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Abstract

Background and Objective: Prior Epstein—Barr virus (EBV) infection is associated with an
increased risk of pediatric-onset multiple sclerosis (POMS) and adult-onset multiple sclerosis
(MS). 1t has been challenging to elucidate the biological mechanisms underlying this association.
We examined the interactions between candidate human leukocyte antigen (HLA) and non-HLA
variants and childhood EBV infection as it may provide mechanistic insights into EBV-associated
MS.

Methods: Cases and controls were enrolled in the Environmental and Genetic Risk Factors for
Pediatric MS study of the US Network of Pediatric MS Centers. Participants were categorized as
seropositive and seronegative for EBV-viral capsid antigen (VCA). The association between prior
EBV infection and having POMS was estimated with logistic regression. Interactions between
EBV serostatus, major HLA MS risk factors, and non-HLA POMS risk variants associated with
response to EBV infection were also evaluated with logistic regression. Models were adjusted for
seX, age, genetic ancestry, and the mother’s education. Additive interactions were calculated using
relative risk due to interaction (RERI) and attributable proportions (APs).
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Results: A total of 473 POMS cases and 702 controls contributed to the analyses. Anti-VCA
seropositivity was significantly higher in POMS cases compared to controls (94.6% vs 60.7%, p

< 0.001). There was evidence for additive interaction between childhood EBYV infection and the
presence of the HLA-DRBI1*15 allele (RERI = 10.25, 95% confidence interval (Cl) = 3.78 to
16.72; AP =0.61, 95% CI = 0.47 to 0.75). There was evidence for multiplicative interaction (p

< 0.05) between childhood EBV infection and the presence of DRB1*15alleles (odds ratio (OR)
=3.43,95% CI = 1.06 to 11.07). Among the pediatric MS variants also associated with EBV
infection, we detected evidence for additive interaction (p = 0.02) between prior EBV infection
and the presence of the GG genotype in risk variant (rs2255214) within CD86 (AP = 0.30, 95% CI
=0.03 t0 0.58).

Conclusion: We report evidence for interactions between childhood EBV infection and
DRB1*15and the GG genotype of CD86 POMS risk variant. Our results suggest an important role
of antigen-presenting cells (APCs) in EBV-associated POMS risk.

Keywords

Pediatric onset; multiple sclerosis; Epstein—Barr virus; gene—environment interaction; DRB1*15;
CcD68

Introduction

Collective findings point to a role for both genetic variants1 and environmental factors?
in multiple sclerosis (MS) susceptibility. The identification of gene—environment (G x E)
interactions in MS could help characterize the biological processes involved in disease
pathoetiology and explain part of the reported missing heritability for MS.3

Among the environmental risk factors for MS, prior infection with Epstein—Barr virus
(EBV) has been consistently reported to be the strongest environmental risk factor
associated with MS onset;* however, it has been challenging to elucidate the underlying
biological mechanisms explaining this association® due to the long interval between EBV
exposure and clinical onset in adults, as the peak incidence of EBV infection occurs in early
childhood.b

Consistent with adult MS studies,’~9 we and others have previously reported a strong
association between EBV seropositivity and pediatric-onset MS (POMS).10:11 Evaluating
environmental risk factors in POMS offers advantages over adult studies in terms of the
temporality of exposure.12 Although virtually all adults diagnosed with MS and more than
95% of healthy adults have evidence of a prior EBV infection,* only 0.1%-0.5% of adults
develop MS. Therefore, EBV infection alone is not sufficient to cause the disease and other
factors such as genetic traits may contribute substantially to EBV-associated MS risk. As a
lower frequency of EBV seropositivity has been reported in POMS,11:13-15 it makes this age
group ideal for assessing genetic susceptibility to EBV-associated MS.

A few reports suggest that genetic makeup modulates the immune response against EBV.16-
18 Single-nucleotide polymorphisms (SNPs) associated with the antibody response to EBV
infection have also been identified in MS genome-wide association studies (GWASs).19 We
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sought to assess whether candidate HLA and non-HLA variants interact with EBV infection
to influence the risk of developing POMS.

Study population

This multi-center case—control study enrolled POMS patients with a first clinical event
before age 18 years and healthy controls from the same institutions who were frequency
matched. Inclusion criteria have been previously described.2% All cases were tested for
myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-1gG) with a cell-based
assay. Pediatric MS experts ascertained MOG-1gG-positive children to confirm a final
diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD)
and were excluded. Clinical and environmental data were gathered from cases and controls
participating in the genetic and environmental risk factor study performed by the US
Network of Pediatric MS Centers and collaborators, consisting of 16 pediatric MS centers.
Participants and their families completed a detailed environmental questionnaire and
provided blood samples for DNA and serum. The institutional review boards approved
this study at the participating sites. Informed consent and assent (when appropriate) were
obtained for each subject.

Environmental data

Batched EBV-viral capsid antigen (VCA)-IgG testing was performed at the Oklahoma
Medical Research Foundation using commercially available, standardized enzyme-linked
immunosorbent assays (ELISA) (Wampole Laboratories, Princeton, NJ, USA) as described
previously.?! Quality control (QC) requirements included having positive, negative, and
calibration controls that met predefined measures.

Genetic data

We selected candidate HLA and non-HLA variants for assessing G x E interactions in
POMS. The major HLA MS risk factors included the presence of HLA-DRB1*15alleles
and the absence of HLA-A*02 alleles. Non-HLA candidates, on the contrary, included only
two POMS risk variants in CD86and /L.2RA (rs2104286 and rs2255214, respectively),22
which have been associated with response to EBV infection, as well.19

All participants’ DNA samples were genotyped for DRBI status, as previously reported.23
DRB1 status was classified as either carrying one or more HLA-DRBI1*15alleles or

none. Each study participant was genotyped using the Infinium 660K BeadChip or
HumanOmniExpress BeadChip. Using PLINK v.1.9, strict QC checks and genotype
comparisons between samples on two Illumina platforms were carried out. As previously
described,22 alignment, QC, phasing, imputation, and variant filtering were carried out. The
SNP weighting method?4 was used to estimate the percentage of genetic ancestry related

to four major populations (European, East Asian, West African, and Native American). The
HLA-A*02(rs2975033) tagging SNP was imputed. It has been reported that the HLA-A*02
allele and the allele “A” of rs2975033 is in perfect linkage disequilibrium (2 = 0.97).25
Therefore, it has been assumed that persons with the GG genotype of rs2975033 do not
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have HLA-A*02. The subjects were split into two groups based on whether they carried
any HLA-A*02alleles or none. In addition, the subjects were classified according to the
presence of the GG genotype of CD&6 SNP (rs2255214) and the presence of the TT
genotype of /LZRA SNP (rs2104286).

Statistical analysis

Result

Controls and POMS cases were frequency matched for sex and race. The odds of having
POMS associated with prior EBV infection variables (dichotomized variable based on
serostatus (positive vs negative) and quantitative variable based on anti-VCA-IgG serum
levels), presence of HLA-DRBI1*15, absence of HLA-A*02, and non-HLA candidate SNPs
were assessed separately using logistic regression models adjusted for age, sex, genetic
ancestry and mother’s education as a proxy of socioeconomic status (SES). Additive
interaction between prior EBV infection and genotype was assessed in the adjusted logistic
regression model. The relative excess risk due to interaction (RERI) and the attributable
proportion (AP) of disease due to interaction were calculated using published methods.26:27
To calculate RERI and AP and their confidence intervals, we used adjusted odds ratio (OR)
from our logistic regression models. We first ran our adjusted logistic regression models

in Stata and then used the “nlcom” command according to the formula of RERI and AP.
The output included the adjusted estimates of RERI and AP, their 95% confidence intervals
(Cls), and p-values.

In order to determine whether multiplicative interaction existed, a multiplicative interaction
term was also included in logistic regression models. Stata 15.0 was used for all statistical
analyses (Stata Corp, College Station, TX, USA).

Participant characteristics

This analysis included 473 POMS cases and 702 pediatric controls with available anti-VCA-
IgG level data. The average age of onset of POMS cases was 14.65 + 2.6 years.

The characteristics of the study participants are shown in Table 1. Controls and POMS
cases were frequency matched for sex and race. However, the POMS cases had a higher
proportion of Hispanics and mothers with lower levels of education. POMS cases were
significantly more likely to have evidence of prior EBV infection (94% of POMS cases vs
60% of controls) (Table 1). The OR based on logistic regression models adjusted for age,
seX, genetic ancestry, and mother’s education was calculated. Childhood EBV infection was
associated with higher odds of POMS (OR = 9.89; 95% CI = 6.21 to 15.73).

Genetic characteristics

POMS cases were more likely to carry at least one HLA-DRBI1*15allele compared to
controls (Table 2). Based on the imputed genotype for HLA-A*0Z, the proportion of
participants without any HLA-A*02alleles was higher in the POMS group (61%) compared
to controls (56%). In addition, the proportion of children who carry the risk genotype for
rs2255214 and rs2104286 was higher in POMS cases compared to controls.
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Assessment of G x E interactions

In Table 3, we stratified analyses based on evidence of prior EBV infection in childhood
compared to genetic risk factors (presence of HLA-DRBI1*15, absence of HLA-A*02,

and presence of other candidates SNPs genotype) in POMS cases and controls. Without
evidence of prior EBV infection, the presence of at least one HLA-DRB1*15allele did

not significantly increase the odds of POMS. When both HLA-DRBI1*15and evidence

of EBV infection were present, the odds of having POMS increased to 16.64 (95% CI =
9.56 to 28.94). The RERI for prior EBV infection and the presence of HLA-DRB1*15
alleles (10.25, 95% CI = 3.78 to 16.72) suggested an additive interaction and indicated the
risk fraction in the presence of both prior EBV infection and HLA-DRBI1*15 exceeds the
addition of risks. The AP revealed that approximately 60% (AP = 0.61, 95% CI = 0.47 to
0.75) of the POMS risk in those with HLA-DRBI1*15and childhood EBV infection was
attributable to the interaction between these two risk factors. Without prior EBV infection

in childhood, the absence of HLA-A*02alleles did not significantly increase the odds

of having POMS. In the individuals with a lack of HLA-A*02alleles and prior EBV
infection in childhood, the OR of having POMS increased to 9.04 (95% CI = 4.68 to 17.44);
however, RERI and AP were not significant. Furthermore, we detected evidence for additive
interaction between a prior childhood EBV infection and the presence of the GG genotype in
rs2255214, risk variants of CD86 (AP = 0.30, 95% CI = 0.03 to 0.58).

Table 4 shows evidence for multiplicative interactions between prior EBV infection and
genetic risk factors in logistic regression models adjusted for age, sex, genetic ancestry,

and mother’s education. Although there was evidence for multiplicative interaction between
prior EBV infection and the presence of HLA-DRB1*15(0OR = 3.43, 95% Cl = 1.06 to
11.07), the interaction terms in the adjusted logistic regression models for the absence of
HLA-A*02alleles and other non-HLA-POMS-risk-variants were not statistically significant.

Discussion

In this study, we identified evidence supporting G x E interactions between childhood EBV
infection and POMS risk variants that modify POMS risk (presence of HLA-DRB1*15
alleles and GG genotype in rs2255214 POMS risk variant CD&6). These observed G x E
interactions provide new insight into the biological mechanisms underlying EBV infection—
associated MS risk.

Among environmental risk factors associated with MS, an association between prior EBV
infection and MS risk has been consistently reported.47:10.15.28-30 The peak incidence of
EBYV infection is in childhood, with another peak in adolescence associated with infectious
mononucleosis (IM).8 The risk of MS in those with adolescent EBV infection with a

history of IM is two- to three-fold higher than in individuals who are EBV-positive with no
history of mononucleosis; however, the risk of developing MS is around 15 times higher
among those infected with EBV in early childhood compared with individuals who are EBV-
negative, based on the results from meta-analysis.#6-30 In line with previous findings, we
also demonstrated that childhood EBV seropositivity increased the risk of POMS compared
to EBV-seronegative children (OR =9.89; 95% CI = 6.21 to 15.73), Around 70% of 10-14
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years olds in the general population of a developed country are EBV-seropositive,3! which is
similar to our observation in healthy pediatrics (~60%).

We show evidence for additive and multiplicative interactions between childhood EBV
infection and HLA-DRB1*15, the strongest genetic risk factor for POMS.22 In those
carrying HLA-DRB1*15, the POMS risk associated with childhood EBV infection exceeds
the addition of the separate risks (RERI~10 and AP~0.6). Several studies have evaluated
the interaction between prior EBV infection and HLA-DRBI on MS.28:32-36 Similar

to our results, a meta-analysis of pooled data indicated significant additive interaction
between HLA-DRBI*15:01 and prior EBV infection.3” Whether the interaction between
EBV infection and HLA-DRB1*15:01 in MS is multiplicative remains controversial.28:32-37
Similar to our previous report, 10 we also observed interaction on the multiplicative scale.
The foreign peptides derived from EBV have high avidity to DR2b heterodimer encoded by
DRB1*15:01%8 which could provide functional evidence to support our observed results.

Only two POMS non-HLA risk variants, rs2104286, and rs2255214,22 have been associated
with response to EBV infection.1® We observed an additive interaction between childhood
EBV exposure and the presence of GG (rs2255214) in CD86. Antigen-presenting cells
(APCs) express CD86, a co-stimulatory ligand that triggers the immune response.2>
Furthermore, in MS patients, higher expression of CD86 has been reported on B-cells
serving as APCs,27:28 which highlighted the important role of CD86 expressed on B-cells in
MS pathoetiology.2? The G x E interactions we report emphasize the possible critical role of
B-cells in EBV-associated MS risk.

The large cohort of POMS and frequency-matched controls, the diversity of geographic
origin, the rigorous case ascertainment by pediatric MS specialists, and the exclusion of
confirmed MOGAD are some of the strengths of our study. In addition, we adjusted our
models for genetic ancestry and mothers’ education as a surrogate for SES. We used a robust
marker of prior EBV infection, anti-VCAIQG, rather than Epstein—Barr virus nuclear antigen
1 (EBNA-1) IgG which is not produced in some individuals with prior infection and can
disappear over time.3° Additional strengths include the study of children, allowing the use
of prior EBV infection in early childhood rather than the level of VCA-IgG as done in adult
studies for which most participants have been exposed to EBV.

While serological testing for EBV was performed after disease onset, disease duration at

the time of sample collection was short. Although we adjusted analyses for several potential
confounders, the results could have been affected by unmeasured or unknown confounders.
Our sample size did not allow us to look at a large number of genetic variants. Future studies
with larger sample sizes are needed to replicate our findings and further evaluate potential G
x E interactions related to EBV infection.

In summary, childhood EBV infection is a stronger risk factor for POMS in individuals
who carry specific genetic factors. These interactions between childhood EBV infection and
the presence of HLA-DRBI1*15and the POMS risk variant in CD&86 (rs2255214) suggest a
possible role of B-cells serving as APCs for EBV infection—associated MS risk.
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