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Abstract

Hippocampal neurogenesis (HN) occurs throughout the life course and is important for memory and mood. Declining
with age, HN plays a pivotal role in cognitive decline (CD), dementia, and late-life depression, such that altered HN could
represent a neurobiological susceptibility to these conditions. Pertinently, dietary patterns (e.g., Mediterranean diet) and/or
individual nutrients (e.g., vitamin D, omega 3) can modify HN, but also modify risk for CD, dementia, and depression.
Therefore, the interaction between diet/nutrition and HN may alter risk trajectories for these ageing-related brain conditions.
Using a subsample (n = 371) of the Three-City cohort—where older adults provided information on diet and blood
biobanking at baseline and were assessed for CD, dementia, and depressive symptomatology across 12 years—we tested for
interactions between food consumption, nutrient intake, and nutritional biomarker concentrations and neurogenesis-centred
susceptibility status (defined by baseline readouts of hippocampal progenitor cell integrity, cell death, and differentiation) on
CD, Alzheimer’s disease (AD), vascular and other dementias (VoD), and depressive symptomatology, using multivariable-
adjusted logistic regression models. Increased plasma lycopene concentrations (OR [95% CI] = 1.07 [1.01, 1.14]), higher
red meat (OR [95% CI] = 1.10 [1.03, 1.19]), and lower poultry consumption (OR [95% CI] = 0.93 [0.87, 0.99])
were associated with an increased risk for AD in individuals with a neurogenesis-centred susceptibility. Increased vitamin
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D consumption (OR [95% CI] = 1.05 [1.01, 1.11]) and plasma γ -tocopherol concentrations (OR [95% CI] = 1.08
[1.01, 1.18]) were associated with increased risk for VoD and depressive symptomatology, respectively, but only in susceptible
individuals. This research highlights an important role for diet/nutrition in modifying dementia and depression risk in
individuals with a neurogenesis-centred susceptibility.

Keywords: diet, hippocampal neurogenesis, cognitive decline, dementia, late-life depression, older people

Key Points

• Adult hippocampal neurogenesis (HN) plays a key role in the pathogenesis of cognitive decline (CD), dementia, and
depression.

• HN could even represent a neurobiological susceptibility to these conditions.
• Diet not only modifies the risk for CD, dementia, and depression but also modifies HN.
• We show here that the interaction between diet and HN can modify the risk trajectories of these ageing-related brain

conditions.
• Further research is required to fully understand the impact of diet on the risk trajectories of susceptible individuals.

Introduction

Ageing is a highly diverse experience marked by signifi-
cant disparities in brain health. In particular, the prevalence
of cognitive decline (CD), dementia, and late-life depres-
sion (LLD) all increase significantly with age [1]. With life
expectancy continuing to rise, the impact of these conditions
will only become more burdensome. Therefore, to identify
more effective healthy brain ageing strategies and interven-
tions [2, 3], we need to deepen our understanding of the
factors that promote or hinder these ageing-related brain
conditions.

Several risk factors have been implicated in the devel-
opment of CD, dementia, and LLD but evidence suggests
that adult hippocampal neurogenesis (HN; the birth of new
neurons in the adult brain [4]) plays a pivotal role in the
pathogenesis of all three of these conditions [5–8]. In this
regard, we recently demonstrated how differences in HN are
associated with CD, dementia, and depressive symptomatol-
ogy 12 years later [9, 10], indicating that altered HN could
represent a neurobiological susceptibility to these conditions.

Importantly, we and others have also shown how diet not
only modifies the risk for CD, dementia, and LLD [11–15]
but also the neurogenic process [16, 17]. Therefore, it stands
to reason that diet and HN could interact, modifying the
risk trajectories of CD, dementia, and LLD. Thus, leveraging
data from our previous work on a subsample of the Three-
City (3C) prospective cohort [9, 10], we aimed to test
whether diet could modify the risk for future CD, dementia,
and depressive symptomatology in those with and without a
neurogenesis-centred biological susceptibility.

Methods and materials

Population and study design

As depicted in Figure 1A, the sample was derived from
participants within the 3C cohort, a prospective cohort
of older persons who provided repeated measures of

cognitive function over 12 years [18]. We considered all
dementia-free participants that had a baseline HN profile
(n = 371), measured as part of a case–control study on CD
status nested within the cohort [9, 13].

At baseline (1999–2000), face-to-face interviews were
conducted to collect sociodemographic information, and
fasting blood samples were collected to establish a plasma
and serum biobank. Plasma samples were used to measure
various nutritional biomarkers, whereas the serum samples
were utilised to generate HN profiles for each participant
using in vitro cellular HN assays [9, 10]. At the 2-year follow-
up (2001–03), dietary habits and nutrient intakes were
measured, and in-person neuropsychological assessments for
CD, dementia, and depressive symptomatology were per-
formed every two to three years over a 12-year period.

The 3C research protocol received approval from the Con-
sultative Committee for the Protection of Persons partici-
pating in Biomedical Research at Kremlin-Bicetre University
Hospital in Paris, France. All participants provided written
informed consent. For further details, see Figure 1, footnote.

Neurogenesis-centred biological susceptibility

A neurogenesis-centred biological susceptibility was differ-
ently defined for CD, dementia, and depressive symptoma-
tology based on the HN measures associated with each
outcome in our previous work [9, 10]. Briefly, serum samples
collected at baseline (1999–2000) were used to generate neu-
rogenesis profiles for each participant using in vitro HN cel-
lular assays. We subsequently identified distinct associations
between specific readouts of the neurogenic process and the
three specified outcomes. These particular HN readouts were
then used to establish susceptibility status (i.e., with/without
altered HN) in our present analyses.

As depicted in Figure 1, each relevant HN marker was
dichotomised by median split. Specifically, individuals
with a neurogenesis-centred biological susceptibility to
CD were categorised as those with higher levels of cell
death during differentiation (i.e., %CC3-d ≥ 6%) [9].

ii48



Association of dietary and nutritional factors

Figure 1. Study design and approach. (A) Three City (3C) cohort and sample: Participants from the 3C study (n = 9,294) were
recruited from three French cities: Bordeaux (n = 2,104), Dijon (n = 4,931) and Montpellier (n = 2,259) and specifically, a case–
control study design on cognitive decline (CD) status (n = 375), nested within the 3C-Bordeaux cohort, was used for present analyses.
Exposures: (i) Neurogenesis-centred biological susceptibility: Our previous work indicated that there may be a neurogenesis-centred
biological susceptibility for CD, dementia, and depressive symptomatology that is already present up to 12 years prior to condition
onset [9, 10]. Specifically, we found that increased baseline levels of cell death during differentiation (i.e., %CC3-d) increased the
risk for future CD, whereas decreased baseline levels of cell death during proliferation (i.e., %CC3-p) increased the risk for future
AD. Additionally, we found that reduced baseline levels of hippocampal progenitor cell integrity (i.e. %SOX2) increased the risk for
VoD, whereas increased hippocampal cell differentiation (i.e., %MAP2) increased the risk for depressive symptomatology. Therefore,
for present analyses, we categorised all participants with hippocampal neurogenesis (HN) profiles (n = 371), using a dichotomous
classification approach (median split), focusing on biological susceptibility centred around these key HN readouts. (ii) Diet and
nutrition: Data from three dietary/nutritional aspects were used to inform present analyses: (i) nutritional biomarker concentrations,
including 12 fatty acids (n = 279), transthyretin and vitamin D (n = 247), and 6 carotenoid and 3 vitamin E biomarkers (n = 255),
(ii) food consumption (in servings per week, n = 308), and (iii) macro- and micronutrient intakes (n = 315). Nutritional biomarker
concentrations were measured in total plasma collected at baseline. Food consumption and nutrient intakes were determined by
the Food Frequency Questionnaire (FFQ) and 24-h dietary recall, respectively, and were collected at the 2-year follow-up. (ii)
Outcomes: (i) CD: Participants were classified as either having cognitive stability (control) or accelerated CD (case) based on their
cognitive trajectories over 12 years. Cases had the worst slopes of CD across follow-up, whereas controls maintained cognitive
function above the median slope. (ii) Dementia: At baseline, all participants were dementia-free. Over 12 years, dementia diagnosis
was established by an independent committee of neurologists, following Diagnostic and Statistical Manual of Mental Disorders
IV criteria. Dementia subtypes were consolidated into two primary categories for analysis, because of limited case numbers, which
encompassed Alzheimer’s Disease (AD) (i.e., probable/possible AD and mixed dementia) or VoD (i.e. vascular dementia, Parkinson
dementia, Lewy body dementia, and frontotemporal dementia). (iii) Depressive symptomatology: Depressive symptomatology was
assessed using the Center for Epidemiologic Studies Depression (CES-D) scale. Clinically relevant depressive symptoms at any
assessment during the study duration were defined as scores ≥17 in men and ≥23 in women, or if participants were diagnosed
with depression. (B) Overall approach: To determine whether diet and nutrition could influence the risk for future CD, dementia,
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Concerning dementia, individuals with a neurogenesis-
centred biological susceptibility to Alzheimer’s disease (AD)
had lower levels of cell death during proliferation (i.e.,
%CC3-p ≤ 1%), whereas individuals with a neurogenesis-
centred biological susceptibility to vascular and other
dementias (VoD) had lower levels of hippocampal progenitor
cell integrity (i.e., %SOX2 ≤ 94%) [9]. Finally, individuals
with a neurogenesis-centred biological susceptibility to
later-life depressive symptomatology were defined as those
with higher levels of hippocampal cell differentiation (i.e.,
%MAP2 ≥ 47%) [10].

Dietary and nutritional factors

For present analyses, we used data on three aspects of
diet/nutrition: (i) dietary habits/food consumption (avail-
able for n = 308 participants), (ii) nutrient intakes (n = 315),
and (iii) nutrient biomarkers, including fatty acids (n = 279),
vitamin D (n = 247), carotenoids (n = 255), and vitamin E
(n = 255).

Briefly, at the 2-year follow-up visit (2001–02), dietary
habits were assessed using the Food Frequency Questionnaire
(FFQ), and nutrient intakes were ascertained through a 24-
h dietary recall—all as previously described [19–21]. At
baseline (1999–2000), the concentrations of 23 nutritional
biomarkers (i.e., 12 fatty acids, 6 carotenoids, 25(OH)D,
α- and γ -tocopherol, retinol, and transthyretin) were deter-
mined in total plasma as previously described [22–24]. See
Table A.2 in the Supplementary Data for further details on
the FFQ and dietary recall.

Cognitive decline

Participants within our sample were classified as either cogni-
tively stable or with accelerated CD based on performance in
various cognitive tasks over 12 years, as previously described
[13]. Participants with the worst slopes of decline were
classified as those with accelerated CD, whereas participants
with a CD below median value (i.e., >median slope) were
classified as cognitively stable. See the Appendices in the
Supplementary Data section for details.

Dementia

All participants were assessed for dementia over the 12-
year follow-up period. No participant within our sample
had a dementia diagnosis at baseline. Clinical diagnosis of

dementia was established and validated by an independent
committee of neurologists, using the Diagnostic and Sta-
tistical Manual of Mental Disorders IV [25], as previously
described [18].

For present analyses, dementia aetiology was considered
as two main categories: (i) AD (i.e., all probable AD, pos-
sible AD and mixed dementia), and (ii) VoD (i.e., vascu-
lar dementia, Parkinson dementia, Lewy body dementia,
and frontotemporal dementia). See the Appendices in the
Supplementary Data section for details.

Depressive symptomatology

Depressive symptomatology at baseline and throughout the
12-year follow-up was assessed using the validated Center for
Epidemiologic Studies Depression (CES-D) scale [26]. Cases
were defined as individuals with clinically relevant depressive
symptoms, indicated by CES-D scores ≥17 in men and
≥23 in women [26–28], at any assessment over the follow-
up period. See the Appendices in the Supplementary Data
section for details.

Covariates

Cardiometabolic risk factors were all assessed at baseline,
including BMI (kg/m2), diabetes, hypertension, hyperc-
holesterolemia, and fasting plasma levels of glucose, choles-
terol, and triglycerides (measured by routine enzymatic
methods). Medication use was also recorded. ApoE-ε4
genotype was defined as carrying at least one ε4 allele
(relative to no ε4 allele), and lifestyle factors included regular
physical activity, smoking status, and alcohol consumption.
For further details on covariates, refer to Table 1, footnote.

Statistical analysis

Data analyses were conducted using R (v.4.3.1 [29]). Base-
line characteristics of the sample were expressed as means
and standard deviations (SD) for continuous variables and
frequencies and percentages for categorical variables. Base-
line characteristic comparisons were tested using logistic
regression models for the three specified outcomes.

As depicted in Figure 1B, using logistic regression
models for CD, dementia, and depressive symptoma-
tology, interaction analyses were performed to examine
whether dietary/nutritional factors (i.e., dietary habits/food
consumption from the FFQ, nutrient intakes from 24-h

and depressive symptomatology in participants with a neurogenesis-centred biological susceptibility relative to those without
such a susceptibility, we tested the interaction between various dietary/nutritional factors and neurogenesis-centred biological
susceptibility status, using multivariable-adjusted logistic regression models. Specifically, we tested for interactions between: (i)
dietary/nutritional factors (i.e., food consumption, nutrient intakes, and nutritional biomarker concentrations) and high versus
low levels of %CC3-d on CD, (ii) dietary/nutritional factors and high versus low levels of %CC3-p on AD, (iii) dietary/nutritional
factors and high versus low levels of %SOX2 on VoD, and (iv) dietary/nutritional factors and high versus low levels of %MAP2 on
depressive symptomatology. HN readout classification was dichotomously determined by median split. Abbreviations: M, male; F,
female; y, years; h, hours; CC3 cleaved caspase 3; SOX2, SRY (sex determining region Y)-box 2; MAP2, microtubule-associated
protein 2. Image created using BioRender software. (A) adapted from our previously published schematics on the cohort and
experimental design [9, 10].
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dietary recall, and nutrient biomarkers, including plasma
concentrations of fatty acids, vitamin D, carotenoids, and
vitamin E) could modify the increased risk associated
with a neurogenesis-centred biological susceptibility and
future CD, dementia (AD and VoD), and depressive
symptomatology. Regression models were primarily adjusted
for age, sex, education, age of dementia onset (AD and
VoD only), or baseline depressive symptoms (depression
only) (Model 1), followed by further adjustment for physical
exercise and other covariates (Model 2).

The same strategy of selecting covariates was applied to all
models. Briefly, we adjusted factors that were significantly
different at P < 0.05 between cases and controls for the
outcomes of interest (CD, dementia, and depressive symp-
tomatology) using logistic regression analyses controlled for
age, sex, and education. All covariates are bolded in Table 1.
Although not significantly different at P < 0.05, physical
activity, a potential confounder for all outcomes, was also
introduced in Model 2 for all analyses.

For all models, false discovery rate (FDR) correction, with
a threshold of P < 0.05, was applied to account for multiple
testing. Further details on the proposed models can be found
in the Appendices in the Supplementary Data section.

When significant interactions between dietary/nutritional
factors and neurogenesis-centred biological susceptibil-
ity status on CD/dementia/depressive symptomatology
were observed, stratification analyses were subsequently
performed using multivariable-adjusted logistic regression
models for each subgroup (i.e., individuals with or without a
neurogenesis-centred biological susceptibility), as described
above.

Results

Sample characteristics

The characteristics of our sample by CD, dementia status,
and depressive symptomatology are detailed in Table 1. Par-
ticipant cognition was assessed for a mean of 8.5 years,
and age of dementia onset was 85 years on average. For
depressive symptomatology, 29% reported high depressive
symptomatology throughout the 12-year study period.

Participants that later developed AD and VoD were more
likely to have a neurogenesis-centred biological suscepti-
bility at baseline (AD: controls: n = 135 (52%) vs. cases:
n = 49 (64%), P = 0.047; VoD: controls: n = 125 (48%)
vs. cases: n = 22 (73%); P = 0.006). However, no signifi-
cant differences in neurogenesis-centred biological suscep-
tibility status were observed between cases and controls for
CD and depressive symptomatology (CD: controls: n = 87
(52%) vs. cases: n = 112 (55%), P = 0.12; depressive symp-
toms: controls: n = 124 (48%) vs. cases: n = 59 (53%);
P = 0.35).

For comparisons of the participant characteristics
between the whole sample and the various subsamples
(i.e., dietary/nutritional factors excluding missing data)
used to inform present analyses, see Table A.1 available

in the Appendices in the Supplementary Data section. No
differences in the characteristics between the whole sample
and the various subsamples were observed.

To determine whether diet/nutrition could modify the
risk associated with altered HN and future CD, demen-
tia (AD and VoD), and depressive symptomatology, we
first tested the interaction between various dietary/nutri-
tional factors and neurogenesis-centred biological suscepti-
bility status on these outcomes (Table A.2 available in the
Appendices in the Supplementary Data section).

Diet does not modify the increased risk associated
with altered HN and future CD but does modify the
risk associated with future dementia

As shown in Table A.2 (available in the Appendices in
the Supplementary Data section), we found no significant
interactions between having a neurogenesis-centred biolog-
ical susceptibility (as defined by higher cell death during
differentiation levels [%CC3-d ≥ median]) and any dietary
or nutritional factor on CD.

However, we did find that the increased risk associated
with having a neurogenesis-centred biological susceptibility
on future dementia outcomes were modified by diet/nutri-
tion. Specifically, we found significant interactions between
having a neurogenesis-centred biological susceptibility (as
defined by lower cell death during proliferation levels
[%CC3-p ≤ median]) and plasma lycopene concentrations
(FDR-adjusted P = 0.01), red meat consumption (FDR-
adjusted P = 0.008), and poultry consumption (FDR-
adjusted P = 0.02) on AD risk. Moreover, we found a sig-
nificant interaction between having a neurogenesis-centred
biological susceptibility (as defined by lower hippocampal
progenitor cell integrity levels [%SOX2 ≤ median]) and vita-
min D consumption on VoD risk (FDR-adjusted P = 0.04).

Increased plasma lycopene levels, red meat consumption, and
reduced poultry consumption are all associated with an
increased risk for future AD but only in individuals with a
neurogenesis-centred biological susceptibility

As depicted in Figure 2, amongst individuals with a
neurogenesis-centred biological susceptibility (%CC3-p),
higher plasma lycopene concentrations were associated with
an increased risk of AD (OR [95% CI] = 1.07 [1.01, 1.14],
P (uncorrected) = 0.04), whereas there was no significant
association amongst those without this neurogenesis-centred
biological susceptibility (OR [95% CI] = 0.99 [0.94, 1.05, P
(uncorrected) = 0.83).

With respect to red meat and poultry consumption;
amongst individuals with this same neurogenesis-centred
biological susceptibility, higher red meat consumption (OR
[95% CI] = 1.10 [1.03, 1.19], P (uncorrected) = 0.008)
and reduced poultry consumption (OR [95% CI] = 0.93
[0.87, 0.99], P (uncorrected) = 0.03) were both associ-
ated with an increased risk of AD, whereas there were
no significant associations amongst those without this
susceptibility (meat: OR [95% CI] = 1.00 [0.94, 1.06], P
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Figure 2. Associations between dietary/nutritional factors and future AD in those with and without a neurogenesis-centred
biological susceptibility 12 years prior to condition onset. (A) Table presenting the multivariable-adjusted associations between
dietary/nutritional factors and future AD by neurogenesis-centred biological susceptibility status (i.e., %CC3-p levels—cell death
during proliferation). (a) Represents the median for %CC3-p levels. (b) OR are for 1-SD increase in dietary factor. Analysis: Logistic
Regression. Model 1: adjusted for age, sex, level of education, and age of dementia onset. Model 2: fully adjusted. Adjusted as per
Model 1 plus physical exercise, APOe4 carrier status, and psychotropic medication use. (B) Regression coefficient plot representing
the associations between key dietary/nutritional factors and future AD in those with and without a neurogenesis-centred biological
susceptibility. Plasma lycopene concentrations (a carotenoid biomarker) and consumption profiles (red meat and poultry) all
significantly modified the risk for future AD, but only in individuals with a neurogenesis-centred biological susceptibility (i.e.,
lower (≤median) baseline levels of cell death during proliferation). Abbreviations: CC3, Cleaved Caspase 3; OR, odds ratio; CI,
confidence intervals; ApoE-ε4, allele ε4 for the apolipoprotein E gene. FDR corrected P values; ∗P < 0.05; ∗∗P < 0.01.

(uncorrected) = 0.95; poultry: OR [95% CI] = 0.97 [0.91,
1.03], P (uncorrected) = 0.38).

Increased vitamin D consumption is associated with an
increased risk for future VoD but only in individuals with a
neurogenesis-centred biological susceptibility

Figure 3 shows that amongst individuals with a neurogenesis-
centred biological susceptibility (%SOX2), higher vitamin
D consumption was associated with an increased risk of VoD
(OR [95% CI] = 1.05 [1.01, 1.11], P (uncorrected) = 0.04),
whereas there was no significant association amongst those
without this neurogenesis-centred biological susceptibility
(OR [95% CI] = 0.96 [0.89, 1.03, P (uncorrected) = 0.26).

Diet modifies the association between altered HN
and increased late-life depressive symptomatology

In addition to finding that diet/nutrition could mod-
ify the increased risk associated with altered HN and

dementia, we found a significant interaction between
having a neurogenesis-centred biological susceptibility
(as defined by higher hippocampal cell differentiation
levels [%MAP2 ≥ median]) and plasma γ -tocopherol
concentrations on later-life depressive symptomatology
(FDR-adjusted P = 0.03).

Increased plasma γ -tocopherol levels are associated with
increased depressive symptomatology but only in individuals with
a neurogenesis-centred biological susceptibility

As shown in Figure 4, amongst individuals with a
neurogenesis-centred biological susceptibility (%MAP2),
higher plasma γ -tocopherol concentrations were associated
with an increased incidence of later-life depressive symptoms
(OR [95% CI] = 1.08 [1.01, 1.18], P (uncorrected) = 0.048),
whereas there was no significant association amongst those
without this neurogenesis-centred biological susceptibility
(OR [95% CI] = 0.96 [0.89, 1.03, P (uncorrected) =
0.22).
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Figure 3. Associations between dietary/nutritional factors and future VoD in those with and without a neurogenesis-
centred biological susceptibility 12 years prior to condition onset. (A) Table presenting the multivariable-adjusted associations
between dietary/nutritional factors and future VoD by neurogenesis-centred biological susceptibility status (i.e., %SOX2 levels—
hippocampal progenitor cell integrity). (a) Represents the median for %SOX2 levels. (b) OR are for 1-SD increase in dietary factor.
Analysis: Logistic Regression. Model 1: adjusted for age, sex, level of education, and age of dementia onset. Model 2: fully adjusted.
Adjusted as per Model 1 plus physical exercise, plasma cholesterol levels, plasma glucose levels, diabetes, hypercholesterolemia,
antihypertensive medication use, diabetic medication use, and psychotropic medication use. (B) Regression coefficient plot
representing the associations between key dietary/nutritional factors and future VoD in those with and without a neurogenesis-
centred biological susceptibility. Increased vitamin D consumption increased the risk for future VoD, but only in individuals with
a neurogenesis-centred biological susceptibility (i.e., reduced (≤median) baseline levels of hippocampal progenitor cell integrity).
Abbreviations: SOX2, SRY (sex determining region Y)-box 2; OR, odds ratio, CI, confidence intervals, ApoE-ε4, allele ε4 for the
apolipoprotein E gene. FDR corrected P values; ∗P < 0.05.

Discussion

Diet has been identified as one modifiable factor that may
foster healthier ageing [30–33] and, here, we promote the
significance of diet as a central element in shaping the trajec-
tory of healthy brain ageing. Specifically, our findings high-
light how dietary habits and nutritional factors can interact
with altered neurogenesis to modify risk for future dementia
and late-life depressive symptoms (Figure A.1 available in the
Appendices in the Supplementary Data section).

In the context of AD, our research uncovered several
noteworthy findings. We observed that reduced red meat
consumption and increased poultry consumption may
offer protection against AD but only in individuals with a
neurogenesis-centred biological susceptibility. These findings
align with previous studies focusing on these specific food
groups [34–36] and the Mediterranean diet [14, 15, 37],
which promotes moderate to high intake of fish and poultry,
along with limited consumption of red meat for optimal
ageing [38–40].

However, whilst greater adherence to the Mediterranean
diet has been shown to reduce the risk for AD and is
considered to positively influence the nine hallmark features
of ageing [41], it is important to note that we did not observe
a significant interaction between Mediterranean diet scores
and HN on AD in our study. This could indicate that specific
food groups rather than overall dietary patterns may have
a stronger impact on the neurogenic process. Moreover, a
systematic review recently reported limited and inconsis-
tent evidence around associations between adherence to the
Mediterranean diet and cerebral vascular-related biomark-
ers (i.e., hippocampal volume and white matter intensity),
highlighting an important gap in the literature and the need
for further research specifically on dietary patterns and brain
ageing [42].

The observed associations in meat and poultry consump-
tion in individuals with a neurogenesis-centred biological
susceptibility and increased future AD could, however, be
attributed to the impact of high-fat (red meat) and low-fat
(poultry) protein sources on the body and brain. Protein,
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Figure 4. Associations between dietary/nutritional factors and depressive symptomatology across a 12-year period in those
with and without a neurogenesis-centred biological susceptibility. (A) Table presenting the multivariable-adjusted associations
between dietary/nutritional factors and any depressive symptomatology across a 12-year period by neurogenesis-centred biological
susceptibility status (i.e., %MAP2 levels—hippocampal cell differentiation). (a) Represents the median for %MAP2 levels. (b)
OR are for 1-SD increase in dietary factor. Analysis: logistic regression. Model 1: adjusted for age, sex, level of education, and
baseline depressive symptomatology. Model 2: fully adjusted. Adjusted as per Model 1 plus physical exercise, and plasma glucose
levels. (B) Regression coefficient plot representing the associations between key dietary factors and any depressive symptomatology
in those with and without a neurogenesis-centred biological susceptibility. Increased plasma γ -tocopherol concentrations (a
vitamin E biomarker) increased the risk of having any depressive symptomatology, but only in individuals with a neurogenesis-
centred biological susceptibility (i.e., higher (≥median) baseline levels of hippocampal cell differentiation). Abbreviations: MAP2,
microtubule-associated protein 2; OR, odds ratio; CI, confidence intervals. FDR corrected P values; ∗P < 0.05.

particularly amino acid metabolism, plays a crucial role
in maintaining the integrity of neuronal membranes, and
regulating adult neurogenesis [43]. It also aids in muscle
strength and retention in ageing adults—factors that may be
important for dementia prevention [5, 44, 45].

Importantly, an excess of high-fat protein intake, such
as red meat, increases the risk of cardiovascular diseases
and diabetes [46], an outcome not observed for poultry
consumption [47]. This may explain why high consumption
of red meat, in particular, is not associated with reduced
dementia risk [48]. Additionally, preclinical studies indicate
that diets high in saturated fat can heighten oxidative
stress, neuroinflammation, and altered HN [49–52]—
changes all associated with dementia [5, 53, 54]. Moreover,
cardiovascular disease and diabetes can significantly impair
the neurogenic process [55–57]. Thus, in individuals with
a neurogenesis-centred biological susceptibility, increased
consumption of high-fat protein sources (red meat) might
exacerbate an already compromised biological system and/or
impact other key biological systems (i.e., cardiovascular

system), accelerating the progression to AD. Conversely,
increased consumption of low-fat protein sources (poultry)
may help to buffer the HN-associated alterations. However,
more work is needed to substantiate this.

Contrary to some previous studies [58, 59], we also found
a positive association between plasma lycopene concentra-
tions—a carotenoid biomarker—and AD risk, but only in
individuals with a neurogenesis-centred biological suscepti-
bility. However, overall, there is insufficient evidence to draw
firm conclusions or tease apart direct effects of lycopene on
future dementia risk [60], so it is presently unclear what this
finding represents in the wider context of AD.

One potential explanation is that this could be a com-
pensatory response in an attempt to mitigate the impact of
any HN-associated impairments. Compensatory responses
have been previously reported in the context of AD, where
an increase in serum/plasma levels of glutamine (a neuropro-
tectant) and BDNF (a key regulator of neuronal growth and
survival) appear early, followed by a decline in the advanced
stages of the condition [61, 62].
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In the context of our work, preclinical studies have con-
sistently reported on the neuroprotective effects of lycopene
by alleviating oxidative stress and suppressing production of
inflammatory cytokines [63], and have shown how lycopene
can specifically reduce neural stem cell death [64, 65]. There-
fore, for individuals with this neurobiological susceptibil-
ity, increased lycopene could potentially signify a biological
compensatory mechanism, aimed at rectifying or mitigating
the impact of earlier neurobiological changes associated with
AD progression.

Furthermore, it is noteworthy to emphasise that in
our earlier research [9], we hypothesised that a decrease
in hippocampal cell death during proliferation (i.e., a
neurogenesis-centred susceptibility for AD) could signify
an overall increase in the neurogenic process, which is also
contrary to what is observed in AD post-mortem studies [5].
However, we and others share the belief that an early surge in
HN in the trajectory of AD in itself serves as a compensatory
neurobiological response [66]. Therefore, the observed
elevation in lycopene concentrations may be closely linked
to the concurrently observed compensatory increase in HN.
However, future research is needed to substantiate this and
should seek to understand how lycopene concentrations
evolve across the trajectory of AD, particularly in individuals
neurobiologically susceptible.

Surprisingly, we also observed a positive association
between (i) vitamin D consumption and future VoD, and
(ii) plasma concentrations of γ -tocopherol (a vitamin E
biomarker) and depressive symptomatology—but again
only in individuals with a neurogenesis-centred biological
susceptibility. Generally, these findings do not align with
other research, including work from the wider 3C cohort,
which supports a protective association between vitamin D
and dementia [24, 67–69], and vitamin E and depression
[70, 71]. Moreover, whilst HN in the context of VoD and
depression has been relatively understudied, our previously
reported HN findings were not counterintuitive [9, 10].
Thus, we are unable to draw definitive conclusions for these
findings.

However, it is important to emphasise that here we are
presenting a cross-sectional snapshot of how HN and diet
interact 10–12 years prior to condition onset. Therefore,
we speculate that these findings could also potentially sig-
nify early compensatory responses to having a neurogenesis-
centred susceptibility, given that antioxidant vitamins (such
as vitamins D and E) are key regulatory factors of neuro-
genesis [72–74]. To our knowledge, compensatory biologi-
cal responses (outside of stress/(neuro)inflammation) in the
context of depression and VoD have been largely unexplored.
Therefore, further research is needed to substantiate our
speculations or determine whether these dietary and nutri-
tional outcomes are influencing other downstream processes
that subsequently promote VoD pathology and depressive
symptomatology years later.

Our study strengths include the use of a well-characterised
prospective cohort to evaluate the interaction between
dietary/nutritional factors and neurogenesis-centred

susceptibility status on CD, dementia, and depressive
symptomatology. This study is also the first to classify
neurobiological susceptibility to these conditions using HN
profiles 12 years prior to onset.

However, there are limitations. As with any observa-
tional study, associations between nutritional biomarkers
and our outcomes may be influenced by residual confound-
ing. Furthermore, other unmeasured biomarkers might play
an important role (e.g., flavonoids [75, 76]). Additionally,
dietary intake data primarily captures short-term exposure
and are susceptible to measurement errors, and it is impor-
tant to note that the nutritional and dietary assessments
were performed at different times with a 2-year interval.
Moreover, lifelong dietary habits are also important, and
our study only provides a snapshot. To understand the
impact of diet/nutrition more fully across the trajectory of
dementia and LLD in individuals with a neurobiological
susceptibility, it would be profitable for future research to
explore the dynamic interaction between diet and HN at
multiple timepoints. Finally, given the exploratory nature of
our study, it is difficult to conclude on the generalisability of
our findings.

In conclusion, our research highlights the critical role
for diet/nutrition in modifying the risk for future dementia
and depressive symptomatology specifically in individuals
with a neurogenesis-centred biological susceptibility. Our
work highlights the importance of understanding the factors
that promote or hinder brain health in subgroups of older
individuals.

Supplementary Data: Supplementary data mentioned in
the text are available to subscribers in Age and Ageing online.
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