object recognition 

Losartan ameliorated cognitive 
deficit but did not affect anxiety-like 

behavior 
[102] 

STZ/nicotinamide Rats Decreased open-arm choice Elevated plus maze 
A combination of metformin and 

diazepam ameliorated anxiety-like 
behavior 

[103] 

High-fat diet/STZ Rats 
Decreased open-arm choice 

Increased immobility 
Elevated plus maze 

Forced swim 

Lactobacillus plantarum, inulin, or 
their combination ameliorated anxie-

ty- and depression-like behavior 
[104] 

High-fat diet/STZ Mice 
Decreased central zone entries 

Decreased light box entries 
Decreased open-arm choice 

Open field 
Light-dark box 

Elevated plus-maze 

Swimming exercise reversed  
anxiety-like behavior [106] 

TSOD Mice Decreased central zone retention and 
increased freezing Open field 

Oleuropein-containing  
supplement ameliorated anxiety  

like-behavior 
[107] 

db/db Rats Impaired novel object exploration Novel object recognition 
Normalization of corticosterone 

levels reversed the cognitive  
deficit 

[108] 

High-fat diet Rats Impaired alternation Variable-interval delayed  
alternation 

Cognitive decline was associated 
with saturated fatty acid intake [152] 

ZDF Rats Impairment alternation at longer 
intervals 

Variable-interval delayed  
alternation 

The glucose transporter, GLUT4, 
expression was reduced in the  

hippocampus 
[153] 

High-fat diet/STZ Rats 
Increased platform training latency 
Decreased time spent in the target 

quadrant 
Morris water maze Treatment with rolipram improved 

cognitive performance [155] 
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Fig. (2). A schematic representation of the different pharmacological strategies directed towards the main pathophysiological mechanisms 
associated with affective and cognitive disorders in rodent models of type 1 and 2 diabetes. (A higher resolution/colour version of this figure 
is available in the electronic copy of the article). 
 
CONCLUSION 

 Animal models that reproduce human pathologies are 
fundamental for studying the pathophysiological processes 
underlying the disease and for testing and developing new 
effective drugs. Such models must therefore reproduce the 
symptoms and pathological processes associated with the 
disease. In the case of diabetes, a multi-organ disease associ-
ated with macrovascular, microvascular, metabolic, sensory, 
and affective/cognitive complications, animal models must 
reproduce the entire sphere of complications found in hu-
mans to be valid. Metabolic, micro, and macrovascular sen-
sory alterations are widely treated, while those of affectivity 
and cognition, although debilitating, are less described. 
However, it is evident that the two types of diabetes, type 1 
and type 2, are associated with affective and cognitive disor-
ders, such as depression, anxiety, and cognitive deficits, not 
only in humans but also in animal models of diabetes. There-
fore, there is a close link between metabolic disorders and 
CNS alterations. The neurotoxic mechanisms caused by dia-
betes underlying the neuropsychiatric complications, such as 
depression, anxiety, and cognitive decline include hypergly-
cemia, oxidative stress, neuroinflammation, increased gluco-
corticoid levels, neurotransmitter alterations, and reduced (or 
absent) insulin signaling. Such molecular mechanisms are 
quite compliant both in the two types of diabetes and in hu-
man and animal models. There is also disturbing evidence 
that diabetes increases the incidence of Alzheimer's disease, 
as evidenced by clinical trials and models of diabetes in ro-
dents. The review article highlighted that diabetes has disas-
trous consequences on the brain functioning. It also high-
lighted that a multitude of therapeutic approaches has im-
proved the neuropsychiatric component of diabetes, the un-
derlying molecular alterations, and the pathological metabol-
ic dysregulations. These include, in parallel with the neuro-
pathological mechanisms observed in animal models of dia-

betes, antioxidants, anti-inflammatories, antidepressants, 
insulin itself, or oral antidiabetics (Fig. 2), emphasizing 
proper glycemic control can prevent the neuropsychiatric 
complications of diabetes. Physical exercise itself, having, 
among other things, an antioxidant action, improves meta-
bolic syndrome, pathogenetic mechanisms, and related affec-
tive disorders. The approach to effective therapies, which 
aim to improve the entire symptomatological sphere associ-
ated with diabetes, starting from animal models, would hope-
fully lead to more effective and/or better-tolerated therapies. 
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BDNF = Brain-derived Neurotrophic Factor  
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CNS = Central Nervous System  
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STZ = Streptozotocin  

T1D = Type 1 Diabetes  

TSOD = Tsumura Suzuki Obese Diabetes  

ZDF = Zucker Diabetic Fat Rat  
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