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brainlife.io: a decentralized and open-source 
cloud platform to support neuroscience 
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Neuroscience is advancing standardization and tool development to 
support rigor and transparency. Consequently, data pipeline complexity has 
increased, hindering FAIR (findable, accessible, interoperable and reusable) 
access. brainlife.io was developed to democratize neuroimaging research. 
The platform provides data standardization, management, visualization and 
processing and automatically tracks the provenance history of thousands 
of data objects. Here, brainlife.io is described and evaluated for validity, 
reliability, reproducibility, replicability and scientific utility using four data 
modalities and 3,200 participants.

Over the past 30 years, neuroimaging has matured to adopt the FAIR 
(findable, accessible, interoperable and reusable) principles1,2, develop 
reporting best practices3 and data standards4. While making research 
more rigorous and transparent, this maturation has inevitably increased 
compliance requirements. Indeed, just a few years ago it was possible 
to publish studies with a few hours of data collected and analyzed in 
a single laboratory. Today, studies require combining hundreds of 

hours of measurement, across multiple participants, laboratories and 
data modalities (for example, magnetic resonance imaging (MRI), 
positron emission tomography, functional near-infrared spectros-
copy, electro-encephalography (EEG) and magnetoencephalography 
(MEG)). To support the needs of a mature neuroimaging field, several 
data collection efforts have been started; relevant examples are the 
Human Connectome Project (HCP)5, Cambridge Centre for Ageing and 
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Supplementary Fig. 3). brainlife.io apps and datatypes are Brain Imag-
ing Data Structure4 compatible.

Complex neuroimaging processing pipelines are simplified into 
two main steps, akin to Google’s MapReduce algorithm. An initial Map 
step preprocesses data objects asynchronously, in parallel, to extract 
features of interest (that is, functional activations, white matter maps, 
brain networks or time series data; Fig. 1d). A ‘reduce’ step follows 
where features extracted using apps are made available to precon-
figured Jupyter Notebooks to perform analysis and generate figures. 
Indeed, all analyses and figures in this paper are available in brainlife.
io notebooks (Supplementary Table 2). brainlife.io’s data workflow 
makes it possible to integrate large volumes of data into small sets of 
features saved into ‘tidy data’ structures (Fig. 1d). For more documen-
tation regarding usage of the platform, see Extended Data Fig. 2 and 
Supplementary Table 1. Datatypes inform apps allowing automated 
processing and provenance tracking for millions of data objects. brain-
life.io tracks data object IDs, app versions and parameter sets across 
data processing steps. brainlife.io data provenance graphs visualize 
(Fig. 1e and Supplementary Table 1) and reproduce (Supplementary 
Table 1) the data generation steps. brainlife.io lowers the barriers of 
entry to FAIR neuroimaging by supporting an end-to-end data analysis 
workflow within a unified ecosystem (Fig. 1f).

We performed validation experiments to demonstrate cases 
where brainlife.io’s technology produces results consistent with best 
practices in the field. We used over 1,800 participants from three 
datasets: PING, HCPs1200 and Cam-CAN (Extended Data Figs. 3–8, 
Supplementary Results 4, Supplementary Fig. 4 and Supplementary 
Tables 3 and 4). Participants across all datasets spanned seven dec-
ades (that is, PING, 3–20 years; HCPs1200, 20–37 years and Cam-CAN, 
18–88 years). Lifespan trajectories were plotted for multiple brain 
features (for example, brain region volume, white matter tract FAs, 
connectivity networks and MEG peak frequency; Fig. 2a and Extended 
Data Fig. 7) using brainlife.io’s Jupyter Notebooks. Inverted U-shaped 
lifespan trajectories were estimated, consistent with previous stud-
ies15–17 (Fig. 2a and Extended Data Fig. 7). The results generated using 
brainlife.io demonstrate that substantially different datasets can be 
collated to identify established brain’s lifespan trajectories (Supple-
mentary Results 4).

We further evaluated the ability to replicate results and general-
ize findings. Apps were created to estimate cortical thickness and 
tissue orientation dispersion, orientation dispersion index (ODI) and 
analyze the HCPs1200 dataset. A negative relationship between cortical 
thickness and ODI was estimated (Fig. 2b and Extended Data Fig. 8; 
rHCP-brainlife = −0.43 versus roriginal), replicating the original study (ODI; ror-

iginal = −0.46)18. The result was also generalized to the Cam-CAN dataset 
(Fig. 2b and Extended Data Fig. 8; rCam-CAN-brainlife = −0.28 versus roriginal). 
The association between life stressors and white matter organization 
of the uncinate fasciculus (r = −0.057) was a replication of Hason et al.19 
using two independent datasets. The Negative Life Events Schedule 
(NLES) was correlated with quantitative anisotropy in the right- and 
left-hemisphere uncinate fasciculus (Fig. 2c and Extended Data Fig. 8; 
rHBN_LEFT = −0.35, two-tailed t-test, P = 0.018; rHBN_RIGHT = −0.39, two-tailed 
t-test P < 0.0156). Early Life Stress (a composite score of traumatic life 
events, environmental and neighborhood safety, and the family conflict 
subscale) was associated with the uncinate fasciculus FA (Fig. 2c and 
Extended Data Fig. 8; rABCD_LEFT = −0.12, P = 9.41 × 10−5; rABCD_RIGHT = −0.09, 
P = 0.0035). The results demonstrate the ability of brainlife.io services 
to detect meaningful associations in large, heterogeneous datasets 
(Supplementary Results 4).

Finally, we tested the ability of brainlife.io’s services to detect 
optic radiation white matter changes as a result of eye disease20. Indi-
viduals with Stargardt’s disease (deterioration initiated in the central 
retina) and choroideremia (deterioration initiated in peripheral retina) 
were compared to healthy controls. Stargardt’s FA was reduced in 
optic radiation fibers projecting to central V1 (not peripheral; Fig. 2d). 

Neuroscience study (Cam-CAN)6, Adolescent Brain Cognitive Develop-
ment (ABCD) study7, the UK-Biobank8, Healthy Brain Network (HBN)9, 
Pediatric Imaging Neurocognition and Genetics (PING) study10 and the 
Natural Scene Dataset11. At the same time, the complexity of the data 
pipeline has also increased with multiple, distinct, software libraries 
and analysis toolboxes developed12,13.

As compliance requirements grow, so do barriers to entry 
(Fig. 1a). The mature, neuroimaging field requires increased resources 
and technical training to piece together and track multiple processes 
such as data ingestion, standardization, storage, management, 
preprocessing and feature extraction (Fig. 1a). Currently, no sin-
gle and low-barrier technology exists to integrate and manage the 
ever-changing software and data components of a full study. The 
growing compliance requirements affect the research community 
inequitably; smaller institutions and lower-income countries are 
more likely to lack resources and training. As such, this maturation 
process may risk favoring higher-resourced teams: an outcome that 
would not only decrease diversity and inclusion, but also slow-down 
scientific progress.

In support of simplicity, efficiency, transparency and equity in 
big data neuroscience research, our team has developed a community 
resource, brainlife.io (Fig. 1b). The brainlife.io platform stands on the 
pillars of open science (Fig. 1c), to provide free, secure and reproduc-
ible neuroscientific data analysis. Because of its web-based availability, 
brainlife.io should expand opportunities for researchers from nations 
and institutions with limited research budgets and resources. brainlife.
io should then serve as an enabler for researchers and students from all 
sorts of institutions of higher education and all sorts of backgrounds 
to access cutting-edge neuroscience analytic tools.

brainlife.io is a ready-to-use and ready-to-expand platform. As a 
ready-to-use system, it allows researchers to upload and analyze data 
from MRI, MEG and EEG systems. Data are managed using a secure 
warehousing system with a proper access-control model. Data can be 
preprocessed and visualized using version-controlled applications 
(hereafter referred to as apps; https://brainlife.io/apps; Supplemen-
tary Fig. 1), compliant with major data standards (for example, the 
Brain Imaging Data Structure4). As a ready-to-expand system, software 
developers may submit apps guided by standardization and documen-
tation (https://github.com/brainlife/abcd-spec and https://brainlife.
io/docs). The platform uses opportunistic computing to serve com-
mercial and academic clouds to researchers. Computing resources can 
be registered on brainlife.io for individual users and projects, or the 
larger community (Extended Data Fig. 1a,b). Supplementary Results 1  
describe the technology.

The architecture of brainlife.io is based on a microservice 
approach for automated and decentralized data management and 
processing. Microservices are handled by the orchestration system 
Amaretti (Extended Data Fig. 1c,d and Extended Data Table 1) which 
deploys computational jobs on high-performance clusters and clouds 
(for example, Google Cloud, AWS or Microsoft Azure). Data manage-
ment on brainlife.io is centered around projects, the ‘one-stop-shop’ 
for data management, processing, analysis and visualization (Sup-
plementary Results 2 and Supplementary Fig. 2). Data archives can be 
docked by brainlife.io (Extended Data Fig. 1d) and data imported via 
the portal https://brainlife.io/datasets (Supplementary Table 1). Data 
from measurement instruments are imported using https://brainlife.
io/ezbid (Extended Data Table 1)14. Data processing on brainlife.io uses 
an object-oriented and micro-workflow service model. Data objects are 
stored using predefined standardized formats, datatypes, that allow 
automated app pipelining (Extended Data Fig. 1e; https://brainlife.io/
datatypes) and provenance tracking for millions of data objects. Data 
processing Apps are containerized, composable processing units, 
can be written in any language using containerization technology 
and are smart, meaning that they automatically identify, accept or 
reject data objects before processing (Supplementary Results 3 and 
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Choroideremia’s FA was reduced in optic radiation fibers projecting 
to peripheral V1 (not central; Fig. 2d and Supplementary Results 4).

Our vision for brainlife.io is that of a trusted, interoperable and 
integrative platform connecting data archives and global communities 

of software developers, hardware providers and domain scientists 
(Supplementary Results 5 and Supplementary Table 5). The goal of 
brainlife.io is to facilitate research and education, accelerate brain 
understanding and lead to cures for brain diseases. To support this 
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Fig. 1 | The burdens of neuroscience and the promise of integrative 
infrastructure. a, A figurative representation of the current major burdens 
of performing neuroimaging investigations. b, Our proposal for integrative 
infrastructure that coordinates services required to perform FAIR, reproducible, 
rigorous and transparent neuroimaging research thereby lifting the burden from 
the researcher. c, brainlife.io rests on the foundational pillars of the open science 
community such as data archives, standards, software libraries and compute 
resources. d, brainlife.io’s Map step takes MRI, MEG and EEG data and processes 

them to extract statistical features of interest. brainlife.io’s reduce step takes the 
extracted features and serves them to Jupyter Notebooks for statistical analysis. 
PS, parc-stats datatype; TM, tractmeasures datatype; NET, network datatype and 
CLI, common line interface. e, The brainlife.io technology automates capture 
of data provenance. All data objects on brainlife.io are stored with a record of 
the apps, app versions and parameters used to process the data. f, The primary 
services are provided to the user by brainlife.io. Panels a and b adapted from ref. 
22 under a Creative Commons license CC BY 4.0.
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vision, brainlife.io connects trainees, researchers, developers and 
computing resource managers in high-, medium- and low-income 
countries via technology. The platform is registered on fairsharing.
org, datacite.org and nitric.org, it is recommended by the International 
Neuroinformatics Coordinating Facility (https://incf.org/infrastruc-
ture/brainlife) and it can serve the US National Institutes of Health in 
the United States data deposition and sharing mandate21,22. A compre-
hensive overview of the platform and tutorials can be found at https://
brainlife.io/docs. Videos provide tutorials and demonstrations at 
youtube.com/@brainlifeio. A slack channel supports communication 
and operations: https://brainlife.slack.com. Questions can be posted 
using the topic ‘brainlife’ on https://neurostars.org or GitHub issues 

(https://github.com/brainlife/brainlife/issues) can be added directly 
to the code repositories. A quarterly outreach newsletter is sent out to 
all users, and an X account (@brainlifeio) informs the wider community 
about critical events. The platform has already collected a growing 
community (Supplementary Results 3).

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02237-2.
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Fig. 2 | brainlife.io supports scientific discovery and replication.  
a–d, Identifying unique relationships with brain features over the lifespan. 
a, Relationship between participant age and right hippocampal volume, 
right inferior longitudinal fasciculus (FA, within-network average functional 
connectivity (FC) derived using the Yeo17 atlas and peak frequency in the alpha 
band derived from magnetometer (squares) and gradiometers (circles) from 
MEG data. These analyses include participants from the PING (purple), HCP1200 
(green) and Cam-CAN (yellow) datasets. Linear regressions were fitted to each 
dataset, and a quadratic regression was fitted to the entire dataset (blue).  
b,c, Replication and generalization of previously reported scientific findings. 
b, Average cortical hcp-mmp parcel thickness (Nstruc = 322) compared to parcel 
the ODI from the NODDI model mapped to the cortical surface (inset) of the 
HCPS1200 dataset (Nsub = 1,043) and Cam-CAN (Nsub = 492) dataset compared to 
the parcel-average cortical thickness. c, Stressful life events were obtained from 
the NLES survey from HBN participants (Nsub = 42) compared to uncinate-average 

normalized quantitative anisotropy (QA). Mean linear regression (blue line) 
fits and standard deviation (shaded blue). Early life stress was obtained from 
multiple surveys collected from ABCD participants (Nsub = 1,107) compared to 
uncinate-average FA. Linear regression (green line) fits the data with standard 
deviation (shaded green). d, Identification of clinical biomarkers. d, Retinal 
optical coherence tomography images from healthy controls (top row), patients 
with Stargardt’s disease (middle row) and patients with Choroideremia (bottom 
row). From these images, photoreceptor complex thickness was measured for  
each group (controls, gray; Choroideremia, green; Stargardt’s, blue) in two 
distinct areas of the retina: the fovea (eccentricities 0–1°) and periphery 
(eccentricities 7–8°). In addition, optic radiations carrying information for each 
retinal area were segmented and FA profiles were mapped. Average profiles with 
standard error (shaded regions) were computed. One participant with Stargardt 
and one with Choroideremia were identified each having FA profiles that 
deviated from healthy controls.
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Methods
Data sources
Multiple openly available data sources were used for examining the 
validity, reliability and reproducibility of brainlife.io apps and for 
examining population distributions. All information regarding the 
specific image acquisitions, participant demographics and study-wide 
preprocessing can be found in the publications in refs. 5–7,9,10,23–25. 
Some data sources are currently unpublished. For these, the appropri-
ate information is provided. Experiments were approved by the local 
institutional review boards (IRB) and only the personnel approved for 
a specific study accessed the data in private projects on brainlife.io.

Validity, reliability, reproducibility, replicability, 
developmental trends and reference datasets
HCP (test–retest, s1200-release). Data from these projects were 
used to assess the validity, reliability and reproducibility of the plat-
form. They were used to assess the abilities of the platform to identify 
developmental trends in structural and functional measures, and they 
were used to generate reference datasets. For structural MRI (sMRI) 
data, the minimally preprocessed structural T1w and T2w images from 
the HCP from 1,066 participants from the s1200 and 44 participants 
from the test–retest releases were used5. Specifically, the 1.25 mm 
‘acpc_dc_restored’ images generated from the Siemens 3 T MRI scanner 
were used for all analyses involving the HCP. For most examinations, the 
already-processed Freesurfer output from HCP was used. For diffusion 
MRI (dMRI) data, to assess the validity of preprocessing on brainlife.
io, the unprocessed dMRI data from 44 participants from the HCP 
test dataset was used. For reliability and all remaining analyses, the 
minimally preprocessed dMRI images from 1,066 participants from 
the s1200 and 44 participants from the test–retest releases from the 3 T 
Siemens scanner were used. All processes incorporated the multi-shell 
acquisition data. For functional data (functional MRI (fMRI)), regard-
ing validation, the unprocessed resting-state fMRI data from 44 par-
ticipants from the HCP test dataset were compared to the minimally 
preprocessed blood oxygenation level dependent data provided by 
HCP. For reliability and all other analyses, the minimally preprocessed 
blood oxygenation level dependent data from 1,066 participants from 
the s1200 and 44 participants from the test–retest releases from the 
3 T Siemens scanner were used.

The Cam-CAN. The data from this project were used to assess the 
validity, reliability and reproducibility of the platform, and to assess the 
abilities of the platform to identify developmental trends of structural 
and functional measures, and to generate reference datasets. For sMRI 
data, the unprocessed 1 mm isotropic structural T1w and T2w images 
from 652 participants from the Cam-CAN6 study were used. For dMRI 
data, the unprocessed 2 mm isotropic diffusion (dMRI) images from 
652 participants from the Cam-CAN study were used. For fMRI data, 
the 3 × 3 × 4 mm3 unprocessed resting-state fMRI images from 652 
participants from the Cam-CAN study were used. For electromagnetic 
data (MEG), the 1,000 Hz resting-state filtered and unfiltered datasets 
from 652 participants from the Cam-CAN study were used.

Developmental trends and reference datasets
PING. The data from this project were used to assess the abilities of 
the platform to identify developmental trends of structural measures 
and to generate reference datasets. For sMRI data, the unprocessed 
1.2 × 1.0 × 1.0 mm3 structural T1w and the 1.0 mm isotropic T2w images 
from 110 participants from the PING10 study were used. For dMRI data, 
the unprocessed 2 mm isotropic diffusion (dMRI) images from 110 
participants from the PING study were used.

Replicability datasets
ABCD. For sMRI data, the unprocessed 1 mm isotropic structural 
T1w and T2w images from a subset of 1,877 participants from the 

ABCD (release-2.0.0) study were used. For dMRI data, the unpro-
cessed 1.77 mm isotropic diffusion (dMRI) images from a subset of 
1,877 participants from the ABCD (release-2.0.0) study were used7,26. 
A single diffusion gradient shell was used for these experiments 
(b = 3,000 s ms−2). Research was approved by the University of Arkan-
sas IRB (no. 2209425822).

HBN. The data from this project were used to assess the abilities of 
the platform to replicate previously published findings via the assess-
ment of the relationship between microstructural measures mapped 
to segmented uncinate fasciculi and self-reported early life stress-
ors. Research was approved by the University of Pittsburgh IRB (no. 
PRO17060350). For sMRI data, the 0.8 mm isotropic structural T1w 
images from 42 participants from the HBN study9 were used. For dMRI 
data, the unprocessed 1.8 mm isotropic diffusion (dMRI) images from 
42 participants from the CitiGroup Cornell Brain Imaging Center site 
of the HBN study were used. Research was approved by the University 
of Pittsburgh IRB (no. PRO17060350).

UPENN-PMC. The University of Pennsylvania, Penn Memory Center 
(UPENN-PMC) data from this project were used to assess the abilities of 
the platform to replicate previously published findings via the assess-
ment of the performance of an automated hippocampal segmenta-
tion algorithm. Secondary data analyses were conducted under IRB 
exemption at Indiana University. For sMRI data, the T1w and T2w data 
were provided within the Automated Segmentation of Hippocampal 
Subfields Automated Segmentation of Hippocampal Subfields atlas27.

Clinical-identification datasets
Indiana University Acute Concussion dataset. The data from this 
project were used to assess the abilities of the platform to identify 
clinical populations via the mapping of microstructural measures 
to the cortical surface. Neuroimaging was performed at the Indiana 
University Imaging Research Facility, housed within the Department of 
Psychological and Brain Sciences with a 3 T Siemens Prisma whole-body 
MRI using a 64-channel head coil. Within this study, nine concussed 
athletes and 20 healthy athletes were included. Research approved by 
Indiana University (IRB 906000405). For sMRI data, high-resolution 
T1-weighted structural volumes were acquired using an MPRAGE 
sequence: TI = 900 ms, TE = 2.7 ms, TR = 1,800 ms, flip angle 9°, with 
192 sagittal slices of 1.0 mm thickness, a field of view of 256 × 256 mm2 
and an isometric voxel size of 1.0 mm3 (where TI, TE and TR refer to 
inversion time, echo time and repetition time, respectively). The total 
acquisition time was 4 min and 34 s. High-resolution T2-weighted 
structural volumes were also acquired: TE = 564 ms, TR = 3,200 ms, flip 
angle 120°, with 192 sagittal slices, a field of view of 240 × 256 mm2 and 
an isometric voxel size of 1.0 mm3. Total acquisition time was 4 min and 
30 s. Diffusion data (dMRI) were collected using single-shot spin-echo 
simultaneous multi-slice (SMS) echo-planar imaging (transverse orien-
tation, TE = 92.00 ms, TR = 3,820 ms, flip angle 78°, isotropic 1.5 mm3 
resolution; FOV = LR 228 × 228 × 144 mm3; acquisition matrix MxP 
138 × 138. SMS acceleration factor 4). This sequence was collected 
twice, one in the anterior-posterior fold-over direction and the other 
in the posterior-anterior (PA) fold-over direction, with the same dif-
fusion gradient strengths and the number of diffusion directions: 
30 diffusion directions at b = 1,000 s mm−2, 60 diffusion directions 
at b = 1,750 s mm2, 90 diffusion directions at b = 2,500 s mm2 and 19 
b = 0 s mm2 volumes. The total acquisition time for both sets of dMRI 
sequences was 25 min and 58 s.

Oxford University Choroideremia & Stargardt’s Disease Dataset. 
The data from this project were used to assess the abilities of the plat-
form to identify clinical populations via mapping retinal-layer thickness 
via optical coherence tomography and mapping of microstructural 
measures along optic radiation bundles segmented using visual field 
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information (eccentricity). Neuroimaging was performed at the Well-
come Centre for Integrative Neuroimaging, Oxford with the Siemens 3 T 
scanner. Research was approved by the UK Health Regulatory Author-
ity reference 17/LO/1540. For sMRI data, high-resolution T1-weighted 
anatomical volumes were acquired using an MPRAGE sequence: 
TI = 904 ms, TE = 3.97 ms, TR = 1,900 ms, flip angle 8°, with 192 sagit-
tal slices of 1.0 mm thickness, a field of view of 174 × 192 × 192 mm3 and 
an isometric voxel size of 1.0 mm3. The total acquisition time was 5 min 
and 31 s. Diffusion data (dMRI) were collected using echo-planar imag-
ing (transverse orientation, TE = 92.00 ms, TR = 3,600 ms, flip angle 
78°, 2.019 × 2.019 × 2.0 mm3 resolution; FOV = 210 × 220 × 158 mm3; 
acquisition matrix MxP = 210 × 210, SMS acceleration factor 3). This 
sequence was collected twice, one in the anterior-posterior fold-over 
direction and the other in the PA fold-over direction. The PA fold-over 
scan contained six diffusion directions, three at b = 0 s mm2 and three 
at b = 2,000 s mm−2, and was used primarily for susceptibility-weighted 
corrections. The anterior-posterior fold-over scan contained 105 dif-
fusion directions, five at b = 0 mm s−2, 51 at b = 1,000 mm s−2 and 49 
at b = 2,000 mm s−2. The total acquisition time for both sets of dMRI 
sequences was 7 min and 8 s.

General processing pipelines
Structural processing. For the ABCD, Cam-CAN, Oxford University 
Choroideremia & Stargardt’s Disease Dataset, and the Indiana Uni-
versity Acute Concussion datasets, the structural T1w and T2w (sMRI) 
images (if available) were preprocessed, including bias correction and 
alignment to the anterior commissure-posterior commissure plane, 
using the brainlife.io apps A273 (https://doi.org/10.25663/brainlife.
app.273) and A350 (https://doi.org/10.25663/brainlife.app.350), 
respectively. For PING data, no bias correction was performed but 
alignment to the anterior commissure-posterior commissure plane 
was performed using A99 (https://doi.org/10.25663/brainlife.app.99) 
and A116 (https://doi.org/10.25663/brainlife.app.116) for T1w and T2w 
data, respectively. For HCP data, this data was already provided. The 
structural T1-weighted images for each participant and dataset were 
then segmented into different tissue types using functionality provided 
by MRTrix3 (ref. 28) implemented as A239 (https://doi.org/10.25663/
brainlife.app.239). For a subset of datasets, this was performed within 
the diffusion tractography generation step using A319 (https://doi.
org/10.25663/brainlife.app.319). The gray- and white-matter interface 
mask was subsequently used as a seed mask for white matter tractogra-
phy. The processed structural T1w and T2w images were then used for 
segmentation and surface generation using the recon-all function from 
Freesurfer29 (A0; https://doi.org/10.25663/brainlife.app.0). Follow-
ing Freesurfer, representations of the cortical ‘midthickness’ surface 
were computed by spatially averaging the coordinates of the pial and 
white matter surfaces generated by Freesurfer using the wb_command 
-surface-cortex-layer function provided by Workbench command for 
the HCPTR, HCPs1200, ABCD, Cam-CAN, PING and Indiana University 
Acute Concussion datasets. These surfaces were used for cortical tis-
sue mapping analyses. Following Freesurfer and midthickness-surface 
generation, the 180 multimodal cortical nodes (hcp-mmp) atlas and 
the Yeo 17 (yeo17) atlas were mapped to the Freesurfer segmentation 
of each participant implemented as brainlife.io app A23 (https://doi.
org/10.25663/brainlife.app.23). These parcellations were used for 
subsequent cortical, subcortical and network analyses. In addition, 
measures for cortical thickness, surface area, volume and summaries 
of diffusion models of microstructure were estimated using A383 
(https://doi.org/10.25663/brainlife.app.383) and A389 (https://doi.
org/10.25663/brainlife.app.389). To estimate population receptive 
fields and visual field eccentricity properties in the cortical surface in 
the Oxford University Choroideremia & Stargardt’s Disease Dataset, 
the automated mapping algorithm developed by refs. 30,31 was imple-
mented using A187 (https://doi.org/10.25663/brainlife.app.187). To 
segment thalamic nuclei for optic radiation tracking, the automated 

thalamic nuclei segmentation algorithm provided by Freesurfer28 was 
implemented as A222 (https://doi.org/10.25663/brainlife.app.222). 
Finally, visual regions of interest (ROI) binned by eccentricity were 
then generated using AFNI software32 functions implemented in A414 
(https://doi.org/10.25663/brainlife.app.414). To assess the replicabil-
ity capabilities of the platform, an automated hippocampal nuclei 
segmentation app (A262; https://doi.org/10.25663/brainlife.app.262) 
was used to segment hippocampal subfields from participants within 
the UPENN-PMC dataset provided within the Automated Segmentation 
of Hippocampal Subfields atlas.

dMRI processing
Preprocessing and model fitting. For most of the analyses involv-
ing the HCP dataset, the minimally preprocessed dMRI images were 
used and thus no further preprocessing was performed. However, 
to assess the validity of the preprocessing pipeline, the unprocessed 
dMRI data from the HCP test dataset and dMRI images were preproc-
essed following the protocol outlined in ref. 33 using A68 (https://
doi.org/10.25663/brainlife.app.68). The same app was also used 
for preprocessing the dMRI images for the ABCD, Cam-CAN, PING, 
Oxford University Choroideremia & Stargardt’s Disease Dataset, 
the Indiana University Acute Concussion and HBN datasets. Specifi-
cally, dMRI images were denoised and cleaned from Gibbs ringing 
using functionality provided by MRTrix3 before being corrected 
for susceptibility, motion and eddy distortions and artifacts using 
FSL’s topup and eddy functions34,35. Eddy-current and motion cor-
rection was applied via the eddy_cuda8.0 with the replacement of 
outlier slices (that is, repol) command provided by FSL36–39. Follow-
ing these corrections, MRTrix3’s dwigradcheck functionality was 
used to check and correct for potential misaligned gradient vectors 
following topup and eddy40. Next, dMRI images were debiased using 
ANT’s n4 functionality41 and the background noise was cleaned using 
MrTrix3.0’s dwidenoise functionality42. Finally, the preprocessed 
dMRI images were registered to the structural (T1w) image using FSL’s 
epi_reg functionality43–45. Following preprocessing, brain masks for 
dMRI data using bet from FSL were implemented as A163 (https://doi.
org/10.25663/brainlife.app.163).

DTI, NODDI and q-sampling model fitting. Following preprocessing, 
the diffusion tensor imaging (DTI) model46 and the neurite orientation 
dispersion and density imaging (NODDI)47,48 models were subsequently 
fit to the preprocessed dMRI images for each participant using either 
A319 (https://doi.org/10.25663/brainlife.app.319) or A292 (https://
doi.org/10.25663/brainlife.app.292) for DTI model fitting and A365 
(https://doi.org/10.25663/brainlife.app.365) for NODDI fitting. Note, 
the NODDI model was only fit on the HCP, Cam-CAN, Oxford University 
Choroideremia & Stargardt’s Disease Dataset and the Indiana University 
Acute Concussion datasets. For those datasets, the NODDI model was 
fit using an intrinsic free diffusivity parameter (d∥) of 1.7 × 10−3 mm2 s−1 
for white matter tract and network analyses, and a d∥ of 1.1 × 10−3 mm2 s−1 
for cortical tissue mapping analyses, using AMICO’s implementation48 
as A365 (https://doi.org/10.25663/brainlife.app.365). The constrained 
spherical deconvolution49 model was then fit to the preprocessed dMRI 
data for each run across four spherical harmonic orders (that is, Lmax) 
parameters (2, 4, 6, 8) using functionality provided by MRTrix3 imple-
mented as brainlife.io app A238 (https://doi.org/10.25663/brainlife.
app.238). For the PING datasets, the constrained spherical deconvo-
lution model was fit using the same code found in A238 (https://doi.
org/10.25663/brainlife.app.238), but performed using the tractog-
raphy app A319 (https://doi.org/10.25663/brainlife.app.319). For the 
HBN dataset, the isotropic spin distribution function was obtained by 
reconstructing the diffusion MRI data with the generalized q-sampling 
imaging method50 using functionality provided by DSI-Studio51 (A423; 
https://doi.org/10.25663/brainlife.app.423). Quantitative anisotropy 
was then estimated from the isotropic spin distribution function.
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Tractography. Following model fitting, the fiber orientation distri-
bution functions for Lmax = 6 and Lmax = 8 were subsequently used to 
guide anatomically constrained probabilistic tractography52 using 
functions provided by MRTrix3 implemented as brainlife.io app A297 
(https://doi.org/10.25663/brainlife.app.297) or A319 (https://doi.
org/10.25663/brainlife.app.319). For the HCPTR, HCPs1200 and Oxford 
University Choroideremia & Stargardt’s Disease datasets, Lmax = 8 was 
used. For the ABCD and Cam-CAN datasets, Lmax = 6 was used. For the 
HCP, ABCD and Cam-CAN, datasets, a total of 3 million streamlines were 
generated. For all datasets, a step size of 0.2 mm was implemented. 
For the HCPTR, HCPs1200, ABCD and Cam-CAN datasets, minimum and 
maximum lengths of streamlines were set at 25 and 250 mm, respec-
tively, and a maximum angle of curvature of 35° was used. For the PING 
dataset, minimum and maximum lengths of streamlines were set at 
20 and 220 mm, respectively, and a maximum angle of curvature of 
35° was used.

Whiter matter segmentation and cleaning. Following tractography, 
61 major white matter tracts were segmented for each run using a cus-
tomized version of the white matter query language53 implemented 
as brainlife.io app A188 (https://doi.org/10.25663/brainlife.app.188). 
Outlier streamlines were subsequently removed using functionality 
provided by Vistasoft and implemented as brainlife.io app A195 (https://
doi.org/10.25663/brainlife.app.195). Following cleaning, tract profiles 
with 200 nodes were generated for all DTI and NODDI measures across 
the 61 tracts for each participant and test–retest condition using func-
tionality provided by Vistasoft and implemented as A361 (https://doi.
org/10.25663/brainlife.app.361). Macrostructural statistics, including 
average tract length, tract volume and streamline count were computed 
using functionality provided by Vistasoft implemented as A189 (https://
doi.org/10.25663/brainlife.app.189). Microstructural and macrostruc-
tural statistics were then compiled into a single data frame using A397 
(https://doi.org/10.25663/brainlife.app.397).

Segmentation of the optic radiation. To generate optic radiations seg-
mented by estimates of visual field eccentricity in the Oxford University 
Choroideremia & Stargardt’s Disease Dataset, ConTrack54 tracking was 
implemented as A252 (https://doi.org/10.25663/brainlife.app.252). 
Then, 500,000 sample streamlines were generated using a step size 
of 1 mm. Samples were then pruned using inclusion and exclusion 
waypoint ROI following methodologies outlined in refs. 19,55.

Segmentation of uncinate fasciculus. To assess the relationship 
between uncinate tract-average quantitative anisotropy, fractional 
anisotropy (FA) and early life stressors within two independent data-
sets (HBN, ABCD), the tract-average quantitative anisotropy for the 
left and right uncinate were computed from 42 participants from the 
HBN and the tract-average FA were computed from 1,107 participants 
from the ABCD dataset. For the HBN dataset, a full tractography 
segmentation pipeline was used to preprocess the dMRI data and seg-
ment the uncinate fasciculus using A423 (https://doi.org/10.25663/
brainlife.app.423). Automatic fiber tracking was then performed 
to segment the uncinate fasciculus using default parameters and 
templates from a population tractography atlas from the HCP56. 
A threshold of 16 mm as the maximum allowed threshold for the 
shortest streamline distance was then applied to remove spurious 
streamlines. The whole tract-average quantitative anisotropy was 
then estimated. To probe stress exposure within the HBN dataset, 
we used the NLES, a 22-item questionnaire in which participants 
were asked about the occurrence of different stressful life events. 
The tractography pipeline for the ABCD dataset has been described 
previously. The average FA for the left and right uncinate were esti-
mated using procedures described previously, and then compared to 
the participant’s life stressors behavioral measures by fitting a linear 
regression to the data.

Structural networks. Following tract segmentation, structural net-
works were generated using the multimodal 180 cortical node atlas 
and the tractograms for each participant using MRTrix3’s tck2con-
nectome (ref. 57) functionality implemented as A395 (https://doi.
org/10.25663/brainlife.app.395). Connectomes were generated by 
computing the number of streamlines intersecting each ROI pairing 
in the 180 cortical node parcellation. Multiple adjacency matrices 
were generated, including count, density (that is, the count divided 
by the node volume of the ROI pairs), length, length density (that is 
length divided by the volume of the ROI pairs) and average and average 
density axial diffusivity, fractional anisotropy, mean diffusivity, radial 
diffusivity, neurite density index, orientation dispersion index and 
isotropic volume fraction. Density matrices were generated using the 
-invnodevol option58. For non-count measures (length, axial diffusiv-
ity, fractional anisotropy, mean diffusivity, radial diffusivity, neurite 
density index, orientation dispersion index, isotropic volume fraction), 
the average measure across all streamlines connecting and ROI pair was 
computed using MRTrix3’s tck2scale functionality using the -precise 
option59 and the -scale_file option in tck2connectome. These matrices 
can be thought of as the ‘average measure’ adjacency matrices. These 
files were output as the ‘raw’ datatype and were converted to a conmat 
datatype using A393 (https://doi.org/10.25663/brainlife.app.393). 
Connectivity matrices were then converted into the ‘network’ datatype 
using functionality from Python functionality implemented as A335 
(https://doi.org/10.25663/brainlife.app.335).

Cortical and subcortical diffusion and morphometry mapping. For 
the PING, HCPTR, HCPs1200, Cam-CAN and Indiana University Acute Con-
cussion datasets, DTI and NODDI (if available) measures were mapped 
to each participant’s cortical white matter parcels following methods 
found in Fukutomi and colleagues18 using functions provided by Con-
nectome Workbench60 implemented as brainlife.io app A379 (https://
doi.org/10.25663/brainlife.app.379). A Gaussian smoothing kernel 
(full-width at half-maximum ~4 mm, σ = 5/3 mm) was applied along the 
axis normal to the midthickness surface, and DTI and NODDI measures 
were mapped using the wb_command -volume-to-surface-mapping 
function. Freesurfer was used to map the average DTI and NODDI 
measures within each parcel using functionality from Connectome 
Workbench using A389 (https://doi.org/10.25663/brainlife.app.389) 
and A483 (https://doi.org/10.25663/brainlife.app.483). Measures of 
volume, surface area and cortical thickness for each cortical parcel 
were computed using Freesurfer and A464 (https://doi.org/10.25663/
brainlife.app.464). Freesurfer was also used to generate parcel-average 
DTI and NODDI measures for the subcortical segmentation (aseg) from 
Freesurfer using A383 (https://doi.org/10.25663/brainlife.app.383). 
Measures of volume for each subcortical parcel were computed using 
Freesurfer and A272 (https://doi.org/10.25663/brainlife.app.272).

rs-fMRI preprocessing and functional connectivity matrix 
generation
For the HCPTR and Cam-CAN datasets, unprocessed resting-state 
functional MRI (rs-fMRI) datasets were preprocessed using fMRIPrep 
implemented as A160 (https://doi.org/10.25663/brainlife.app.160). 
Briefly, fMRIPrep does the following preprocessing steps. First, indi-
vidual images are aligned to a reference image for motion estimation 
and correction using mcflirt from FSL. Next, slice timing correction 
is performed in which all slices are realigned in time to the middle of 
each relaxation time using 3dTShift from AFNI. Spatial distortions 
are then corrected using field map estimations. Finally, the fMRI data 
is aligned to the structural T1w image for each participant. Default 
parameters provided by fMRIPrep were used. For a subset of anal-
yses involving the HCP test and retest datasets, the preprocessed 
rs-fMRI datasets provided by the HCP consortium were used. Fol-
lowing preprocessing via fMRIPrep for the volume data, connectiv-
ity matrices were generated using the Yeo17 parcellation and A369  
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(https://doi.org/10.25663/brainlife.app.369) and A532 (https://doi.
org/10.25663/brainlife.app.532). Within-network functional con-
nectivity for the 17 canonical resting-state networks was computed 
by computing the average functional connectivity values within all of 
the nodes belonging to a single network. These estimates were used 
for subsequent analyses.

rs-fMRI gradient processing
For the HCPTR and Cam-CAN datasets, unprocessed rs-fMRI data 
from the HCP Test and Cam-CAN datasets were preprocessed using 
fMRIPrep implemented as A160 (https://doi.org/10.25663/brainlife.
app.160). Within this app, the same preprocessing steps are under-
taken as in A160 (https://doi.org/10.25663/brainlife.app.160), except 
for an additional volume-to-surface mapping using mri_vol2surf from 
Freesurfer. The surface-based outputs were then used to compute gra-
dients following methodologies outlined in ref. 61 for each participant 
in the HCPs1200, HCPTR and Cam-CAN datasets using A574 (https://doi.
org/10.25663/brainlife.app.574) using diffusion embedding62 and 
functions provided by BrainSpace63. More specifically, connectiv-
ity matrices were computed from surface vertex values within each 
node of the Schaffer 1,000 parcellation64. Cosine similarity was then 
computed to create an affinity matrix to capture inter-area similarity. 
Dimensionality reduction is then used to identify the primary gradi-
ents. A normalized-angle kernel was used to create the affinity matrix, 
from which two primary components were identified. Gradients were 
then aligned across all participants using a Procrustes alignment and 
joined embedding procedure61. Values from the primary gradient and 
the cosine distance used to generate the affinity matrices were used 
for subsequent analyses.

MEG processing
For some analyses, raw resting-state-MEG time series data from the 
Cam-CAN dataset was filtered using a Maxwell filter implemented 
as A476 (https://doi.org/10.25663/brainlife.app.476) and median 
split using A529 (https://doi.org/10.25663/brainlife.app.529). For 
the remainder of the analyses, filtered data provided by the Cam-CAN 
dataset was used. For all MEG data, power-spectrum density profiles 
(PSD) were estimated using functionality provided by MNE-Python28,65 
implemented as A530 (https://doi.org/10.25663/brainlife.app.530). 
Following PSD estimation, peak alpha frequency was estimated using 
A531 (https://doi.org/10.25663/brainlife.app.531). Finally, PSD profiles 
were averaged across all nodes within each of the canonical lobes (fron-
tal, parietal, occipital, temporal) using A599 (https://doi.org/10.25663/
brainlife.app.599). Measures of PSD and peak alpha frequency were 
used for all subsequent analyses.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data derived and described in this paper are made available via 
the brainlife.io platform as ‘Publications’. User data agreements are 
required for some projects, like data from the HCP, Cam-CAN, PING, 
ABCD and HBN datasets. The Indiana University Acute Concussion and 
Oxford University Choroideremia & Stargardt’s Disease Datasets are 
part of ongoing research projects and will be made available at a later 
stage. All other datasets are made freely available via the brainlife.io 
platform. See Supplementary Table 6 for the brainlife.io/pubs.

Code availability
As part of the article, we are describing a total of nine platform com-
ponents. All components are made publicly available and open source 
under MIT License. All the software for the platform components is 
listed in Supplementary Table 1. In addition, we share the code used 

for the statistical analyses as Jupyter Notebooks (Supplementary 
Table 2). Finally, the Apps used and tested in this article are listed in 
Supplementary Table 3.
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Extended Data Fig. 1 | Platform Architecture. a. Map of the locations of critical 
hubs for brainlife.io. b. Map the locations of critical facets of this research, 
including project infrastructure (that is compute resources), collaborators, 
and data sources. As the United States and Europe are home to many of the 
infrastructural resources, collaborators, and data sources, more details for 
these regions are provided (insets). c. brainlife.io’s Amaretti links data archives, 
software libraries, and computing resources. Specifically, ‘Apps’ (containerized 

services defined on GitHub.com) are automatically matched with data stored 
in the ‘Warehouse’ with computing resources. Statistical analyses can be 
implemented using Jupyter Notebooks. d. brainlife.io provides efficient docking 
between data archives, processing apps, and compute resources via a centralized 
service. e. Apps use standardized Datatypes and allow ‘smart docking’ only with 
compatible data objects. App outputs can be docked by other Apps for further 
processing.
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Extended Data Fig. 2 | Platform Usage. a. Top left. Number of users submitting 
more than 10 jobs per month. Top middle. Number of projects over time. Top 
right. Number of Apps over time. Bottom left. Data storage across all Projects. 
Bottom middle. Compute hours across all Projects (data only available 6 months 
post project start). Bottom right. Lines of code in the top 50 most-used Apps.  

 b. Top left. User communities. Top right. App categories. Bottom left. Percent of 
total jobs launched with the software library installed (percentage for jobs of top 
50 most-used Apps). Bottom right. Datasets sources. c. Map of the locations of 
the users that created an account and accessed brainlife.io. This map is a proxy to 
the level of attention the platform achieved worldwide.
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Extended Data Fig. 3 | Data processing validity and reliability analysis. Top 
row (a): Validity measures derived using the HCP Test-Retest (HCPTR) data. Each 
dot corresponds to the ratio for a given subject between data preprocessed and 
provided by the HCP Consortium vs data preprocessed on brainlife.io in a given 
measure for a given structure. Pearson’s correlation (r), root mean squared error 
(rmse), and a linear fit between the test and retest results were calculated. Parcel 
volume (mm3). Tract-average fractional anisotropy (FA). Node-wise functional 
connectivity (FC)*. Primary gradient value derived from resting-state fMRI*. Peak 
frequency (Hz) in the alpha band derived from MEG. Data from magnetometer 
sensors are represented as squares, and data from gradiometer sensors are 
represented as circles. Dark colors represent data within ±1 standard deviation 
(SD. 50% opacity represents data within 1-2 SD. 25% opacity represents data 
outside 2 SD. *A representative 5% of data presented. Bottom row (b): Test-retest 

reliability measures derived from derivatives of the HCPTR dataset generated 
using brainlife.io. Each dot corresponds to the ratio between a test-retest subject 
and a given measure for a given structure. Pearson’s correlation (r), root mean 
squared error (rmse), and a linear fit between the test and retest results were 
calculated.Parcel volume (mm3). Tract-average fractional anisotropy (FA). 
Node-wise functional connectivity (FC)*. Primary gradient value derived from 
resting-state fMRI*. Peak frequency (Hz) in the alpha band derived from MEG 
using the Cambridge (Cam-CAN) dataset. Data from magnetometer sensors are 
represented as squares, and data from gradiometer sensors are represented as 
circles. Dark colors represent data within ±1 standard deviation (SD. 50% opacity 
represents data within 1-2 SD. 25% opacity represents data outside 2 SD. *A 
representative 5% of data presented.
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Extended Data Fig. 4 | Processing with brainlife.io is valid and test-retest 
reliability is high - Structural MRI. Top rows: Validity measures derived using 
the HCPTR data preprocessed and provided by the HCP Consortium compared to 
data preprocessed on brainlife.io. Each dot corresponds to the ratio for a given 
subject between data preprocessed and provided by the HCP Consortium vs data 
preprocessed on brainlife.io in a given measure for a given structure. Pearson’s 
correlation (r), root mean squared error (rmse), and a linear fit between the test 
and retest results were calculated and provided. a. Destrieux Parcel thickness 
(mm), surface area (mm2), and volume (mm3). b. HCP-mmp Parcel thickness 
(mm), surface area (mm2), and volume (mm3). Dark colors represent data within ± 
1 standard deviation. 50% opacity represents data within 1-2 standard deviations. 

25% opacity represents data outside 2 standard deviations. Bottom rows: 
Test-retest reliability measures derived from derivatives of the HCPTR dataset 
generated using brainlife.io. Each dot corresponds to the ratio between a test-
retest subject and a given measure for a given structure. Pearson’s correlation 
(r), root mean squared error (rmse), and a linear fit between the test and retest 
results were calculated and provided. c. Destrieux Parcel thickness (mm), surface 
area (mm2), and volume (mm3). d. HCP-mmp Parcel thickness (mm), surface 
area (mm2), and volume (mm3). Dark colors represent data within ± 1 standard 
deviation. 50% opacity represents data within 1-2 standard deviations. 25% 
opacity represents data outside 2 standard deviations.
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Extended Data Fig. 5 | Processing with brainlife.io is valid, reliable, and 
reproducible. Top row: Validity measures derived using the HCPTR data 
preprocessed and provided by the HCP Consortium compared to data 
preprocessed on brainlife.io. Each dot corresponds to the ratio for a given 
subject between data preprocessed and provided by the HCP Consortium vs data 
preprocessed on brainlife.io in a given measure for a given structure. Pearson’s 
correlation (r), root mean squared error (rmse), and a linear fit between the test 
and retest results were calculated and provided. v. Tract average AD, FA, MD, 
and RD. Dark colors represent data within ±1 standard deviation. 50% opacity 
represents data within 1-2 standard deviations. 25% opacity represents data 
outside 2 standard deviations. Bottom row: Test-retest reliability measures 
derived from derivatives of the HCPTR dataset generated using brainlife.io. Each 
dot corresponds to the ratio between a test-retest subject and a given measure 

for a given structure. Pearson’s correlation (r), root mean squared error (rmse), 
and a linear fit between the test and retest results were calculated and provided. 
w. Tract average AD, FA, MD, and RD. Dark colors represent data within ±1 
standard deviation. 50% opacity represents data within 1-2 standard deviations. 
25% opacity represents data outside 2 standard deviations. c. Computational 
reproducibility values derived by repeating runs of brainlife.io Apps using the 
HCPTR dataset and the CAN dataset. Each dot corresponds to the ratio for a given 
subject between repeated runs of each App for a given structure. Pearson’s 
correlation (r), root mean squared error (rmse), and a linear fit between the 
repeated runs was calculated. Destrieux Atlas Parcels volume (mm3). Tract-
average fractional anisotropy (FA). Node-average functional connectivity (FC). 
Primary gradient values derived from resting state fMRI. Peak alpha frequency 
(Hz) in the alpha band derived from MEG.
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Extended Data Fig. 6 | Reference datasets for quality assurance. Example 
workflow for building normative reference ranges for multiple derived 
statistical products (cortical parcel volume, white matter tract profilometry, 
within-network functional connectivity, and power-spectrum density (PSD)). 
a. Cortical volumes of the left hippocampus from HCP participants. Red dots 
indicate outlier data points. b. Average fractional anisotropy (FA) profiles (blue 
line) plotted with two standard deviations (shaded regions). Red lines indicate 
outlier profiles. c. Within-network functional connectivity for the nodes within 
the Default-A network using the Yeo17 atlas. Red dots indicate outlier data 

points. d. Average PSD from occipital channels using magnetometer sensors 
from Cam-CAN participants with one standard deviation (shaded regions). 
Red lines indicate outlier participants. Peak alpha frequency distribution was 
also computed, and outliers were detected (inset). e. Normative reference 
distributions for each derived statistical product across the PING (purple), HCP 
(blue), and Cam-CAN (orange) datasets. These distributions have had outliers 
removed. An example of the brainlife.io visualization for reference datasets can 
be found in Fig. S5. Data are presented as mean values ± SEM.
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Extended Data Fig. 7 | Lifelong brain maturation estimated across datasets. 
Relationship between subject age and a. Right hippocampal volume, b. Right 
inferior longitudinal fasciculus (ILF) fractional anisotropy (FA), c. maximum node 
degree of density network derived using the hcp-mmp atlas, d*. Within-network 
average functional connectivity (FC) derived using the Yeo17 atlas, e*. Functional 
gradient distance for visual resting state network derived from the Yeo17 atlas, 
and f. Peak frequency in the alpha band derived from magnetometer (squares) 
and gradiometers (circles) from MEG data. These analyses include subjects from 

the PING (purple), HCPs1200 (green), and Cam-CAN (yellow) datasets. Linear 
regressions were fit to each dataset, and a quadratic regression was fit to the 
entire dataset (blue). * All points in e, and f are presented. See Fig. 2a. Relationship 
between age of subject and g. Cortical fractional anisotropy (FA) of the left V1, 
h. Within-network average functional connectivity (FC) from the Yeo17 Default 
Mode - A network. These analyses include subjects from the PING (purple), 
HCPs1200 (green), and CAN (yellow) datasets. Linear regressions were fit to each 
dataset, and a quadratic regression was fit to the entire dataset (blue).
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Extended Data Fig. 8 | Replication of previous studies using brainlife.io.  
a. Average cortical hcp-mmp parcel thickness (Nstruc = 322) compared to parcel 
orientation dispersion index (ODI) from the NODDI model mapped to the 
cortical surface (inset) of the HCPS1200 dataset (Nsub = 1,043) and Cam-CAN 
(Nsub = 492) dataset compared to the parcel-average cortical thickness.  
b. Receiver operator curves (ROC) comparing the performance of segmentation 
of the Right ILF using two automated segmentation methods (LAP: blue, NN_DR_
MAM: green) in a subset of the HCPS1200 dataset (Nsub = 15). Dice coefficients 
between manual and automated segmentation of the hippocampus using AHSS 

method in UPENN dataset. c. Stressful life events obtained from Negative Life 
Events Schedule (NLES) survey from Healthy Brain Network participants (Nsub 
= 42) compared to Uncinate-average normalized Quantitative Anisotropy (QA). 
Mean linear regression (blue line) fits and standard deviation (shaded blue). Early 
life stress was obtained from multiple surveys collected from ABCD participants 
(Nsub = 1,107) compared to Uncinate-average Fractional Anisotropy (FA). Linear 
regression (green line) fits the data with standard deviation (shaded green). See 
Fig. 2b,c.
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Extended Data Table 1 | Platform microservices

Table with list of all platform services, name, scope, service URL (pointer to brainlife page if available as direct URL) and github URL for code.
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