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A dual fusion recognition model 
for sleep posture based on air 
mattress pressure detection
Zebo Li , Yipeng Zhou  & Guoping Zhou *

In order to solve the difficult portability problem of traditional non-invasive sleeping posture 
recognition algorithms arising from the production cost and computational cost, this paper proposes 
a sleeping posture recognition model focusing on human body structural feature extraction and 
integration of feature space and algorithms based on a specific air-spring mattress structure, called 
SPR-DE (SPR-DE is the Sleep Posture Recognition-Data Ensemble acronym form). The model 
combines SMR (SMR stands for Principle of Spearman Maximal Relevance) with horizontal and vertical 
division based on the barometric pressure signals in the human body’s backbone region to reconstruct 
the raw pressure data into strongly correlated non-image features of the sleep postures in different 
parts and directions and construct the feature set. Finally, the recognit-ion of the two sleep postures 
is accomplished using the AdaBoost-SVM integrated classifier. SPR-DE is compared with the base 
and integrated classifiers to verify its performance. The experimental results show that the amount 
of significant features helps the algorithm to classify different sleeping patterns more accurately, 
and the f1 score of the SPR-DE model determined by the comparison experiments is 0.998, and the 
accuracy can reach 99.9%. Compared with other models, the accuracy is improved by 2.9% ~ 7.7%, 
and the f1-score is improved by 0.029 ~ 0.076. Therefore, it is concluded that the SMR feature 
extraction strategy in the SPR-DE model and the AdaBoost-SVM can achieve high accuracy and strong 
robustness in the task of sleep posture recognition in a small area, low-density air-pressure mattress, 
taking into account the comfort of the mattress structural design and the sleep posture recognition, 
integrated with the mattress adaptive adjustment system.

Keywords  Sleep posture recognition, Ensemble learning, Spearman correlation coefficient analysis, 
AdaBoost-SVM, Mattress pressure detection

High-quality sleep is essential for human health1. The sleep process is also a process by which a person recovers 
energy, consolidates memories, and promotes physical health2. Sleep posture directly affects the quality and 
depth of sleep. Improper sleep posture may lead to body pain, breathing obstruction, or even long-term health 
problems, for example, sleeping on the back may exacerbate sleep apnea syndrome and lead to gastroesophageal 
reflux disease (GRED)3, and prolonged side-lying sleeping may lead to shoulder pain or exacerbate pre-existing 
shoulder problems4. Modern monitoring devices and apps, however, can track changes in sleep posture in real-
time, analyze sleep patterns, and provide targeted recommendations and adjustments. For example, sleeping 
on the side can alleviate sleep apnea syndrome and reduce acid reflux. In the supine sleep posture if proper 
support is provided for the cervical spine, back, lumbar spine, and hips can relieve pressure or pain in the neck 
and lower back5. Proper sleep posture monitoring and adjustment can also help some specific groups of people. 
For example, during the postoperative recovery period according to the patient’s condition, some specific sleep 
posture change adjustment strategies are used by monitoring their sleep posture in real-time. For pregnant 
women, real-time monitoring of the sleep posture and making appropriate adjustments, adopting the fetal sleep 
posture, and providing appropriate support can relieve low back pain and ensure fetal health at the same time.

During sleep, it is advantageous to recognize sleep postures based on pressure perception in the main body 
regions. In particular, in terms of human biomechanics6–8, the shoulders, back, and hips serve as the main sup-
port points of the body6, and their positions and corresponding pressure distributions contribute to the cur-
vature of the spine and the overall stability of the sleep posture7,8. Sleep physiology studies9–12 have shown that 
shoulder-hip pressures and spinal pressures can provide information about whether an individual maintains 
a sleep posture that reduces body stress and supports the natural curve of the spine10,11, which is critical for 
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understanding sleep quality and preventing sleep-related disorders12. This has led to theoretical and practical 
research support for considering shoulder-hip eigenquantities and spine eigenquantities as key eigenquantities 
in sleep position recognition.

The key to solving these problems lies in proposing a feature extraction algorithm, and sleeping pattern rec-
ognition model that can target the integration of sleeping pattern recognition and mattress adaptive adjustment 
system for air mattress structure. The effective feature quantity is utilized to help the algorithm classify different 
sleeping patterns more accurately, thus improving the performance of the recognition system.

Specifically, the sleep posture recognition model (1) is accurate in its ability to analyze pressure distribution, 
and the model is able to accurately map the pressure distribution pattern of the human body on the mattress. This 
includes identifying the location and pressure magnitude of the body’s major pressure areas and the alignment 
of the spine. (2) Application of ergonomic principles to assist in feature extraction to ensure that the extracted 
features reflect the biomechanical and pressure distribution characteristics of the human body in different sleep 
postures. (3) Be highly sensitive to the spatial relationships between body parts and the dynamic properties of 
these relationships as they change with sleep posture, including the differences in pressure on the mattress from 
different parts of the body (4) Identify changes in pressure in different directions, and understand how these 
changes characterize different sleep postures and their impact on sleep comfort and support needs.

Combining the highly focused feature extraction capability of the model and the sensitivity to spatial relation-
ships and variations, the research in this paper addresses the problem of sleep posture recognition in the context 
of air pressure mattress applications and proposes a dual-fusion recognition algorithm for sleep posture based 
on air pressure detection of mattresses-the SPR-DE algorithm.

The contribution of this paper has three main parts:

(1) SMR (Principle of Spearman Maximal Relevance) feature extraction strategy is proposed, the subset of 
salient features obtained by SMR contains features related to sleep postures, and the non-image data can be 
used as input to the sleep posture recognition model. Among them, the horizontal and vertical division strat-
egy focuses on obtaining characteristic quantities about the body’s main support areas (shoulders, hips) and 
spine status, which are key indicators for assessing sleep comfort and health. It is beneficial for the system to 
more accurately determine the sleep posture and the areas that need to be adjusted in order to provide the best 
support, such as adjusting firmness and matching pressure distribution for specific body parts; compared to 
image data, the barometric pressure data used for model input is easier to obtain from the built-in sensors of 
the mattress, which simplifies the system’s hardware requirements and reduces the intrusiveness of privacy; 
and the computational cost is lower for the non-image data, especially for the transversal and longitudinal 
division feature volumes, which can be used for the assessment of the sleep comfort and health. volumes, 
the lower computational cost enables faster data processing, which means that the system can be adjusted 
in real-time without compromising performance, improving the user experience. This model is easier to 
integrate into a variety of mattress systems due to the reduced data processing requirements and simplified 
hardware requirements (no need for complex image acquisition and processing equipment). This makes it 
easier to balance mattress comfort with the portability of sleep posture recognition in designing the sleep 
posture recognition system.
(2) The horizontal and vertical division approach used in the SMR strategy reveals that the feature vectors of 
the shoulder region and hip region in the SBWH feature subset and the feature vectors related to the spine line 
in the LMR feature subset are the crucial features. Sleep posture changes can optimize pressure distribution 
across the body, reduce the risk of pain or injury from pressure concentrations, excessive stress, or strain, and 
maintain the body’s ability to maintain balance in both dynamic and static states. From an ergonomics and 
biomechanics point of view, shoulder-hip characteristic quantities (e.g., pressure distribution at the point of 
contact with the bed surface) provide important information for assessing whether a sleep posture is condu-
cive to reducing pressure concentrations and improving blood circulation. The S-curve structure of the human 
spine, which includes anterior convexity of the cervical spine, posterior convexity of the thoracic spine, and 
anterior convexity of the lumbar spine, makes spinal characteristic quantities (e.g., pressure distributions of 
the spinal curves) critical for identifying healthy and unhealthy sleep postures. The characteristic quantities 
of the shoulder-hip and spine provided by this division extraction approach provide a basis for evaluating not 
only the effects of sleep postures on the stress distribution in various parts of the body but also the effects of 
sleep postures on maintaining stability and preventing over-twisting or over-extension. This in turn improves 
the accuracy of the model classification.
(3) The classification model adopts the AdaBoost classification algorithm under the Boosting framework, 
which is used in combination with the weak classifier SVM to train the weak classifier iteratively, adjusting 
the sample weights according to the iterative errors in each round, and enhancing the learning of difficult-to-
classify samples. When dealing with different types of feature information, the weights of individual features 
are adaptively adjusted; the strong ability to deal with nonlinear features in SVM is most critical to naturally 
differentiate the number of features in which divisions are used, and AdaBoost-SVM introduces a regulariza-
tion term while increasing the complexity of the model, helping to control the overfitting, especially for the 
horizontal and vertical division features that contain a large amount of detailed information, which helps 
to improve the accuracy and generalization ability. This not only better matches the SMR feature extraction 
strategy, but also greatly improves the performance indexes of the classification model.

The remainder of the paper is organized as follows: Chapter 2 reviews related work, and Chapter 3 describes 
the materials and methods, including the division of the air bed and the introduction of the embedded system 
and the research. Chapter 4 describes the framework of the model, including data preprocessing, SMR feature 
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extraction strategy, construction of feature subsets, and AdaBoost-SVM classification algorithm. Chapter 5 
includes data preparation and experimental results, and finally, Chapter 6 gives a discussion and Chapter 7 
gives conclusions and future work.

Related work
The current sleep posture recognition and adjustment system is realized by different hardware and sensors, 
which not only increases the number of sensors and production cost, but also increases the complexity of system 
design and the difficulty of data computation. The sleep posture recognition model for air beds proposed in13 still 
uses image data as input, which is computationally intensive and not very portable. In contrast, the design of air 
springs14, as well as the design of the air bed structure15 makes the integration of sleep posture recognition and 
mattress adaptive adjustment system possible. Currently, the mainstream detection methods for invasive16 and 
non-invasive17 sleep posture recognition are categorized into three main types: wearable device-based detection 
methods, vision-based detection methods, and pressure detection-based methods.

All of these sleep posture recognition techniques aim to extract features and classify sleep postures from the 
relevant data collected by hardware devices.

Wearable device-based monitoring methods sense limb movements via accelerometers18,19 and typically 
employ wrist-worn sleep trackers to collect sleep data. Worn on the wrist by the subject, although they are pow-
erful devices with built-in sensors, they are both expensive and invasive and can cause discomfort to the user.

Vision-based monitoring methods use depth sensors20 or fusion cameras21 22. Sleep posture recognition is 
achieved through global features from depth images. Although vision-based methods are characterized by low 
cost and easy maintenance, they require high light conditions without occlusion and can involve issues of user 
privacy. In the past these methods, by using bone detection and differential information or by wireless solutions 
that depend on special devices, but it is difficult to achieve accurate pose recognition because the use of bedding 
and the shooting conditions have a significant effect on the accuracy. In recent years, methods using radar sen-
sors have also been developed23. Examples include traditional detection techniques (TDT)24, traditional machine 
learning (TML)25,26 , and deep neural networks (DNN)27,28 . Although more stable, the sleep conversion algorithm 
also has the limitation of lower accuracy.

Distinguishing from the above methods, pressure-based detection methods are relatively more comfortable 
and natural, which usually use pressure pads embedded with pressure sensors to collect data and machine learn-
ing for sleep posture recognition. The number of sensors used in these methods varies29, four sensors around 
the bed and the recognition accuracy is related to the position of the person. Pressure sensors in30 are only 60 
but need to be combined with a vision approach. Both of these methods suffer from poor recognition accuracy 
due to the low density of pressure sensors. Conversely, there have been studies that have used a large number of 
pressure sensors to obtain more localized details of the pressure distribution in the lumbar and hip31, using 1728 
pressure sensors to localize the human limbs and 2048 in32. The pressure pads used in these methods are very 
large and require the use of a very large number of pressure sensors, leading to high computational complexity 
in the application of the system, and some of the sensors are expensive to produce, all of which create difficulties 
in the portability of the system. Kim placed a smart pad consisting of 128 FSR sensors between the mattress and 
the bed sheet for pressure measurement and proposed a sleep posture recognition algorithm based on the tier-1 
model that uses only the three main parts of the upper body, shoulders, and hips to determine the sleep posture33. 
The average recognition accuracy was 87.9%. Although it was able to accurately recognize sleep postures based on 
the main parts of the body using a small number of FSR sensors, the recognition time was around 1 min. Matar 
et al. used a hardware implementation of a 27 × 6 FSR sensor array34, which converts the collected pressure data 
into image data and combines it with an ANN to perform classification, the sleep posture recognition system 
was able to reduce the data storage requirements and computation, and the The recognition accuracy can reach 
97.6%. However, the processing of sleep posture recognition is too slow. Hu proposed a smart bed sheet based 
on an array of 1024 pressure sensors composed of conductive fabrics and wires35, which uses digital-to-analog 
conversion for data collection and CNN to recognize the sleep posture, and the system recognition accuracy 
can reach 91.24%, and the real-time processing speed can reach 434us/frame. Although these methods reduce 
the computational complexity, and production cost when the system is applied; however, these smart mattresses 
themselves can only be enhanced in recognizing sleep postures, and their design structure cannot be integrated 
with recognition and adjustment.

Second, pressure-based detection methods usually need to first convert pressure data into pressure images 
and perform feature extraction20. extracted the hidden sleeping features in ROI pressure images by CNN con-
volutional neural network21. Extracted sleeping features from flexible pressure sensor array data via ResNet’s 
algorithmic framework22. Optimal separation of the maximum boundary hyperplane is achieved by calculating 
the Euclidean distance between features in the high-dimensional space of RSS trajectories via SVM and K-nearest 
neighbor to extract the optimal features in the embodied RSS trajectories23. Extract the features of different 
parts of the pressure through the coding layer of RNN and CNN-based coding layer24. extracted features by 
combining weighted 2D shapes of pressure shapes with EMD and Euclidean distance matching. These methods 
have the following drawbacks: 1. The feature inputs used are relatively homogeneous and mostly based on local 
features and personalized training, 2. The pressure map metadata used needs to be preprocessed in a way that 
some valuable features are omitted.

The accuracy of sleep posture recognition based on pressure detection is also related to the selection of clas-
sification algorithms25. found that the recognition accuracy of KNN in static sleep postures can reach 98% and 
is not easily affected by changes in feature space26. utilized SVM binary classifier can reach 93.6% accuracy and 
can avoid overfitting problems. However, when the dataset changes, the accuracy of the SVM classifier has a 
wide range of changes27. used a Bayesian classifier to estimate the likelihood of continuous poses, which has the 
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highest classification accuracy of 91.5% when the Bayesian probability coefficient reaches 0.7, and explored the 
possibility of a small number of sensors to achieve the recognition of sleep postures, eliminating the weighting 
effect and the bias between different sensor types. The classification algorithms used in these methods, while 
capable of achieving high recognition accuracy on the training set, have poor generalization performance and 
a wide range of variation in sleep posture recognition accuracy when the dataset contains noise and outliers.

Although many studies have made important theoretical progress36–43. However, there are still some challenges 
that need to be addressed in the field of integrating sleep posture recognition and adjustment in home mattresses, 
(1) Due to the information redundancy of the data and the ambiguity of the feature space, the pressure image, 
when used as a model input, does not guarantee an accurate sleep posture classification result while reducing the 
number of pressure sensors36–41. (2) The current sleep posture recognition model only obtains the key features 
of sleep posture recognition from pressure data, but not based on the global starting point that the sleep pos-
ture recognition and the adaptive adjustment system of the mattress are closely synergized, which requires the 
algorithm to be able to provide the number of features that can accurately guide the mattress on how to adjust 
to a specific sleep posture. (3) For air spring mattresses, a suitable sleep posture recognition model is needed to 
process the air pressure sensor data and make accurate sleep posture recognition. Therefore, this study aims to 
propose a sleep posture recognition model based on air-pressure mattresses that feature the human trunk region.

Materials and methods
Air pressure mattress division
Considering the need to more accurately match the support needs of different parts of the human body with a 
small number of sensors, to improve the pressure distribution around the spine on the mattress, and to promote 
the retention of the natural curves of the spine, the air mattresses in this study are divided into the head, torso, 
legs and feet, and based on a combination of the principles of human ergonomics and the need for sleep comfort, 
as well as the accuracy and sensitivity of the recognition of the sleep postures. Figure 1 demonstrates the mat-
tress division diagram. The head, although light in weight, requires proper support to maintain the comfort and 
health of the cervical spine. The torso section contains important organs and major body mass, so a larger area 
is allocated to provide adequate support and reduce the pressure on the back and lumbar region; the legs and 
feet, although they also need support requirements are not as high as the torso section, so the allocation ratio is 
slightly lower than that of the torso. While the larger trunk area reflects the influence of the center weight por-
tion of the body on the mattress, the head legs, and feet provide additional information about changes in body 

Figure 1.   Diagram of mattress partitioning.
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posture. Therefore, the specific zoning of the air mattress is 4× 11 for the head, 11× 11  for the trunk, and 9× 11  
for the legs and feet, aiming to provide optimal support and comfort for the sleeper, bringing a more comfortable 
and healthy sleeping experience, and enabling the designer to provide more precise and detailed data on sleep 
postures, improving the accuracy of sleep posture recognition.

Embedded system structure
Figure 2 demonstrates the SPR-DE-based data acquisition system for sleep posture recognition. The system 
consists of three components: an array of 11× 24  barometric pressure sensors modified by air springs, a data 
sampling unit, and a host computer. A master–slave control method was used. Other sensors on the circuit board 
can measure the air pressure in each branch when the corresponding solenoid valve is on. The pressure signal is 
collected by the air pressure sensors and sent back to the central control unit, which accepts and processes the 
signal to control the air pump and solenoid valve.

Figure 3 shows the composition of the air mattress bed and the hardware circuit version, the mattress system 
control box placed at the end of the mattress. In the upper layer of air springs select latex mattress, in order to 
ensure that the air tube can be smooth and will not be extruded under the circumstances of deformation, the 
selection of the diameter of 3 mm air tube, all air springs air circuit are connected to the air tube from the air 
springs below the sponge layer through the control box on the shunt interface connected to the control box.

In order to reduce the number of sensors and solenoid valves, the 121 air springs in the trunk are all inde-
pendent airlines, and the rest are connected in series. The air spring air paths are connected to the shunt through 
solenoid valves, and each shunt is equipped with an air pump and air pressure sensor. Since all air paths are 
connected to the shunt, the system only needs to open the corresponding solenoid valves when it collects air 
springs’ air pressure or carries out air pressure regulation. The core of the host board adopts the STM32F103RCT6 
chip, and the core of the slave board adopts the STC15F2K60S2 chip. It mainly includes modules of air pressure 
acquisition, data communication, data storage, air pump drive, and solenoid valve control.

Figure 4 gives the connection of the air spring’s with the solenoid valve, air pump, air pressure sensor, where 
the red color represents the air pressure data signal direction and the green signal represents the air pressure 
regulation signal direction. The air pressure sensor is model RSM17100KP100. The module contains differen-
tial amplification, automatic calibration, temperature compensation and other circuits, with the advantages of 

Figure 2.   SPR-DE-based data acquisition system for sleep posture recognition.

Figure 3.   Physical map of the air spring mattress and embedded system (a) Air spring mattress (b) 
subordinative control board.
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small size, fast response and strong anti-interference ability. Fa0520F miniature solenoid valves are selected, 
respectively, the straight-through valve and two-position three-way solenoid valve, which has the advantages of 
small size, low power consumption and so on. As the solenoid valve will produce heat when working for a long 
time, and only need to be opened when the air spring air pressure collection and regulation, so the selection of 
normally closed solenoid valves, open at the moment of need, normally closed at all times, reducing the overall 
power consumption of the mattress. Among them, the straight-through valve is used for the connection between 
the air spring and the shunt, and the two-position three-way valve is used for the quick deflation of the air spring. 
The air pump adopts ZR370-01PM miniature inflatable pump, which has the advantages of compact size, low 
noise, and can run continuously for 24 h.

Research process
Figure 5 shows the specific research flow of this paper, the research of the sleep recognition classification model 
SPR-DE includes four parts: data preprocessing, feature extraction, training of the integrated algorithm, and 
comparison and validation of the algorithm. Data preprocessing part of the threshold filtering and elimination 
of neighborhood noise effects to eliminate errors caused by the barometric pressure sensor as well as redundant 
information in the pressure data, where Z is the original barometric pressure data matrix after preprocessing to 
get l rows and m columns of the barometric pressure feature matrix. Pressure data and reconstructs the feature 
subset of the classification algorithm, and the effective feature subset can be more accurate for classification, 
in which the salient feature subset T is the distribution of the barometric pressure feature matrix Z in the low-
dimensional space after sorting according to the principle of maximum rank correlation. The SBWH (shoulder, 
back, waist, hip) feature subset is the horizontal boundary feature subset obtained by reconstructing the salient 
feature subset T according to the distribution of the human torso structure and the SMR principle; the LMR 
feature subset is the longitudinal boundary feature subset obtained by reconstructing the salient feature subset T 
according to the different sleep postures and the SMR principle; and the SE feature set is the fusion of the SBWH 
feature subset with the LMR (Left, Middle, Right) feature subset, which is also the input of the classification algo-
rithm. The integration algorithm adopts the algorithmic framework of Adaboost, with SVM as the base classifier, 
and finally, tenfold as well as LOOCV cross-validation are used to compare different classification algorithms 
as well as the integration framework, to validate the performance capability of the SPR-DE classification model 
for sleep posture recognition.

Ethics approval and consent to participate
This study and included experimental procedures were approved by the committee of Nanjing Forestry Uni-
versity. All experiments were conducted in strict accordance with the institutional guidelines and regulations 

Figure 4.   Gas springs retrofitted with gas pressure sensors.
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for care. All experimental protocols in this study were approved by the ethics committee of Nanjing Forestry 
University. We certify that the study was performed in accordance with the 1964 declaration of HELSINKI and 
later amendments. Written informed consent was obtained from all the participants prior to the enrollment of 
this study.

Sleep posture recognition model
Data and preprocessing
In the data preprocessing stage, to reduce the noise due to occasional malfunctioning of the barometric sensor. 
Threshold Filtering is used to reduce the system error:

Figure 5.   Schematic diagram of the SPR-DE study process.
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where pi,j represent original barometric pressure sensor data, 1 ≤ i ≤ 11 , 1 ≤ j ≤ 11.
Meanwhile, when a subject lies down, the air spring in contact with the body is squeezed, but some of the air 

spring that is not in contact with the body also shifts its position. Neighborhood filtering is applied to remove 
redundant information:

where fi is the local maxima in each row of air pressure data.
Figure 6 shows the pressure data before and after preprocessing in the supine posture of the subject. After 

removing some redundant information, the information presented in the feature space of the pressure data is 
clearer, which is conducive to more accurate feature extraction.

Feature extraction
Some pressure values of each part of the mattress vary depending on the structure of the human body and the 
sleep posture. 121 feature quantities in each sample are inconsistent with the relevance of sleep posture recogni-
tion. The feature dimensions are single, and the information is redundant. Before the classification training for 
sleep posture recognition, feature dimensionality reduction is needed for the air pressure feature space after 
preprocessing.

Figure 7 shows the flowchart of the feature extraction strategy. Based on the human body structure and the 
different sleep postures. It is clear that the SMR will be explained in detail later in this section. With horizontal 
and vertical division, the SBWH (Shoulder, Back, Waist, Hip) feature subset and the LMR (Left, Middle, Right) 
feature subset are constructed, which finally are merged and fused into the SE (Sleep Ensemble) feature set, used 
as the classifier’s input.

The SBWH feature subset and the LMR feature subset can eliminate redundant features in the row and column 
vectors in the air pressure feature space and supplement the missing information of the column and row vectors 
in each other. SE feature set, the optimal feature set, adds the number of features of different dimensions based 
on deleting redundant features, which helps improve the accuracy.

Principle of spearman maximal relevance (SMR)
(1) Calculate the ranks of all data in the preprocessed barometric pressure data. The elements in the barometric 
pressure feature matrix Z are converted into two column vectors: X and Y  , respectively, corresponding to the 
sum of the elements xi , yi(i ∈ {0, 1, ...,N}) and are converted into the rankings in the respective column vectors 
in ascending order from smallest to largest, as and, which ultimately constitutes the sum of the respective cor-
responding column vectors R(X) , R(Y).

The number of ranks of all data in the preprocessed barometric pressure data is calculated. The elements 
in the barometric pressure feature matrix are converted into two column vectors: X and Y  , respectively, corre-
sponding to the sum of the elements, and converted into the ranks R(xi),R(yi) in the respective column vectors 

(1)pi,j =

{

pi,j pi,j ≥ Thre
0 otherwise

(2)Thre =

∑11
i=1

∑11
j=1 pi,j

121

(3)pi,j =

{

pi,j pi,j ≥ NThre
0 otherwise

(4)NThre =
3

4
∗min

{

fi
}

Figure 6.   Schematic diagram of air pressure data before and after preprocessing.
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in ascending order from smallest to largest, as and, which ultimately constitutes the sum of the respective cor-
responding column vectors.

Where N is the number of elements of the air pressure feature matrix for each sample, N ≤ 120.
(2) Calculate the correlation coefficient between the sums of the corresponding elements R(X) and R(Y) in 

two column vectors according to Eq. (5):

where, R(X) and R(Y) denote the mean values of rank R(X) and R(Y) , R(X) = 1
N

∑N
i=1R(xi) , R(Y) =

1
N

∑N
i=1R(yi) 

respectively. N is the number of elements of the air pressure feature matrix for each sample, N ≤ 120.
From Eq. (5), it can be seen that the translation and scaling of X and Y  does not affect the calculation of 

the correlation coefficient, so after normalization of R(X) and R(Y) , the equation for the Spearman correlation 
coefficient can be transformed into:

In this way, in order to screen out the significant features with maximum rank correlation in each region 
without changing the rank characteristics after the standardization process of R(X) and R(Y) , this paper con-
verts the optimal solution of solving the objective function 1(8) under the original constraint 1(7) to the feature 
decomposition of the maximum rank correlation matrix (MRR matrix) R(X)TR(Y)R(Y)TR(X) by constructing 

(5)ρ =

∑N
i=1

[

R(xi)− R(X)
][

R
(

yi
)

− R(Y)
]

√

∑N
i=1[R(xi)− R(X)]2

∑N
i=1[R

(

yi
)

− R(Y)]2

(6)ρ = Cov
[

R(xi),R
(

yj
)]

= R(X)R(Y)

Figure 7.   Flowchart of feature extraction.
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the Lagrangian function (9). The larger the eigenvalue is, the more suitable the corresponding eigenvector is as 
the solution vector of the optimization objective function, i.e., the number of significant features corresponding 
to each region.

Constraint 1 is:

The objective function 1 is:

Constructing a Lagrangian function:

Constraint 2 is:

The objective function 2 is:

In the process of constructing the salient feature subset T , the feature values and the corresponding feature 
vectors are sorted according to the cumulative contribution in ascending order, discarding the smaller feature 
values by setting a threshold, and the feature vectors corresponding to the screened feature values are utilized 
for feature extraction from Z . Then all the selected αi constitutes the load matrix P = [α1,α2, ...,αi] . According 
to the load matrix P , the salient feature subset T is obtained:

In optimizing the pressure features, the distribution of the salient feature subset in different sleep postures 
shows a certain regularity. For the longitudinal distribution, the pressure feature values are mainly along the 
spinal line; for the horizontal distribution, the pressure feature values are mainly in the four areas: shoulder, back, 
waist, and hips area. Therefore, Sub Sec. “Construction of SBWH (shoulder, back, waist, hip) feature subset” and 
“Construction of LMR (Left、Middle、Right) feature subset” will further investigate the feature sets mainly 
concentrated in the critical regions and construct the SBWH and LMR feature subsets according to the horizontal 
and longitudinal division strategies. Figure 8 demonstrates the distribution of the pressure eigenvalues on the 
mattress and the horizontal and longitudinal division.

Construction of SBWH (shoulder, back, waist, hip) feature subset
The process of constructing the SBWH feature subset is the process of reconstructing the salient feature subset 
T . According to the distribution of the human torso structure, the salient feature subset is laterally sliced into 
four parts: shoulder feature matrix T0 , back feature matrix T1 , waist feature matrix T2 , and hip feature matrix 
T3 . Finally, the horizontal boundary feature subset, filtered according to SMR, is reconstructed into a horizontal 
boundary feature subset together with the lateral boundary ratio feature subset obtained by feature enhancement. 
The horizontal boundary ratio feature subset is reconstructed as the SBWH feature subset.

For salient features ti,j , the optimal features are selected by setting a threshold according to the structure of 
the human body and SMR. Thus, the optimal features are defined in the following equation:

where MR is the set of maximum values in each row in each horizontal area.
Sixteen horizontal boundary features are screened out from the salient feature subset T , each area obtains a 

1× 4 horizontal boundary feature vector ai(i ∈ {0, 1, 2, 3}) , constituting a horizontal boundary matrix A.

Subsequently, feature enhancement is performed: the corresponding elements between any two row vec-
tors ai are transformed according to the formula of the ratio vector to obtain six horizontal ratio eigenvectors 
bi(i ∈ {0, 1, 2, 3}) , constituting a horizontal ratio feature matrix B . The ratio transformation is defined as follows:

(7)s.t.
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where mi , nj is a 1× k vector.
Thus, the horizontal ratio feature matrix B is obtained:

where the shoulder-to-back ratio eigenvector b0 = Rat(a0, a1) , shoulder-to-waist ratio eigenvec-
tor b1 = Rat(a0, a2) , shoulder-to-hip ratio eigenvector b2 = Rat(a0, a3) , back-to-waist ratio eigenvec-
tor b3 = Rat(a1, a2) , back-to-hip ratio eigenvector b4 = Rat(a1, a3) , and waist-to-hip ratio eigenvector 
b5 = Rat(a2, a3) respectively. Finally, the horizontal boundary feature vectors and the horizontal ratio feature 
vectors are combined to form the SBWH feature subset.

Construction of LMR (Left、Middle、Right) feature subset
In constructing the LMR feature subset, the salient feature subset T was longitudinally divided into three parts 
according to the different sleep postures: the left-pressure feature matrix T4 , the middle-pressure feature matrix 
T5 , and the right-pressure feature matrix T6 . Finally, the longitudinal boundary features subset filtered according 
to SMR was combined with the longitudinal ratio feature subset obtained by feature enhancement to reconstruct 
the LMR feature subset.

For the number of salient features ti,j in the three longitudinal areas, the optimal features are selected by set-
ting a threshold based on the difference in sleep postures and SMR:

(16)Rat(mi , nj) =
[

mi,0/nj,0,mi,1/nj,1, ...,mi,k/nj,k
]

(17)B =
[

b0 b1 b2 b3 b4 b5
]T

(18)ti,j =

{

ti,j ti,j ≥ CThre

0 otherwise

Figure 8.   Illustrates a schematic diagram of pressure features in mattress divisions , wherein (a), (b), and (c) 
illustrate pressure features distributions for different sleep postures under horizontal division, and (d), (e), and 
(f) illustrate pressure feature distributions for different sleep postures under longitudinal division.
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where MC is the set of maximum values in each column in each vertical region.
Finally, 18 longitudinal boundary features are selected from the salient feature subset T . They constitute three 

longitudinal boundary feature vectors ci(i ∈ {0, 1, 2}) of each of T4 , T5 , and T6 , thus, realizing the feature filtering.

where ci is the eigenvector of the ith column in the longitudinal boundary matrix C . Subsequently, according to 
the formula of the ratio vector, we transform the corresponding elements of the two vectors between longitudinal 
boundary eigenvectors c0 , c1 and c2 . Three 6× 1 longitudinal ratio eigenvectors di(i ∈ {0, 1, 2}) are obtained by 
feature enhancement, forming a longitudinal ratio feature matrix D:

where the left-middle ratio eigenvector d0 = Rat(c0
T , c1

T )T , the left–right ratio eigenvector d1 = Rat(c0
T , c2

T )T , 
and the right-middle ratio eigenvector d2 = Rat(c2

T , c1
T )T . Finally, the longitudinal boundary feature vectors 

are combined with the ratio feature vectors to form the LMR(Left, Middle, right) feature subset.
Finally, the SBWH feature subset is fused with the LMR feature subset to obtain the final SE features used 

as inputs to the classification model. Such fusion reduces the redundant information in the air pressure values, 
i.e., the air cushion not squeezed by different sleep postures during sleep activities, to optimize the computation 
and feature space. The SE feature set adds features of different dimensions, which facilitates the construction of 
a stable classification model.

Ensemble classifier
AdaBoost algorithm is essentially the process of sleeper recognition and classification by iterating the error 
rate of SE feature samples’ weights, and if the number of times an SE feature sample is misclassified increases, 
the weights will also increase. SVM classifier algorithms are especially suitable for the classification of small 
samples, and the combination of AdaBoost algorithms and SVM algorithms increases the requirement for the 
generalization performance of strong classifiers. The AdaBoost algorithm improves the basic performance of 
the classical SVM classifier with sleeping classification accuracy and can screen the optimal classification kernel 
parameters for the AdaBoost-SVM classifier, so as to obtain multiple weak classifiers, which can be trained into 
strong classifiers after iteration, integration, and judgment of the training error rate. The weak classifier based on 
SVM ensures the variability of each round of screening and training, but the proportionality of sample weights 
should be considered in the classification and selection of samples in order to improve the efficiency of training 
and reduce the training time.

Figure 9 presents the AdaBoost-SVM model flowchart, where each weak classifier structure in the AdaBoost-
SVM model is used to generate strong classifiers after several iterations. The set of samples with all SE features 
is fed into the AdaBoost-SVM classifier and the weight values of the sample data are initialized. Set the number 
of iterations, if during the iteration process, it is found that the positive samples are not completely recognized 
can temporarily increase the number of iterations. Calculate the error rate of each weak classifier on the sample 
training set separately, and if the error is greater than 0.5, update the sample weights of the original SE features 
so that the misclassified samples receive more attention in subsequent iterations. Finally, strong classifiers that 
can be used for sleep posture recognition are generated.

where S(n) = {(x1, y1), (x2, y2), ..., (xi , yi)} , represents N samples, xi represents the ith sample of the SE feature 
set, and yi represents the type of sleep posture to which the ith sample belongs. ω is the weight of the sample, 
T is the total number of iterations for model training, and is the number of iterations carried out. ξt is the RBF 
kernel SVM classifier. εt is the error rate of the classifier ξt . wt+1(i) is the weight of the training set of the weight 
of the ith sample, and at is the weight of the classifier ξt . Ht(x) is the final strong classifier.

where i = 1, 2, 3, . . . ,N. Where Ct is a normalization factor satisfying 
∑N

i=1 wt+1(i) = 1.
In the actual process of sleep posture recognition, noise and outliers may be introduced due to the process 

of feature extraction in the horizontal and vertical divisions, especially in different parts of the mattress due to 
movement and other factors that generate errors; certain sleep postures may appear more frequently than others, 
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resulting in inter-sample imbalance in the data; and features extracted in the horizontal and vertical divisions 
present complex nonlinear relationships. The AdaBoost-SVM algorithm’s iterative process identifies and reduces 
the negative impact of these noises and outliers on the classification performance, improves the classification 
performance on the unbalanced dataset, and handles these nonlinear features effectively.

Experiments and results
All experiments were run on a standard desktop computer with 8 GB RAM and an Intel i7-3070 CPU using 
the Anaconda platform, with the programming language Python 3.8.5. Twenty-six subjects (13 males and 13 
females) participated in the sleep posture recognition experiment. The age of the participants ranged from 20 to 
26, height ranged from 170 to 186, and weight ranged from 50 to 90 kg.

Each test subject recorded 40 samples during the data collection, including 20 supine and lateral postures. 
The proposed model was tested using k-fold cross-validation ( k = 10 ) and Leave One Out Cross-validation 
(LOOCV). In tenfold cross-validation, we divide the data into ten subsets, of which 10% is used for testing and 
90% for training. It is repeated ten times, and finally, the average value is calculated as the accuracy of sleep 
posture recognition.

Validation of SMR feature extraction strategy
In order to quantify the performance of SMR in feature extraction for sleep posture recognition, we take the raw 
pressure data, significant feature subset, SBWH feature subset, LMR feature subset, and SE feature set as inputs 
to the AdaBoost classifier, respectively. The recognition accuracies in the five cases are compared using tenfold 
cross-validation and LOOCV.

Table 1 shows the average accuracy under different stages of data as input in feature extraction. The accuracy 
of the classifier increases with the critical features in the feature set, where the accuracy of the original data is 
0.886 and that of the SE feature set reaches 0.997 since SMR can eliminate redundant information and add strong 
discriminative vital features. When SWBH and LMR feature subsets are used as inputs, the difference in accuracy 
between supine and lateral postures is not significant because, although these have different division criteria and 
discriminative features, their intersection is valid. It indicates that the strong SMR feature extraction capability 
enables the classifier to better capture the relationship between feature inputs and sleep postures.

Comparison of traditional base classification models
In order to compare the performance of the SPR-DE on sleep posture recognition, we compare SPR-DE with 
traditional base classification models (SVM, Naive Bayes, KNN, Decision Tree), and the SE feature set is directly 
used as an input to the traditional classification model as well as SPR-DE. Both tenfold cross-validation and 

Figure 9.   Flowchart of AdaBoost-SVM model.
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LOOCV were used for each combination of cases to obtain the average accuracy of sleep posture recognition 
corresponding to each case.

Table 2 demonstrates the average accuracies of the traditional base classifier and the SPR-DE under differ-
ent validation methods. The highest accuracy of SPR-DE under both tenfold and LOOCV is because SPR-DE 
is a sleep posture recognition model focusing on the combination of feature extraction strategy and integrated 
algorithm training. the AdaBoost-SVM algorithm can consider the weights of each base classifier fully. Under 
LOOCV, when faced with the test set data not involved in training, the accuracy of traditional base classifiers 
decreases significantly. At the same time, the SPR-DE still performs robustly and achieves an accuracy of 0.996 
and 0.991, with the slightest change of 0.7% in the accuracy, which indicates that the features and AdaBoost–SVM 
classifiers, increasing the classification credibility.

Table 3 and 4 show the performance of different classification models on sleep posture recognition under 
tenfold and LOOCV validation methods, including four performance metrics: Accuracy, Recall, F1-score, and 
MCC (Mattews Correlation Coefficient).

Table 1.   Sleep posture recognition precision with different Sleep posture feature data. Significants values are 
in bold.

Validation Scheme tenfold LOOCV

Posture Supine Lateral Supine Lateral

Raw data 0.889 0.884 0.813 0.806

Salient feature subset 0.910 0.906 0.867 0.854

SBWH feature subset 0.965 0.954 0.916 0.905

LMR feature subset 0.946 0.968 0.901 0.915

SE feature set 0.996 0.998 0.991 0.989

Table 2.   Sleep posture recognition accuracy of different baseline models with SE feature set. Significants 
values are in bold.

Validation Scheme tenfold LOOCV

Posture Supine Lateral Supine Lateral

SVM 0.968 0.968 0.939 0.933

Naive Bayes 0.971 0.969 0.917 0.907

kNN(k = 12) 0.964 0.960 0.942 0.924

Decision Tree 0.970 0.964 0.943 0.939

SPR-DE 0.996 0.998 0.996 0.991

Table 3.   Evaluation indexes of different base models under the LOOCV validation scheme. Significants values 
are in bold.

Models SVM Naive Bayes kNN Decision Tree SPR-DE

Accuracy 0.936 0.912 0.933 0.941 0.989

Recall 0.923 0.935 0.927 0.932 0.973

F1_score 0.936 0.913 0.933 0.940 0.989

MCC 0.925 0.935 0.926 0.929 0.973

Table 4.   Evaluation indexes of different base models under the tenfold validation scheme. Significants values 
are in bold.

Models SVM Naive Bayes kNN Decision Tree SPR-DE

Accuracy 0.968 0.970 0.962 0.967 0.999

Recall 0.947 0.944 0.935 0.941 0.989

F1_score 0.968 0.969 0.962 0.967 0.998

MCC 0.947 0.944 0.934 0.941 0.990



15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11084  | https://doi.org/10.1038/s41598-024-61267-0

www.nature.com/scientificreports/

Table 3 demonstrates that the classification algorithm adopted by SPR-DE has the best performance in terms 
of precision, F1-score, recall, and MCC under the LOOCV validation method, with the precision reaching 0.989, 
which is an improvement of 0.045–0.077 compared to the other classifiers, and the F1-score reaching 0.989, 
which is an improvement of 0.049–0.076. This is because in the case of data diversity being large, when only one 
sample is not enough to represent the distribution of the whole dataset, the model is not only required to have a 
high recognition accuracy but also requires a strong generalization ability and is not perturbed by outliers. The 
feature extraction strategy as well as the integrated classifier in SPR-DE can enhance the robustness of the model 
by focusing on the main support regions of the human body and the amount of spine features.

Table 4 shows that the classification algorithm used in SPR-DE can also perform the best in terms of precision, 
F1-score, recall, and MCC under the tenfold validation method. The precision reaches 0.999, which is improved 
by 0.029–0.037 compared to other classifiers; the F1-score reaches 0.998, which is improved by 0.029–0.036. 
SPR-DE not only maintains a high precision of sleep recognition, but also has a strong correlation between the 
model’s prediction and the actual result, and the overall performance of the model is excellent.

Figure 10 shows the relationship between the loss function value and the number of iterations for the test and 
training sets under the two validation methods. SPR-DE can converge quickly and reach a steady state under 
either validation method because SMR provides critical features for the classification algorithm. In LOOCV, the 
SPR-DE error is relatively higher, and the loss function value oscillates significantly because some data from the 
test set are not included in the training set.

Comparison of different ensemble learning models
For the sleep posture recognition task based on ensemble barometric data adopted in this paper, the SPR-DE is 
compared with other ensemble classifiers (Random Forest, GBDT, Bagging, XGBoost). Each is evaluated using 
tenfold and LOOCV to get the average accuracy of each model.

Figure 10.   Relationship between the classification accuracy rate and the number of iterations of the SPR-DE 
model under two validation modes, where (a) and (b) are the results of 100 iterations under the tenfold 
validation mode and LOOCV validation mode, respectively, and (c) and (d) are the results of 500 iterations 
under the tenfold validation mode and LOOCV validation mode, respectively.
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As can be seen from Table 5, SPR-DE outperforms other ensemble classifiers and achieves better results, 
both in tenfold and LOOCV. Under tenfold, SPR-DE recognition accuracy reaches 0.998, which is the 3.7% 
improvement compared to other classifiers, and under LOOCV, the accuracy of each ensemble classifier decreases 
significantly. The performance of our proposed SPR-DE remains robust because the combination of SMR and 
AdaBoost-SVM can consider both feature space and model integration, which improves the generalization ability 
and performance of the final model.

Discussion
Table 6 shows the results of comparing the SPR-DE model proposed in this paper with our similar state-of-the-art 
works. We summarize the Sensor type, Data type, Preprocessing techniques, Recognition Algorithm, Evalua-
tion measures, Accuracy rate, and R&A (Recognize sleep postures and Adjust hardness according to the sleep 
postures at the same time) which summarize the advantages and disadvantages of the method proposed in this 
paper with other pressure sensor based mattresses.

In the above methods, although all the sensors collect all the pressure signals34,35,39,44–46, in the algorithm 
processing part, still all the pressure data are converted to pressure image data as the classifier input, which is 
high in accuracy but has a large computational cost and a large number of sensors, whereas the SPR-DE model 
adopts pressure data as the input of the classifier, not pressure image data, which does not need to go through 
a complex image processing algorithms, which speeds up the processing speed; the pressure data exists in the 
form of a numerical matrix, and its data volume is small compared to the image data. This means that fewer 
computational resources are needed to process the pressure data, which can reduce the hardware requirements 
for running the model, especially important for the real-time sleep posture recognition system. Although pres-
sure data is used as the classifier input in39, it mainly measures pressure changes under the chest, which cannot 
understand the pressure tolerance of different regions and body parts, and cannot provide suggestions to enhance 
sleep comfort. The non-image data features related to sleep postures in the SPR-DE model make it possible to 
design a sleep posture recognition system that takes into account the R&A of mattress comfort and sleep posture 
recognition. becomes possible.

On the other hand, reducing the complexity of the embedded system while improving the accuracy of sleep 
posture recognition, such as35 in although less number of sensors used, but the average accuracy of 91.2%, in the 
accuracy of sleep posture recognition may not meet the requirements of the engineering applications of R&A 
accurate recognition of the sleep posture, compared to this paper’s proposed SPR-DE model in the processing 
of pressure data with an accuracy of 99.9%; From exploring the performance of aptitude sensors combined with 
CNN, the accuracy of sleep posture recognition reaches 98.2%46, but a flexible pressure sensor pad is used, which 

Table 5.   Sleep posture recognition precision of different ensemble classifiers with SE feature set. Significants 
values are in bold.

Validation Scheme tenfold LOOCV

Posture Supine Lateral Supine Lateral

RandomForest 0.960 0.961 0.906 0.915

Bagging 0.973 0.979 0.851 0.857

GDBT 0.974 0.977 0.849 0.851

XGBoost 0.974 0.977 0.835 0.840

SPR-DE 0.996 0.998 0.996 0.991

Table 6.   Comparison between this work and recent published references.

Methods

Sensor and Data technique System specification

Sensor type Data type
Preprocessing 
techniques Recognitionalgorithm Evaluation measures Accuracy R&A simultaneously

Proposed method barometric sensor air pressure
Threshold Filter-
ing + Neighborhood 
filtering

SMR + AdaBoost-SVM Accuracy F1-score 99.9% yes

35 Pressure sensitive sheet pressure image CNN with Transfer Learning Accuracy Confusion 
matrix 91.24% no

34 FSR sensor pressure image HOG + LBP FFANN Accuracy Confusion 
matrix 97% no

45 FSR sensor pressure image No feature extraction Deep neural network Accuracy 99.7% no

44 FSR sensor pressure image spatio-temporal median 
filter CNN Accuracy 99.8% no

46 FSR sensor pressure image Fuzzy representation CNN precision, recall, 
F1-score and accuracy 98.2% NO

39 FSR sensor pressure data No feature extraction Neural Network Bayes-
ian Network accuracy 97.1% NO
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is easily affected by various disturbing factors in the sleeping environment, such as the movement of the bed, dif-
ferent bed materials or changes in the bed sheet, and is unable to work stably under the changing environmental 
conditions, which may not meet the robustness requirements for R&A to accurately recognize the sleep posture.

The SMR feature extraction strategy in SPR-DE, which focuses on the shoulder-hip and spine feature quanti-
ties, can capture the pressure distribution differences caused by different sleep postures in a more detailed way, 
and this segmentation improves the sensitivity of the model to subtle changes, which in turn improves the accu-
racy; while AdaBoost-SVM learns the complex features in different divisions step by step and uses the efficient 
classification capability of SVM in nonlinear features as well as boundary optimization, which makes it possible 
for R&A to accurately recognize sleep postures. Boundary optimization of efficient classification ability, so that 
the model can automatically adjust according to the actual distribution of data, to provide personalized sup-
port for different sleep postures, and to improve the accuracy and generalization performance of sleep posture 
recognition.

Conclusion and future work
The sleep posture recognition model-SPR-DE proposed in this study for airbed structure, analyzes 121 pressure 
data of the human body’s trunk region through SMR feature extraction register and horizontal and vertical 
division, instead of pressure image data as model input, focusing on shoulder-hip feature volume and spine 
features, directly captures the closely related changes in sleep posture, provides more targeted and yet graded 
information, and enhances the model’s sensitivity to the sensitivity to differences in sleep postures. The results 
show that the accuracy of SPR-DE can reach 0.997. Compared with other models, the accuracy was improved 
by 2.9–7.7% and F1-score by 0.029 to 0.076. This method can utilize the trunk area for sleep posture recognition 
while ensuring sufficient information with high recognition accuracy, reducing the number of sensors and, at 
the same time, reducing computational pressure brought about by the processing of the pressure data, which will 
contribute to the improvement of sleep posture recognition system with the low production and computational 
cost to provide ideas for portability.

In the future, we will study how the mattress conditioning system can use key features of the sleep posture 
recognition model to accurately understand which areas are under more pressure, to provide different areas with 
body profiles and preferences that match the individual, and to explore the provision of a more comfortable and 
healthy personalized sleep experience for different users.

Data availability
The data supporting the findings of this study are available from the corresponding author upon reasonable 
request.
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