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Abstract

The nail matrix containing stem cell populations produces nails and may contribute to finger-

tip regeneration. Nails are important tissues that maintain the functions of the hand and foot

for handling objects and locomotion. Tumor chemotherapy impairs nail growth and, in many

cases, loses them, although not permanently. In this report, we have achieved the success-

ful differentiation of nail stem (NS)-like cells from human-induced pluripotent stem cells

(iPSCs) via digit organoids by stepwise stimulation, tracing the molecular processes

involved in limb development. Comprehensive mRNA sequencing analysis revealed that

the digit organoid global gene expression profile fits human finger development. The NS-like

cells expressed Lgr6 mRNA and protein and produced type-I keratin, KRT17, and type-II

keratin, KRT81, which are abundant in nails. Furthermore, we succeeded in producing func-

tional Lgr6-reporter human iPSCs. The reporter iPSC-derived Lgr6-positive cells also pro-

duced KRT17 and KRT81 proteins in the percutaneously transplanted region. To the best of

our knowledge, this is the first report of NS-like cell differentiation from human iPSCs. Our

differentiation method and reporter construct enable the discovery of drugs for nail repair

and possibly fingertip-regenerative therapy.

Introduction

The nail or claw is an important tissue that is evolutionarily conserved in all known land mam-

mals. Human nails are especially important for finger function, sensation, protection, and cos-

metic appearance [1]. Inborn malformations, fingertip injuries, and anticancer chemotherapy

can lead to intractable abnormalities of the nails [1–5]. Unfortunately, there is no effective

treatment for severe cases.

The nail matrix including stem or progenitor cell populations, produces nails throughout

life. The nail stem (NS) cells actively divide asymmetrically, and their descendant cells gradu-

ally keratinize to form the mature nail. Developmentally, nail rudiments appear on the fingers

as epidermal thickenings near the distal end of the dorsal side of the digits approximately 9

weeks after gestation. The nail matrix is formed from the proximal nail fold at approximately
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13 weeks [6,7]. Prior to this, the rudiment of the limb, initially called the limb bud, develops

from the lateral body wall on day twenty-four. The limb bud has a mesenchymal core and an

epithelial cap. The limb bud grows and elongates to form an arm or leg through the leading

function of the apical ectodermal ridge (ARE), similar to the blastema in amphibians [8]. ARE

secretes fibroblast growth factor-8 and Wnts and stimulates the growth and subsequent seg-

mentation of the arm or leg [9]. Segmentation results in segment-specific expression of

homeobox genes. Segmental identifications start from the proximal to the distal. The final dis-

tal-most segment expressing Hoxd13 is responsible for digit formation [10].

Interestingly, several groups have reported that the nail matrix can contribute to digit tip

regeneration [1,11–13], and this would be dictated by Wnt signaling [11,14]. Leucine-rich

repeat-containing G-protein-coupled receptors (Lgrs) are well-known as a stem cell marker

protein family in the hair follicle, intestine, and nail [11,15] and may function as an auxiliary

receptor in the Wnt pathway to enhance and/or modify the signal [16].

Human pluripotent stem cells (iPSCs) are possible cell sources for various cell replacement

therapies. However, the immaturity of human iPSC-derived somatic cells is one of the biggest

obstacles. An idea to escape from this—the therapeutic application of somatic stem cells

derived from human iPSCs—would be hopeful. Here, we provide the first report describing

the differentiation of human iPSCs into NS-like cells expressing the nail stem cell marker Lgr6,

for future applications in drug screening and cell administration therapy.

Materials and methods

Animals

All animals used in this study were handled according to the Kansai Medical University ethical

guidelines for animal experiments. The procedures were approved by the ethical committees

(No. 23–35). NOD-SCID mice (CLEA Japan, Inc., Tokyo, Japan) were used for cell transplan-

tation and histological analyses.

Human-induced pluripotent stem cells (iPSCs)

The hiPSC lines: (RIKEN-2F [17] and 253G1 [18]) were obtained from RIKEN BioResourse

Research Center, Ibaraki, Japan.

Maintenance and digit organoid differentiation of human iPSCs

The human iPSCs were differentiated into limb bud organoids with reference to the previously

reported methods with some modifications [19]. In this report, differentiation experiments for

data acquisition were performed using the 253G1 and RIKEN2F cell lines. Both cell lines dif-

ferentiated into similar digit organoids. Undifferentiated human iPSCs were maintained on

plastic dishes (Corning Inc., NY, USA) coated with 0.5 μg/cm2 iMatrix511 Silk (Nippi Inc.,

Tokyo, Japan) using StemFit AK02N (Ajinomoto, Tokyo, Japan) as the culture medium. The

dispersed cells were seeded at a density of 15,000 cells/cm2 with a 10 μM Rho kinase inhibitor,

Y-27632 (Selleck Biotech, Kanagawa, Japan). One day later, the medium was changed to the

same medium without Y-27632. Passage of the cells was performed every three to four days.

The cells were detached from the culture dish by treatment with TrypLE express enzyme

(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10 μM Y-27632 for 20

min at 37˚C. For differentiation, five days before the initiation of differentiation (Day 0), the

single cells were dispersed into StemFit AK02N with a 10 μM Y-27632 and distributed to a

noncell adhesive 96 well plate (PrimeSurface 96U, Sumitomo Bakelite, Tokyo, Japan) or a

sphere dish (10 cm EZ sphere having 17,000 wells, AGC TECHNO GLASS Co., Ltd., Shizuoka,
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Japan) at a density of 3500 cells per well with 200 μL / well for 96 well plate, or 500 cells per

well with 30 mL for EZ sphere. For 96 well plate, one day before Day 0, aspirate 100 μL of

medium from all wells and add 100 μL of Essential 8 (E8) medium (Thermo Fisher Scientific)

with a 10 μM Y-27632. For EZ sphere, add 10 mL of E8 medium. For 96 well plate, on Day 0,

half of the medium was exchanged with Essential 6 (E6) medium (Thermo Fisher Scientific)

containing 20 ng/ml bone morphologic protein 4 (BMP4). For EZ sphere, on Day 0, all formed

cell aggregates were collected into a tube, then left to sit for three minutes for natural sedimen-

tation. Half of the medium was exchanged with Essential 6 (E6) medium (Thermo Fisher Sci-

entific) containing 20 ng/ml BMP4. The cells were transferred to four cell-non adhesive 10-cm

dishes (Cell-Repellent Surface, Greiner Bio-One Kremsmünster, Austria). On differentiation

days 2, 3, and 6, each half of the medium was aspirated, and each the same amount of E6

medium with 10 ng/ml BMP4 was supplied. On differentiation Day 8, each half of the medium

was aspirated, and each the same amount of Dulbecco’s modified Eagle medium (DMEM)

(Fujifilm Wako Chemical Inc., Osaka, Japan) supplemented with a 1x concentration of insulin,

transferrin, and selenium mixture (ITS, Thermo Fisher Scientific) and 10 ng/ml BMP4 was

added. On Day 9, half of the culture medium was changed with DMEM supplemented with 1x

ITS, 10 ng/ml BMP4, and 100 μM all-trans retinoic acid (RA). On Day 10, half of the culture

medium was changed with DMEM supplemented with 1x ITS, 10 ng/ml BMP4, and 2 μM

LDN193189 (Selleck Biochemical). For 96 well plate, on Day 13, all spheres were collected into

a centrifugation tube using a 1000 μL wide-bore chip (Axygen Corning Inc.) and centrifuge at

120 g for 5 minutes. They were transferred to a cell-non adhesive 10-cm dish (Greiner Bio-

One) with 20 mL of organoid maturation medium (OMM) which is consisted with 1:1 mixture

of DMEM/F12 (Fujifilm Wako Chemical) and Neurobasal medium (Thermo Fisher Scien-

tific), supplemented with 0.1 mM non-essential amino acids, 1 mM glutamine, 55 μM 2-mer-

captoethanol, 0.5% N-2 supplement (Thermo Fisher Scientific), 0.5% B-27 supplement

(Thermo Fisher Scientific), 50 μg/mL ascorbic acid 2-phosphate (Merck KGaA, Darmstadt,

Germany), 0.05% bovine serum albumin (Merck) supplemented with 7 μM CHIR-98014 (Sell-

eck Biotech), 10 ng/mL FGF-basic (Nacalai Tesque Inc., Kyoto, Japan), 10 ng/ml FGF8 (Pepro-

tech, Thermo Fisher Scientific), and 4 μg/ml hydrocortisone (Tokyo Chemical Industry Co.,

Ltd., Tokyo, Japan), and started gyratory rotation culture with approximately 60 rpm of agita-

tion-speed until the end of the culture experiment with changing medium every third day. For

EZ sphere, on Day 13, all spheres were collected into centrifugation tubes and centrifuged at

120 g for 5 minutes. The collected spheres were transferred into eight cell-non adhesive 10-cm

dishes (Greiner Bio-One) with each 20 mL of OMM, and started gyratory rotation culture

with approximately 60 rpm of agitation-speed until the end of the culture experiment with

changing medium every third day.

Lgr6-GFP reporter iPS development

We chose the tentative promoter region as the 1 kb of upstream sequence from the first codon

of Lgr6 variant 2 (GenBank: AL356953.17. from 19771 to 20838). The Kozak sequence

(GCCACC) was inserted just above the first codon in EGFP. The piggyback-based reporter

vector has 5’ and 3’ inverted terminal repeat sequences (ITRs), and between them, it has Lgr6

promoter-Kozak-EGFP-rabbit beta globin (rBG) polyA signal and cytomegalovirus promoter

(CMV)-puromycin-resistant gene-bovine growth factor (BGH) polyA signal sequences. The

designed vector was constructed and purchased from VectorBuilder (VectorBuilder Inc.,

Kanagawa, Japan). We transduced the construct into 253G1 and RIKEN2F cell lines using a

piggyback transposase expression vector (System Biosciences, LLC., CA, USA). Three to four

days later, the gene-transduced cells were selected by two to three days of treatment with 2 μg/

PLOS ONE Functional nail stem-like cells derived from human iPSCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0303260 May 14, 2024 3 / 16

https://doi.org/10.1371/journal.pone.0303260


ml puromycin (Thermo Fisher Scientific) and subsequently cultured to form single cell-

derived colonies for several days. We manually selected individual colonies and further

expanded them for functional tests. We performed small-scale digit organoid differentiation

and successfully selected functional clones using fluorescent microscopy.

Global gene expression profile of digit organoid in comparison with

undifferentiated human iPSCs

Total RNA was extracted from the cells using ISOGEN (NIPPON GENE CO., LTD., Tokyo,

Japan) according to the manufacturer’s instructions. Quantification, quality check of the total

RNA and library development, and sequencing were performed by AZENTA LIFE SCI-

ENCES, Massachusetts, USA. The total RNA was quantified and qualified by NanoDrop,

Qubit RNA Assay (Thermo Fisher Scientific), and TapeStation RNA ScreenTape (Agilent

Technologies, California, USA). Total RNA samples (109 ng) that met the quality guideline

RIN: 8 or higher were treated with the NEBNext Poly(A) mRNA Magnetic Isolation Module

(New England Biolabs, Massachusetts, USA) to enrich poly-A mRNA and remove rRNA mole-

cules. cDNA synthesis followed by transcriptome library preparation was conducted using the

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina, where dUTP was incorpo-

rated in the process of second-strand cDNA synthesis instead of dTTP, which blocks PCR

amplification against the 2nd strand templates. This enables us to maintain the strandness of

RNA transcripts. A 13-cycle PCR amplification was performed to increase the library yield

and to incorporate sample barcodes into the library fragments. The resulting transcriptome

libraries were quantified using the Qubit DNA Assay (Thermo Fisher Scientific), and their

fragment size distribution was estimated using TapeStation D1000 ScreenTape (Agilent Tech-

nologies). The libraries were loaded onto a next-generation sequencing platform, NovaSeq

6000 (Illumina, Inc., California, USA). Sequencing was performed according to the manufac-

turer’s instructions with a 150-bp paired-end configuration, yielding approximately 6 GB per

sample. Raw reads with low quality and adapter sequences were removed using Cutadapt v.2.9.

The remaining reads were then mapped to the human genome (GRCh38 version 101) by

HISAT2 v.2.2.0 (PMID: 25751142), and gene expression was quantified using the R package

featureCounts v.2.6.0 (PMID: 24227677). Consequently, differentially expressed genes (DEGs)

were identified on the basis of differences in expression levels (log2 fold-change > 1 and

adjusted pvalue < 0.05) between samples after removing genes with zero read counts using

DESeq2 v.1.6.3 (PMID: 25516281). Gene Ontology (GO) and pathway enrichment analyses

were carried out with SRplot [20].

Quantitative polymerase chain reaction (qPCR) analysis

Total RNA was extracted from the cells using ISOGEN according to the manufacturer’s

instructions. Reverse transcription of 50 ng of RNA was performed using SuperScript1

Reverse Transcriptase (Thermo Fisher Scientific) with an oligo(dT)20 primer. To investigate

various gene expressions, a quantitative polymerase chain reaction was performed using Gen-

eAce SYBR1 qPCR Mix α (NIPPON GENE CO., LTD.) with gene-specific primer sets listed

in S1 Table. The expression levels of other genes were also investigated. All gene expression

levels were normalized to the internal ribosomal protein S18 expression levels.

Immunofluorescent staining

Organoids were fixed in 4% paraformaldehyde for 20 min at 25˚C. The organoids were then

washed twice with Tris-buffered saline containing 0.2% Tween-20 (TBS-T) and incubated

with 0.1% Triton-X100 containing TBS-T for 10 min at 25˚C, followed by immersion in 30%
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sucrose containing TBS-T for over a night at 4˚C. Organoids were settled on the bottom of the

cup (Cryomold1No. 1, Sakura Finetek Japan Co., Ltd., Tokyo, Japan), and the solution was

aspirated completely by paper absorption (Kimwipe1, Nippon Paper Crecia Co., Ltd., Tokyo,

Japan) from the ping hole made by the tip of a 29G needle. Subsequently, the cup was filled

with O.C.T. compound (Sakura Finetek Japan Co., Ltd.) and cooled to -80˚C for making cryo-

blocks. The cryoblocks were applied to 8 μm thick sectioning and adhered to aminosilane-

treated slide grass (Matsunami Glass IND., Ltd., Osaka, Japan). After being well dried, the

slide grasses were dipped in TBS-T to wash away the residual O.C.T. compound and rehydrate

the organoid. The slides were treated with a blocking solution (Nacalai Tesque) for 30 minutes

at 25˚C. The first antibody-containing blocking agent was applied and incubated overnight at

4˚C with paraffin sealing to prevent evaporation. The cells were then washed three times with

TBS-T and immersed in the second antibody-containing blocking agent for 1 h at 25˚C. After

washing three times, fluorescent signals were observed using a fluorescence microscope

(Eclipse Ti2, Nikon Instruments, Tokyo, Japan) controlled by the equipped software (NIS-Ele-

ments, Nikon Instruments). The primary and secondary antibodies used are listed in S2 Table.

Nuclear DNA were stained by 4’,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher

Scientific).

Enrichment of Lgr6-GFP reporter-expressing cells by fluorescent activated

cell sorting (FACS)

Approximately one hundred digit-organoids (day 62) that were differentiated from Lgr6-GFP

reporter-iPSCs were collected in a 50-ml centrifuge tube and washed once with 30-ml of

Hanks buffer (Nacalai Tesque). Then the medium was completely changed by the Hanks

buffer containing 0.1% collagenase (Fuji Film Wako Chemical Inc.). A micromagnetic stirrer

bar (AS ONE Corporation, Osaka, Japan, MC-52) was dropped in the tube and the enzymatic

solution was mixed using a magnetic stirrer (AS ONE, CB-4) with maximum speed for 1 hour

at 37˚C. After confirmation of the complete dispersion under a conventional microscope, the

cells were collected and washed once with Hanks buffer. The dispersed cells were passed

through the mesh of a 40 μm pore (Becton, Dickinson and Company (BD), New Jersey, USA,

Cell Strainer 40 μm Nylon). The cell suspension solutions were kept cold on ice until the sort-

ing experiment. We used a FACS machine (BD, FACS Aria III) according to the manufactur-

er’s instructions. After doublet elimination by the height and width subparameters in the

forward scatter and the side scatter, we determined the medium- to strong-GFP-expressing

cells in the histogram for sorting.

Production of the cell sphere and subcutaneous cell transplantation

The sorted 3.4 x 106 cells were seeded in a sphere plate (AGC, EZ-Sphere plate 100mm) for

200 cells/well with OMM medium and incubated for four days [21]. The produced cell-spheres

were collected by centrifugation and then subcutaneously injected using a 29-gauge tuberculin

syringe (NIPRO CORPORATION, Osaka, Japan) under the shaved back skin of immunode-

ficient NOD-SCID mice (CLEA). After 20 days of transplantation, the hard lump tissue

formed under the skin was removed.

Statistical analysis

Statistical analyses were performed using EZR software (Jichi Medical University, Japan) [22].

For comparisons with differentiation day 0, significant differences were determined using

one-way analysis of variance (one-way ANOVA), followed by post hoc testing using the Dun-

nett test vs. undifferentiated hiPSCs. Statistical significance was set at p< 0.05.
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Results

Differentiation of digit organoids via the extended culture of limb bud

organoids with gyratory rotation

To achieve differentiation of digit appendix nail tissue from human-induced pluripotent stem

cells (iPSCs), we referred to a previous report describing limb bud differentiation from murine

iPSCs and modified and extended their method [19]. We sequentially treated spheres of iPSCs

with a floating culture of the limb bud organoids. Here, we adopted a gyratory rotation culture

for further growth and differentiation of the organoids (Fig 1A). Sequential expression of E-

cadherin, brachyury, Hand2, and Pitx1 confirmed the earlier successful differentiation of the

limb bud organoids (Fig 1B). The results confirmed successful reconstitution of limb bud

differentiation.

mRNA expression of segment patterning and digit-related genes during

gyratory rotation culture

We attempted to achieve long-term culture of the organoids; however, we found that larger

grown organoids had necrotic cores in static floating culture. Therefore, we maintained a con-

tinuous medium flow during the extended culture period. Gyratory rotation culture was per-

formed for further growth and differentiation of the organoids. First, we investigated the

global mRNA expression pattern of the digit organoid on differentiation day 50 compared

with that of the undifferentiated hiPSCs. We found both upregulated (4744) and downregu-

lated (4280) genes (Fig 2A). Gene Ontology (GO) enrichment analysis of differentially

expressed 3845 genes (|log2 (fold change)| >2.5) suggested that they link to various GO terms

in three major GO categories: biological process, cellular components, and molecular function

(Fig 2B) (S3–S5 Figs). Among them, biological process contains the largest number of 2723

genes, and those terms were linked to development (S3 Fig). One of the GO terms in cellular

components suggests active extracellular matrix production in the digit organoid (S4 Fig). Sev-

eral GO terms in molecular function suggested that there were rich receptor-ligand interac-

tions and cross-membrane activities in the digit organoid (S5 Fig). Furthermore, pathway

enrichment analysis suggested that gene expression alterations along with differentiation

would enhance the canonical Wnt signaling pathway (S6 and S7 Figs). We selected the genes

that have been previously reported in relation to limb and digit development from differen-

tially expressed genes for transcriptional regulating factors, morphological factors, and kera-

tins and showed them in S1 and S2 Figs. Pluripotent stem cell-specific transcriptional

regulatory factors, including ZSCAN10, LINC00678, VRTN, NANOG, LIN28A, POU5F1,

LCK, ESRG, and IDO1, were downregulated with differentiation [23]. In turn,

homeobox proteins including HOXD13 [23,24]; Lgr5 and 6 [11]; T-box genes [25]; DLX-

genes [26]; Pitx1 and 2 [27,28]; Eph receptors [29]; SOX-genes [30]; LIMX1A and B [31];

RUNX1, 2, 3 [32]; and Homeobox protein engrailed-1 [33] were upregulated with differentia-

tion. The gene expression levels of morphological factors, including BMPs [9], GFD11 [34],

fibroblast growth factors, including FGF8 [35], WNTs and WLS [36], GREM1, 2, and SHH

[37], increased with differentiation. Nail-related hard keratin genes, including KRT6A, B, C,

KRT16, KRT17, and KRT31 [38,39], were highly expressed in the digit organoids. Next, we

investigated the time course of the expression levels of various key gene mRNAs regarding

arm segmentation, skeletal bone formation, nail matrix differentiation, and nail formation by

quantitative PCR (Fig 2C). Hoxd13, which is a transcription factor responsible for digit forma-

tion and whose gene expression levels peaked at differentiation day 49, shows successful differ-

entiation of the most proximal digit segment. Pitx1 was continuously expressed in
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differentiated mesenchymal cells. Runx2 expression was elevated on differentiation day 49 and

prominently expressed on day 77. The Runx2 protein is responsible for skeletal bone forma-

tion, supporting further advancement of the differentiation process into the bone formation

phase. Lgr5-expressing cells were reported to exist in the hair follicle and dorsally to the nail in

the proximal fold [11]. We observed that Lgr5 expression was keenly elevated on differentia-

tion day 14. However, it showed a rapidly decreasing trend, and then showed a gradual

increase again with the differentiation days. In contrast, Lgr6 expression gradually and contin-

uously increased with differentiation. The expression of typical nail keratin, KRT17 (type I;

Fig 1. Differentiation scheme of digit organoid and early expressions of limb bud-related proteins. (A) Differentiation scheme; (B) Immunofluorescent

staining of early differentiating spheres regarding E-cadherin, T-brachyury, Hand2, and Pitx1. The used antibodies are shown in the S2 Table. Scale

bars = 200 μm.

https://doi.org/10.1371/journal.pone.0303260.g001
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Fig 2. Global gene expression profiling by RNA sequencing and time course of the gene expressions from pluripotent to digit organoid via limb bud

formation. (A) Volcano plot of genes expressed in D0 undifferentiated iPSCs vs. D50 digit organoids. (B) GO enrichment analysis of differently expressed 3845

genes (|log2 (fold change)|>2.5) with statistical significance. The log10 (pvalue) scores of GO terms are in three ontologies: biological process (GO:0008150),

cellular component (GO:0005575), and molecular function (GO:0003674). (C) Time course of mRNA expression levels of the genes of interest by qRT-PCR

analysis. Gene expression levels were normalized to internal ribosomal protein S18 expression levels. Statistical analysis was done using the Dunnett test vs.

undifferentiated hiPSCs. The significance is **p< 0.01, *p< 0.05. Data are shown as mean ± SD.

https://doi.org/10.1371/journal.pone.0303260.g002
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KRT17 is also known as CK-17, PCHC1) [40] and KRT81 (type II; also known as hHb1,

MLN137, ghHkb1, hHAKB2-1) [41], gradually increased with differentiation.

Neighboring protein expressions of Lgr6, KRT17, and KRT81 in digit

organoids

Immunohistochemical staining for the day 62 digit organoid revealed that the protein expres-

sion of type 1 keratins (KRT16 and KRT31) and a type 2 keratin (KRT6) was expressed in the

enucleating cell clusters (Fig 3A). Furthermore, we demonstrated a continuous section of a

day 76 organoid and confirmed Lgr6, KRT17, and KRT81 protein expressions in neighboring

locations (Fig 3B).

Development of a functional human Lgr6-GFP reporter cell line,

enrichment of reporter positive cells, and transplantation

We searched the Eukaryotic Promoter Database (EPD) [42] and identified three Lgr6 alterna-

tive splicing variants. Because the most obvious signals were shown in variant 2 by Cap Analy-

sis of Gene Expression (CAGE) analysis of FANTOM5 [43] and ENCODE [44], we chose

approximately 1 kb of upstream sequence from the first codon of variant 2 for the Lgr6

reporter construct (Fig 4A). We established several clones of the gene transduced into human

iPSC and demonstrated digit organoids formation in parallel for screening. Using the best

reporter iPSC-clone, we found that approximately 10 to 30% of the organoids indicated green

Fig 3. Immunohistochemical detection of Lgr6 and hard keratins. (A) Immunohistochemical staining of a

differentiation day 62 organoid detected the protein expression of type 1 keratins (KRT16 and KRT31) and a type 2

keratin (KRT6). Scale bars = 100 mm. (B) Immunohistochemical staining of a differentiation day 76 organoid detected

Lgr6, type 1 keratin: KRT17, and type 2 keratin: KRT81 protein expressions in the continuous sections. Scale

bars = 200 μm. The used antibodies are shown in the S2 Table.

https://doi.org/10.1371/journal.pone.0303260.g003
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Fig 4. Functionality of the Lgr6-GFP reporter iPSC. (A) Design of the Lgr6-GFP reporter gene on the piggyback system (B) Expression of Lgr6 reporter GFP

expression on day 30 of the organoids produced by EZ sphere dishes. Scale bar = 100 μm. (C) Expression of a reporter GFP-expressing organoid produced by a 96

well-plate at the differentiation day 44. Immunohistochemical detection of Lgr6 protein is in red. Scale bar = 100 μm. (D) Cell sorting of GFP-positive cells from

day 62 organoids. The enriched Lgr6-GFP-positive cells were formed into spheres. Scale bar = 100 μm. Immunofluorescent staining of the isolated lump tissue after

20 days of the subcutaneous injection into the immunodeficient mouse for (E left) GFP and human nuclear antigen (hNA), scale bar = 200 μm, (E middle) GFP

and KRT17, scale bar = 100 μm, and (E right) GFP and KRT81, scale bar = 100 μm. The asterisks in the left panel indicate parts of red-colored autofluorescence.

The used antibodies are shown in the S2 Table.

https://doi.org/10.1371/journal.pone.0303260.g004
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fluorescence signals and the positive ratio was slightly varied by the differentiation period (Fig

4B). We performed immunofluorescent stains for GFP and Lgr6 on the cryosection digit orga-

noid. We found co-localized expression of reporter-GFP and Lgr6 proteins (Fig 4C). We then

enriched the GFP-expressing cells from organoids (day 62) using cell sorter (Fig 4D) and

formed 17,000 spheres, each containing 200 cells. After four days, we performed a subcutane-

ous injection under the shaved back skin. Twenty days after transplantation, we found rela-

tively hard lump tissue by palpation. The tissue was suggested to be composed of host and

graft-derived chimeric regions (S8A Fig). The engrafted human cell-rich regions contained the

host-derived vascular endothelial cells and the host red blood cells (S8B and S8C Fig). A part

of We immunohistochemically investigated it and found the human nuclear antigen- and

reporter GFP-double positive cells (Fig 4E left), and nearby there was a denuclearized KRT17-

and KRT81-double-positive area (Fig 4E middle and right).

Discussion

To achieve differentiation of nail stem (NS)-like cells from human-induced pluripotent stem

cells (iPSCs), we followed a previously reported method for limb bud formation using murine

iPSCs for 10 days [19]. We confirmed the apical ectodermal ridge-like cell formation by the

expression of E-cadherin. Hand2 expression suggested limb mesenchymal cell development.

Both forelimb- and hindlimb-specific expressing genes, Tbx5 and Pitx1 were observed, respec-

tively, which shows both forelimb and hindlimb buds were differentiated in our experiments.

To advance the differentiation of limb bud organoids, we tested static, vertical, and hori-

zontal rotation culture systems. As a result, we constantly found the largest organoids in hori-

zontal gyratory rotation culture through repeated differentiation batches. Therefore, we

adopted the gyratory rotation culture system for further experiments. Our gyratory cultivation

system may enhance the differentiation of larger organoids through the efficient exchange of

air and nutrients with excreted waste under less shear stress. As a result, in comparison with

the previous report, organoids could express the skeletal bone formation marker Runx2

mRNA without fetal transplantation.

We demonstrated Lgr6 mRNA and protein expression with approximately 2 months of dif-

ferentiation, suggesting successful differentiation of NS-like cells from human iPSCs. To fur-

ther confirm the nail-forming ability of NS-like cells, we performed immunohistochemical

staining for the nail-enriched type I keratin KRT17 and type II keratin KRT81 and found that

KRT17 and KRT81 co-localizing areas exist near the Lgr6-expressing cells, strongly suggesting

that human iPSC-derived NS-like cells may have the ability to produce nail plates.

Type I keratin KRT17 and type II keratin KRT81 are known as "hard keratin" because they

form hair and nails by making heterotypic complexes. Lgr6- or Lgr5-positive cells are also

known to be stem cell populations in hair follicles [45,46]. It is difficult to completely distin-

guish hair, nails, and their stem cells just from their molecular signatures. We consider two

reasons why we think our differentiated cells are NS-like cells. First, we traced the develop-

mental process toward nail formation. We observed a time-dependent elevation of the digit-

specific Hoxd13. Fetuses normally have no active hair (lanugo) follicles in their arms or digits

[47]. Furthermore, the immunohistochemical positivity showed that a relatively large area did

not have any features of a hair follicle, strongly supporting our hypothesis that differentiated

tissues in digit organoids should be a combination of NS-like cells and nails. The second is the

major difference in comparison with the previous publication describing hair and hair follicles

involving organoids derived from human-embryonic stem cells [48]. Lee et al. reported hair-

bearing human skin produced by long-term culture of skin organoids. They claimed that their

skin organoids were equivalent to human facial skin. Noteworthy, their single-cell mRNA
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expression analysis revealed that their organoids consisted of only ectodermal cells without

any endoderm or mesoderm population. Our digit organoid apparently involves mesodermal

cells. The initial sphere richly involved brachyury-positive mesodermal mesenchymal cells. In

the latter phase of differentiation, Runx2 mRNA-expressing cells, which might be osteoblasts

that form skeletal bones [49], have emerged. From the above contexts, we concluded that our

differentiated digit organoids contain NS-like cells and primitive nails.

We demonstrated enrichment of Lgr6-expressing NS-like cells by Lgr6-GFP reporter

expression from the digit organoid and subcutaneously transplanted them after sphere forma-

tion. The engrafted human cell-derived tissue was connected to the host-derived tissue and

received the host capillary vessels and blood. The functionality of the Lgr6-GFP reporter in

human iPSC lines was supported by immunofluorescent detection of hard keratin deposition

near the Lgr6-expressing cells. Our future goal is to utilize purified NS-like cells for drug

screening for nail growth deficiency and cell administration therapy for patients with congeni-

tal anonychia and hyponychia patients.

Conclusions

We provide the first report describing the differentiation of functional nail stem-like cells from

human-induced pluripotent stem cells via limb bud organoids by step-wise stimulations trac-

ing molecular processes in limb and digit development. We also established functional

Lgr6-reporter human iPSCs.
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