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Abstract
Empirical dynamic modelling (EDM) is becoming an increasingly popular method for 
understanding the dynamics of ecosystems. It has been applied to laboratory, ter-
restrial, freshwater and marine systems, used to forecast natural populations and has 
addressed fundamental ecological questions. Despite its increasing use, we have not 
found full explanations of EDM in the ecological literature, limiting understanding and 
reproducibility. Here we expand upon existing work by providing a detailed introduc-
tion to EDM. We use three progressively more complex approaches. A short verbal 
explanation of EDM is then explicitly demonstrated by graphically working through 
a simple example. We then introduce a full mathematical description of the steps 
involved. Conceptually, EDM translates a time series of data into a path through a 
multi-dimensional space, whose axes are lagged values of the time series. A time step 
is chosen from which to make a prediction. The state of the system at that time step 
corresponds to a ‘focal point’ in the multi-dimensional space. The set (called the li-
brary) of candidate nearest neighbours to the focal point is constructed, to determine 
the nearest neighbours that are then used to make the prediction. Our mathematical 
explanation explicitly documents which points in the multi-dimensional space should 
not be considered as focal points. We suggest a new option for excluding points from 
the library that may be useful for short-term time series that are often found in ecol-
ogy. We focus on the core simplex and S-map algorithms of EDM. Our new R package, 
pbsEDM, enhances understanding (by outputting intermediate calculations), repro-
duces our results and can be applied to new data. Our work improves the clarity of the 
inner workings of EDM, a prerequisite for EDM to reach its full potential in ecology 
and have wide uptake in the provision of advice to managers of natural resources.
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1  |  INTRODUC TION

Population forecasts are widely used to provide advice to natu-
ral resource managers and to understand how ecosystems might 
respond to a changing environment. They are usually made by 
prescribing a mathematical model to describe the system, fitting 
the model to data to estimate parameters and iterating the model 
forward in time, possibly under a range of future scenarios. For 
single populations, such models include Ricker models (e.g. Dorner 
et al., 2009), matrix population models (e.g. Caswell et al., 1999) 
and age-structured models that require complex likelihood func-
tions and computational Bayesian techniques to fit to data (e.g. 
Cleary et al., 2019). Multi-trophic models of the marine ecosystem 
can consist of several coupled differential equations (e.g. Fasham 
et al., 1990).

Ecologists do have basic equations that might be considered as 
laws, such as a population will exponentially grow (or decline) under a 
constant environment (Turchin, 2001). However, even simple single-
species models consisting of a single difference equation can display 
qualitatively different behaviour with just slight changes in parame-
ters (May, 1976). Multi-trophic models of the marine ecosystem also 
exhibit such behaviour, yet it is hard to prescribe specific values to 
many parameters, such as growth and mortality (Edwards,  2001; 
Yool, 1998). Even slight structural changes in model formulation can 
also drastically change predictions (Wood & Thomas, 1999).

Empirical dynamic modelling (EDM) aims to avoid such issues by 
not requiring a mathematical model of the system being considered 
(Chang et al., 2017; Deyle et al., 2013; Munch et al., 2020; Sugihara 
& May, 1990; Ye et al., 2015). Therefore, there is no need to estimate 
parameters. Rather, EDM uses only the available data to calculate 
forecasts. It does this by translating time series of data into a path 
through multi-dimensional space and making forecasts based on 
nearest spatial neighbours.

Recent examples demonstrate EDM's continuing application to 
fundamental problems in ecology. Ushio (2022) proposed a new hy-
pothesis of how patterns of community diversity emerge, based on 
EDM analysis of environmental DNA data from experimental rice 
plots in Japan. Deyle et al. (2022) improved the quantitative under-
standing of food-web and chemical changes in Lake Geneva by using 
a novel hybrid combination of a parametric physical model and an 
EDM analysis of the biogeochemical variables. Rogers et al.  (2022) 
demonstrated that chaos is not rare in natural ecosystems by an-
alysing a global database of single-species population time series. 
Grziwotz et  al.  (2018) revealed complex environmental drivers 
of nine mosquito sub-populations in French Polynesia. Karakoç 
et al. (2020) investigated community assembly and stability through 
an EDM analysis of populations of laboratory microbial communi-
ties. They found changes in species interactions that were driven by 
the presence of a predator, behaviour that is difficult to model with 
traditional Lotka-Volterra-type ecological models.

Such dependence of dynamics on another variable (predators in 
this case) is particularly amenable to analysis using EDM because 
EDM does not require explicitly prescribing equations, from the 

many choices available, to model such processes (Ye et  al., 2015). 
As such, there may be a role for EDM in Ecosystem Based Fisheries 
Management, a current focus of several government agencies that 
takes into account the ecosystem when managing fisheries (Howell 
et al., 2021). Applications to fish populations have already been wide-
spread, including cod (Sguotti et al., 2020), salmon (Ye et al., 2015) 
and tuna (Harford et al., 2017), plus forage fish such as menhaden, 
sardine and anchovy (Deyle et  al., 2018; Sugihara et  al., 2012). In 
simulation studies, EDM was found to provide low errors in fore-
casted fish recruitment (Van Beveren et al., 2021).

Here we expand upon the current literature that describes EDM, 
e.g. Chang et  al.  (2017), Deyle et  al.  (2013), Munch et  al.  (2020), 
Sugihara and May  (1990), Ye et  al.  (2015), the third of which in-
cludes a useful glossary; see Munch et al. (2022) for an overview of 
recent advances in EDM, including methods for dealing with miss-
ing data. We build up a comprehensive description of the core sim-
plex algorithm of EDM that explicitly gives the steps involved; such 
steps have probably not previously been described in such detail (G. 
Sugihara, Scripps Institution of Oceanography, pers. comm.). We use 
three progressively more detailed approaches, starting with a short 
verbal explanation. Next we give a graphical explanation (without 
all the precise details) for a simple example time series. Then we 
extend existing notation and derive the mathematics for the uni-
variate situation, building on the explanation by Deyle et al. (2013). 
Technical mathematical concepts are kept to a minimum. We extend 
our derivation to the multivariate situation and the S-map algorithm 
in Appendix S1.

Our motivation to obtain a deeper understanding of EDM orig-
inated in our desire to investigate the potential of using EDM to 
provide advice to fisheries managers, particularly in the context of 
considering ecosystem effects. We wanted to fully understand the 
methods so that we could write our own R package, pbsEDM (Rogers 
& Edwards, 2023), tailored to our specific applications. Despite the 
widespread use of EDM, we did not find a full description that ex-
plained all the steps unambiguously in sufficient detail for us to write 
our own independent code.

This lack of explanatory detail led to us developing the descrip-
tions presented here to help users, particularly new ones, under-
stand the inner workings of EDM. These descriptions include two 
aspects of EDM that we had not seen previously reported (though 
some practitioners may well be aware of them). We explicitly de-
fine the allowable focal points from which predictions can be made 
(aspect 1), and calculate the library (or set) of candidate nearest 
neighbours to use for predictions (aspect 2). This allows for a clearer 
understanding of how the size of the library depends on both the 
number of lags being considered in an analysis and on the time step 
from which a prediction is being made.

Note that EDM has been called ‘an equation-free approach’ 
(Ye et  al., 2015) due to it not specifying equations that represent 
a mathematical model to represent the system. The equations we 
introduce here do not represent a model, but explicitly and unam-
biguously explain the inner workings of EDM. The mathematical 
details themselves are not overly technical, mainly dealing with 



    |  3 of 12EDWARDS et al.

careful definitions of vectors and matrices, which first requires 
thoughtful consideration of notation, as is often the case (Edwards 
& Auger-Méthé, 2019).

Practitioners of EDM should be aware that it has a long and 
strong theoretical background (Kantz & Schreiber, 2004; Packard 
et al., 1980; Schaffer & Kot, 1986; Stark et al., 2003; Takens, 1981), 
but do not need to understand the full details.

In our examples, the variables represent population numbers 
and associated environmental variables, but the methods are ap-
plicable to time series of any quantities in ecology or other fields. 
This does require that the system is not completely stochastic, and 
has some underlying deterministic rules (that may still be subject 
to some randomness). Our intention is for our pbsEDM R package 
to complement the popular R package rEDM (Park et al., 2023, with 
a tutorial at https://​github.​com/​Sugih​araLab/​rEDM/​blob/​master/​
vigne​ttes/​rEDM-​tutor​ial.​pdf) and Python package pyEDM (Park & 
Smith, 2023), to aid understanding and reproducibility. All interme-
diate calculations are available as output in pbsEDM and all code is 
in R, while rEDM contains C++ code (which is faster than R code but 
less readable than R to many ecologists); however, rEDM and pyEDM 
also include advanced algorithms that are not in pbsEDM. All code for 
reproducing our calculations and figures (each as a single function), 
and for applying methods to users' own data, is publicly available 
within pbsEDM (and File S1).

2  |  E XPL AINING EDM VERBALLY

The idea behind EDM is that we start with a simple time series of a 
variable, such as the annual values of the size of a population. We 
then construct additional time series of first-differenced values (dif-
ferences between consecutive values) and lags of those values (which 
compare the first-differenced values with those in the past, such as 
1 year previously or 2 years previously). These first-differenced and 
lagged values then make up the components of vectors that can 
be plotted as points in a multi-dimensional space known as a state 
space. Joining these points together in temporal order traces a path 
through the state space. To make a prediction from a point in the 
state space, the simplex algorithm finds the nearest neighbours (in 
terms of spatial distance in the state space) and sees where those 
neighbours went in their subsequent time step. A weighted average 
of these destinations yields the prediction. The key concept of EDM 
is the transforming of the time series of single values at each point 
in time, into points that lie in the multi-dimensional state space. The 
points in the state space can reveal a geometric structure that is not 
apparent when viewing the data as a simple time series.

The reason that EDM can work is because the lagged values 
contain intrinsic information concerning the system. Ye et al. (2015) 
described the general concept as “local neighborhoods (and their 
trajectories) in the reconstruction [our state space] map to local 
neighborhoods (and their trajectories) of the original system”.

To expand on our brief verbal description, we now work through 
an analysis of an example time series using graphical explanations 

and then derive an explicit mathematical description of the simplex 
algorithm.

3  |  E XPL AINING EDM GR APHIC ALLY

3.1  |  Plotting values from a simple time series in 
various ways

We start with a simple example time series of simulated data 
generated from a stochastic salmon population model that gives 
populations at times t = 1,2,3, … , 100. The time series is used for 
illustrative purposes, not to make any claims about applying EDM to 
any particular scenario. Figure 1 shows how the data can be plotted 
in five different ways, to introduce the concepts underpinning EDM.

Figure 1a shows the simple time series of the size of the popu-
lation at time t, Nt, with generally low and occasionally high values. 
In Figure 1b the same data are shown with Nt plotted against the 
value at the previous time step, namely Nt−1. This is a phase plane 
because there are two axes that represent variables and there is no 
time axis. Figure 1c introduces the first-differenced values, defined 
as the difference between the population at the next time step and 
the current time step, that is, Yt = Nt+1 − Nt. By definition, Yt can take 
negative and positive values (while Nt ≥ 0 since it represents the size 
of a population).

Figure  1d shows the phase plane of each Yt against its lagged 
value Yt−1, revealing some geometric structure in the data. This 
structure is inherently coming from the population Nt being mostly 
at low levels, but with occasional high values followed by immediate 
drops back down to low levels. There is clearly a cluster of points 
around the origin, representing low values of Yt (and Yt−1) for most 
of the time series, due to small changes between consecutive values 
of Nt. There are three ‘arms’ along which the remaining points lie, 
plus empty areas of the phase plane that never appear to be vis-
ited. The central top arm contains points representing values of Yt−1 
close to zero that are then followed by a large value of Yt (a large in-
crease in the population). When t = 98 the system is at the location (
Yt−1,Yt

)
=
(
Y97,Y98

)
, as indicated by the red open circle in Figure 1d. 

At the next time step, t = 99, the system moves to 
(
Y98,Y99

)
, given 

by the red closed circle. A graphical way to view this is shown by 
the red lines in Figure 1d. First, trace horizontally from 

(
Y97,Y98

)
 to 

the 1:1 line Yt−1 = Yt, so that the previous Yt value on the y-axis (Y98 ) 
becomes the new Yt−1 value on the x-axis (when t increases by 1, the 
old Yt becomes the new Yt−1). Then trace up or down to reach the 
new Yt value. This approach, inspired by the dynamical systems con-
cept of ‘cobwebbing’ (Murray, 1989), leads to the tracing out of the 
path of the grey lines in Figure 1d. This path is always clockwise. For 
the full time series, this results in the bottom-right arm, for which a 
large value of Yt−1 is always immediately followed by a large negative 
Yt (a large decline). Continuing clockwise leads to the left arm, for 
which the large declines are followed by very minor changes close 
to zero, and so in the next time step the trajectory heads back into 
the central cluster.

https://github.com/SugiharaLab/rEDM/blob/master/vignettes/rEDM-tutorial.pdf
https://github.com/SugiharaLab/rEDM/blob/master/vignettes/rEDM-tutorial.pdf
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The cobwebbing idea graphically shows that, for example, when 
the population experiences a large increase (large Yt), the next few 
time steps are expected to follow a certain path clockwise around 
the phase plane (namely, a large decrease in Yt shown in the bottom-
right arm, followed by a small value of Yt close to zero in the left arm). 
The idea of EDM is to harness such geometric structure in the spatial 
phase plane to make predictions in the time dimension.

Figure  1d also shows empty regions that the system does not 
visit, namely the top-right area (a large increase of Nt is never fol-
lowed by another large increase: Yt−1 and Yt are never both large), 
the bottom-left area (a decline or slight increase is never followed 
by a large decline: Yt−1 and Yt are never both very negative), and the 
top-left area (a large decline is never followed by a large increase: a 
very negative Yt−1 is never followed by a large Yt). This last descrip-
tion translates to Nt never going high, then low, then immediately 
high again.

The structure in Figure 1d represents the attractor on which the 
system evolves through time. This gives a useful way of thinking 
about EDM – the fundamental description of the dynamics of the 
system can be thought of as being given by the observed attractor 

(based solely on the data), rather than by a prescribed set of equa-
tions (Munch et al., 2020).

Figure 1e extends the two-dimensional phase plane idea to three 
dimensions, showing Yt against Yt−1 and Yt−2. While Figure 1d included 
a lag of one time step, Figure 1e includes lags of one (Yt−1 ) and two 
(Yt−2) time steps. Again, this reveals an underlying geometric struc-
ture of the system (seen more clearly in the animated Figure A.1: 
Appendix  S1 which shows the structure being built up through 
time). The three dimensions correspond, in EDM language, to an 
embedding dimension of E = 3, because the points are embedded in 
three-dimensional space. This space is known as the state space (the 
multi-dimensional equivalent of the two-dimensional phase plane). 
The phase plane in Figure 1d corresponds to E = 2. Higher embed-
ding dimensions (4, 5, 6, etc.) are also used, but obviously not easily 
plotted. The points at the left of Figure 1c show the distribution of 
values of Yt in one dimension, which is essentially an embedding di-
mension of E = 1. This is not commonly used in EDM but is shown 
here to illustrate how we can have the points on a line for E = 1, 
on a phase plane (Figure 1d) for E = 2 and a three-dimensional plot 
(Figure 1e) for E = 3.

F I G U R E  1 Different ways of plotting a simple simulated time series. Panels are arranged so that the y axes are the same for (a) and (b), 
and then for (c), (d) and (f). (a) Population values Nt (units of 100,000 individuals) are shown through time. The final time step (t = 100) is 
shown in the title, and the final three values of Nt are shown in red using the symbols indicated (these carry through to the other panels 
except (f)). (b) Same values in a phase plane, with Nt against Nt−1. The grey lines demonstrate the points progressing clockwise around the 
phase plane (see text). (c) Time series of resulting first-differenced values Yt = Nt+1 − Nt, with all values also overlaid in a single column to 
the left of t = 0. (d) Phase plane of Yt against Yt−1 reveals a geometric structure that is not apparent in the preceding panels. (e) Extends (d) to 
three dimensions, showing Yt, Yt−1 and Yt−2. (f) The predicted results and corresponding Pearson correlation coefficients, �, of the observed 
values of Yt for different values of embedding dimension E. Figure A.1: Appendix S1 shows a controllable frame-by-frame animation of this 
figure for t = 1 to t = 100, and Movie S1 gives a narrated version.
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In hindsight, some of the aforementioned conclusions from 
Figure 1d can be teased out from Figures 1a,c, but the phase plane 
in (d) makes them much more apparent. However, EDM utilises 
structure in higher dimensions (i.e. using more lags) that cannot be 
easily visualised and cannot be inferred from the simple time series. 
Certainly, the structure in the three-dimensional Figure 1e cannot 
be easily ascertained from the simple time series.

Figures  1a–e have simply plotted the data in different ways, 
there have been no statistical analyses or calculations beyond first-
differencing and lagging. Such plotting has revealed some structure 
behind the time series that is not immediately apparent in the simple 
time series plots. Figure 1f is discussed after we explain how EDM 
uses the geometric structure to make predictions.

3.2  |  Graphically demonstrating the 
simplex algorithm

For our example time series, we first choose a focal time t∗, which 
means that we want to use EDM to predict where the system goes in 
the subsequent time step (Deyle et al., 2013). We choose, as an ex-
ample, t∗ = 39, such that we want to estimate Y40 (where the system 
goes in the next time step) given knowledge of the rest of the time 
series. We denote the estimated value as ̂Y40, and more generally, for 
a given t∗ we want to estimate Ŷ t∗+1.

We can then compare the predicted value Ŷ40 to its known value 
to see how well the simplex algorithm performs for t∗ = 39. The 
state of the system at t∗ = 39 is highlighted in Figure 2, showing the 
values of Yt−1 = Y38 and Yt = Y39 in the lagged phase plane. For the 
phase plane the nearest three neighbours are located (red circles). 
These are the nearest neighbours spatially, but this does not mean 
that they are close to each other in time; the actual times of these 
points are t = 11, 43, and 98. The crux of EDM is to see where these 
points move to in the phase plane in their next time step, to make 
a prediction of where the focal point will go. The idea being that 
close points in the phase plane will move to close points for their 
subsequent time step, and this structure in the system allows us to 
estimate Ŷ t∗+1 = Ŷ40.

The purple arrows in Figure  2 show where the three nearest 
neighbours move to in their subsequent time steps t = 12, 44, and 
99 (recall from the cobwebbing idea that the Yt values become the 
new Yt−1 values, and so it is only the new Yt values that give new 
information). A weighted average of these new Yt values then gives 
our prediction of Ŷ t∗+1 = Ŷ40 (the blue star), which here is close to 
the value of Y40 already known from our time series (green circle). 
The weighting is based on the relative closeness of the three nearest 
neighbours to the focal point (explained in detail later).

We can make similar predictions for all alternative values of the 
focal time t∗ (in addition to t∗ = 39), and evaluate how the predicted 
values Ŷ t∗+1 compare to the known values Yt. We then calculate the 
Pearson correlation coefficient (�) of these, which is the usual, but 
not the only, way to characterise the performance of EDM predic-
tions (Ye et al., 2015), with � = 1.0 representing a perfect positive 

correlation between observations and predictions. For the phase 
plane from Figure 2, which has embedding dimension E = 2, we have 
� = 0.70.

This idea is then repeated for prescribed embedding dimensions 
of E = 3,4,5, …, and the predicted and observed values up to E = 6 
are shown in Figure 1f, together with the corresponding �. The best-
performing (highest �) embedding dimension is E = 3 (Figure 3), and 
this is the dimension that would, therefore, be used in EDM to fore-
cast the population into the future, beyond the timespan of the data.

4  |  E XPL AINING EDM MATHEMATIC ALLY

We now develop the above ideas using a more formal mathemati-
cal approach. We mostly follow and adapt the description given by 
Deyle et al. (2013), extending their work to give a full mathematical 
description that leads to a deeper understanding of EDM and its lim-
itations. The simplex algorithm is described for a univariate time se-
ries, such as an annual survey estimate of a population, and extended 
to the multivariate case and the S-map technique (Sugihara, 1994) 

F I G U R E  2 For the example time series, embedding dimension 
E = 2 yields the phase plane of Yt against Yt−1 as in Figure 1d. Given 
focal time t∗ = 39 (blue circle indicating Y38 and Y39) we want to 
predict Yt∗+1 = Y40. The three nearest neighbours to the blue circle 
in the phase plane are shown by the red circles. These are at times 
11, 43 and 98, though the times cannot be inferred from the phase 
plane. The purple arrows show where these points move to in the 
phase plane one time step later, namely to the points corresponding 
to times 12, 44 and 99. A weighted average of Y12,Y44 and Y99 
(grey horizontal lines) then gives the estimate of Y40 (blue star). In 
this case it is close to the known true value of Y40 (green circle). 
An annotated animation of this figure is shown in Figure A.2: 
Appendix S1, and the figures for all valid t∗ values are shown in 
Figure A.3: Appendix S1.
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in Appendix S1. Notation is extended from that defined clearly by 
Deyle et al. (2013), and summarised in Table 1 for reference.

4.1  |  Algorithm for simplex projection

We consider a univariate time series of population size Nt at each 
time t = 1,2,3, … , T. As earlier, we first-difference the data to give 
scalars

for t = 1, … , T − 1, such that the first value, Y1, is defined, with YT 
undefined. First-differencing is often done to help remove any simple 
linear mean trend (Chang et al., 2017). The aim of the analysis is to 
estimate N̂T+1, that is, the population the year after the final year of 
data, by estimating ŶT and then rearranging (1) to give N̂T+1 = ŶT + NT.

The simplex algorithm was detailed as steps (i) to (vii) by Deyle 
et al. (2013). These are summarised and extended in Table 2 to give 
an overall idea of the approach and then expanded upon here.

(i) For a given embedding dimension E, we define the vector x̃t in 
lagged space as containing Yt and consecutive lags down to Yt−E+1:

So x̃t has length E with each element defining an axis that we will 
be using to construct the E-dimensional state space. Actual realised 
values (numbers) for a particular t are recorded in vectors xt, with 
each element referring to its corresponding axis definition in x̃t. For 
example, with our simulated time series from Figure 1, E = 4 yields

with x̃t defining the axes of the state space.

(1)Yt = Nt+1 − Nt

(2)x̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yt

Yt−1

…

Yt−E+2

Yt−E+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

x̃t =

⎡⎢⎢⎢⎢⎢⎢⎣

Yt

Yt−1

Yt−2

Yt−3

⎤⎥⎥⎥⎥⎥⎥⎦

yielding x4 =

⎡⎢⎢⎢⎢⎢⎢⎣

Y4

Y3

Y2

Y1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

−4.854

5.241

0.059

−0.057

⎤⎥⎥⎥⎥⎥⎥⎦

, x5 =

⎡⎢⎢⎢⎢⎢⎢⎣

Y5

Y4

Y3

Y2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

−0.461

−4.854

5.241

0.059

⎤⎥⎥⎥⎥⎥⎥⎦

, … ,

F I G U R E  3 Dependence of the Pearson correlation coefficient, 
�, on embedding dimension, E, for the example time series from 
Figure 1. The best fitting model is given by the highest �, and 
corresponds to E = 3 which is what would be used to forecast N̂T+1 . 
We have shown high enough values of E to show a clear decline in 
�, but in general the maximum E considered should be about 

√
T 

(Munch et al., 2020), which is 10 here.
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TA B L E  1 The main notation used here.

Notation Definition

Indices

t Index for time; t = 1,2,3, … , T

T Number of time steps

t∗ Focal time at which we know the state of the system 
and want to predict the state at t∗ + 1

Variables

Nt Value, such as population size, at t = 1, … , T

Yt First-difference value Yt = Nt+1 − Nt

⋅̂ Estimate of ⋅

EDM calculations

x̃t Vector of length E defining the axes of the lagged state 
space, for example, x̃t =

(
Yt ,Yt−1,Yt−2

)

xt Realised values of the components of x̃t, for example, 
xt = (3, − 5, 1); each element of xt is the value 
along each axis of the E-dimensional space, where 
the axes are defined by components of x̃t

xt∗ Realised values of the components of x̃t at the focal 
time t = t∗

E Embedding dimension, the number of dimensions 
of the state space in which the system is being 
embedded to look for the nearest E + 1 neighbours 
to the focal point xt∗; E is the length of x̃t

X Matrix with rows representing time and columns 
representing each of the E components of x̃t; row 
t represents the system state at time t with the jth 
element representing the jth component of xt

ℒ(E, t∗) Library for a given E and t∗, consisting of the set of xt 
that are candidates to be considered as nearest 
neighbours of xt∗

CE,t∗ The number of vectors xt in the library ℒ(E, t∗)

CE The usual value of CE,t∗ for a given E, defined as 
CE = T − 2(E + 1); CE,t∗ ≥ CE

� i After calculating the distance between xt∗ and each xt 
in the library, �1 gives the time index of the xt that 
is the nearest neighbour to xt∗, �2 corresponds to 
the second nearest neighbour, etc.
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The components of x̃t from (3) give the column headings of ma-
trix X:

for which row t consists of the explicit values of xt (implicitly under-
stood to be written here as a row vector) with undefined values in-
dicated by ×. Vectors x1, x2 and x3 are undefined because the Yt for 
t ≤ 0 are undefined. Some brief descriptions of the simplex algorithm 
do not mention that some points should be excluded from the library 
(e.g. Hsieh et al., 2005; Ye et al., 2015), while Deyle et al.  (2013) did 
note that the first few time values will not have a vector in the state 

space; here we make that more explicit. Also, xT does not exist because 
YT is undefined in (1); however, we include it in X because we will want 
to forecast YT and it is helpful for X to have T rows.

Matrix (4) is for E = 4. Extending this for a general value of E we 
have

For a given time series of length T, the larger the value of E, the 
larger the size of the upper-right triangle of undefined values, because 
a larger embedding dimension requires more lagged values. The first 
row that is fully known (requiring that Yt−E+1 exists) is when t = E.

(ii) Pick a focal time t∗ for which we know Yt∗ and want to pre-
dict the value of Yt∗+1, with the prediction denoted Ŷ t∗+1. In the E
-dimensional state space, we do this by requiring knowledge of the 
full xt∗ and then estimating x̂t∗+1 to give us our estimate of Ŷ t∗+1 from 
(2). Not all values of t are available to use for t∗ (aspect 1; briefly ex-
plained in Table 3), which will be made explicit shortly. Note that we 
call Ŷ t∗+1 for general t∗ a ‘prediction’, reserving the term ‘forecast’ for 
estimating future ŶT and N̂T+1 beyond the existing data.

(iii) Given t∗, define the library 
{
xt

}
 of candidate nearest neigh-

bours of xt∗. To determine the library 
{
xt

}
 we start with an expanded 

version of X from (5) for general t∗, and systematically cross out Yt∗+1 
and various xt that must be excluded from the library due to four 
conditions, resulting in

(4)

Yt Yt−1 Yt−2 Yt−3

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⋮

xT−2

xT−1

xT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 × × ×

Y2 Y1 × ×

Y3 Y2 Y1 ×

Y4 Y3 Y2 Y1

Y5 Y4 Y3 Y2

⋮ ⋮ ⋮ ⋮

YT−2 YT−3 YT−4 YT−5

YT−1 YT−2 YT−3 YT−4

× YT−1 YT−2 YT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

Yt Yt−1 Yt−2 Yt−3 ⋯ Yt−E+2 Yt−E+1

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⋮

xE−1

xE

xE+1

⋮

xT−4

xT−3

xT−2

xT−1

xT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 × × × ⋯ × ×

Y2 Y1 × × ⋯ × ×

Y3 Y2 Y1 × ⋯ × ×

Y4 Y3 Y2 Y1 ⋯ × ×

Y5 Y4 Y3 Y2 ⋯ × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

YE−1 YE−2 YE−3 YE−4 ⋯ Y1 ×

YE YE−1 YE−2 YE−3 ⋯ Y2 Y1

YE+1 YE YE−1 YE−2 ⋯ Y3 Y2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

YT−4 YT−5 YT−6 YT−7 ⋯ YT−E−2 YT−E−3

YT−3 YT−4 YT−5 YT−6 ⋯ YT−E−1 YT−E−2

YT−2 YT−3 YT−4 YT−5 ⋯ YT−E YT−E−1

YT−1 YT−2 YT−3 YT−4 ⋯ YT−E+1 YT−E

× YT−1 YT−2 YT−3 ⋯ YT−E+2 YT−E+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

TA B L E  2 The steps of the simplex algorithm (extended from 
Deyle et al., 2013).

Step Brief description

(i) Translate the time series values into vectors in the multi-
dimensional state space defined by a given embedding 
dimension E

(ii) Pick a focal time from which to predict

(iii) Define the set of library vectors of candidate nearest 
neighbours to the focal point

(iv) Calculate the distances between appropriate points in the 
state space

(v) Identify the nearest neighbours to the focal point

(vi) Make a prediction using a weighted average of the known 
next positions of the nearest neighbours

(vii) Repeat steps (ii)–(vi) for all appropriate focal times

(viii) Calculate the correlation coefficient between predictions 
and the known observations

(ix) Repeat steps (i)–(viii) for different values of E, using the 
optimal one (E with maximum correlation coefficient) 
to forecast the future value of the population

Aspect Brief description

1 The allowable focal point times t∗ (from which to make predictions) 
depend explicitly upon the embedding dimension E. They require 
lagged values that do not extend before the start of the time series 
or beyond the end of it

2 We explicitly calculate the library of candidate nearest neighbours of 
the focal point, and derive a new relationship showing how the size 
of the library depends on both t∗ and E

TA B L E  3 Two aspects of EDM that we 
document here to aid new users of EDM.
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The four conditions for excluding components from the library of 
candidate nearest neighbours are:

a.	 xt∗ cannot be a nearest neighbour to itself—excludes xt∗;
b.	 Several xt are not fully defined (contain ×)—excludes 

x1, x2, … , xE−1 and xT;
c.	 Exclude any t for which we do not know xt+1 (since we need to 
know where the nearest neighbours go in the subsequent time 
step in (vi))—excludes xT−1;

d.	 It may not be appropriate to use any xt that includes Yt∗+1, since 
we are trying to predict Yt∗+1—excludes xt∗+1, xt∗+2, … , xt∗+E. This 
is further investigated later.

The resulting library is given by the remaining set of xt vectors 
that are not crossed out in (6), namely:

for those xt that are defined, where the notation ℒ(E, t∗) emphasises 
that the library depends upon both E and t∗; this is aspect 2. For a time 
series of length T = 50, Figure 4 shows how the size of the library, CE,t∗ , 
varies with E and t∗.

Returning to the idea from (ii) of determining the valid values of 
t∗, we now flesh out aspect 1, determining the allowable values of t∗ 
and how these depend on E. Matrix X in (6) shows that xt is not de-
fined for t = 1, 2, … , E − 1, such that t∗ cannot take these values; this 

is the top-right grey region of Figure 4. Also, xT is not defined and so 
t∗ cannot equal T. The value t∗ = T − 1 is also excluded because in 
step (viii) we want to compare the prediction with the known state, 
which cannot be done for t∗ = T − 1 since xt∗+1 = xT is not defined. 
Though note that t∗ = T − 1 can later be used to forecast x̂T and 
hence ŶT and N̂T+1, which is the aim of the analysis. Excluding T and 
T − 1 corresponds to the bottom grey region in Figure 4, leaving al-
lowable values for the focal time t∗ of E, E + 1, … , T − 3, T − 2, which 
are the non-grey combinations in Figure 4.

Usually, the library has CE = T − 2(E + 1) components, as in-
dicated by the bulk of values for each value of E in Figure  4 (e.g. 
C2 = 44, since T = 50). Intuitively, the library has fewer components 
as E gets larger because the larger E uses more temporal lags which 
creates a higher dimensional state space, resulting in X having more 
columns and subsequently more xt crossed out in (6) and more grey 
area at the top (small t∗ values) of Figure 4.

However, the library size also depends on t∗, and we denote 
it by CE,t∗. We now derive CE,t∗, as used to create Figure 4. For a 
given E  , CE,t∗ > CE for certain values of t∗, because for larger t∗ 
the crossed out xt∗+1, xt∗+2, … , xt∗+E components in the middle 
rows of (6) overlap with the crossed out xT−1 and xT compo-
nents, or do not exist since they have times > T . This overlap-
ping first happens when t∗ + E = T − 1, such that t∗ = T − E − 1 
and the library is

which has size CE,t∗ = CE,T−E−1 = T − E − 2 − (E − 1) = CE + 1. In 
Figure 4, this corresponds to C2,47 = 45 (for E = 2) and C3,46 = 43 (for 
E = 3).

For the next value, t∗ = T − E, we have

which has size CE,t∗ = CE,T−E = T − E − 1 − (E − 1) = CE + 2, corre-
sponding to C2,48 = 46 and C3,47 = 44 in Figure 4.

This pattern incrementally increases until we get to t∗ = T − 2, 
near the end of the time series, for which xt∗+1 and xT−1 are the same. 
So in (6), xT−1 gets excluded both because we do not know xT (ex-
clusion condition c) and because it contains Yt∗+1 (condition d). This 
overlap means that the library is

which has size CE,T−2 = T − 3 − (E − 1) = CE + E. In Figure 4, for E = 2 
this is the aforementioned C2,48 = 46, and for E = 3, this is, C3,48 = 45.

In summary, the library is given by (7) and is bigger for relatively 
large t∗, with size explicitly given by

(7)ℒ(E, t∗) =
{
xE , xE+1, … , xt∗−2, xt∗−1, xt∗+E+1, xt∗+E+2, … , xT−2

}
,

(8)ℒ(E, t∗) = ℒ(E, T − E − 1) =
{
xE , xE+1, … , xT−E−3, xT−E−2

}
,

(9)ℒ(E, T − E) =
{
xE , xE+1, … , xT−E−2, xT−E−1

}
,

(10)ℒ(E, T − 2) =
{
xE , xE+1, … , xT−4, xT−3

}
,

(11)CE,t∗ =

⎧
⎪⎨⎪⎩

T−2(E+1)=CE , t
∗ =E, E+1, … , T−E−2,

t
∗ −E, t

∗ =T−E−1, T−E, … , T−2.
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It was previously noted that (for a given E) the library will con-
sist of all possible vectors formed from the time series, except 
for the target vector (Deyle et al., 2013). However, here we have 
shown that other vectors also need to be excluded and that the 
library size also depends explicitly on t∗ (that we have not seen 
stated previously). In our example, this means that for E = 8 the 
library size can vary from 32 to 40 depending on the focal time 
(Figure 4).

(iv) The next step is to calculate the Euclidean distance in the 
state space between the focal point xt∗ and each point in the library. 
The Euclidean distance between two vectors a =

(
a1, a2, … , aE

)
 and 

b =
(
b1, b2, … , bE

)
 is defined as

(v) Rank every vector in the library with respect to its Euclidean 
distance from xt∗, and define � i to be the time index of the vector 
with rank i . So the nearest neighbour has rank 1 and will have time 
index �1, the second nearest will have rank 2 and time index �2, etc. 

The closest state-space vectors x�1
 and x�2

 indicate points in the 
library for which the system was in the most similar state to the focal 
time t∗, for this particular state-space reconstruction (value of E). Of 
interest are the E + 1 nearest neighbours, which form a simplex in 
the E-dimensional state space (hence the ‘simplex algorithm’). A sim-
plex in an E-dimensional space consists of E + 1 points (a triangle for 
E = 2, a tetrahedron or triangular pyramid for E = 3, etc.). In Figure 2, 
for which t∗ = 39, the nearest E + 1 = 3 neighbours (red points) are at 
times �1 = 43,�2 = 11 and �3 = 98. Thus, based on Yt and its lagged 
value Yt−1, the system appears closest to its state at time 39 at times 
43, 11 and 98 (times that are not necessarily close to 39, but the 
system is similar in the state space); this is the core concept of EDM, 
and is certainly not discernible from viewing the data as a simple 
time series.

(vi) In one time step, each vector x� i
 moves to its cor-

responding location x� i+1
. We use the nearest E + 1 neigh-

bours (so i = 1, 2, … , E + 1 ) and take a weighted average of the 
first components of the resulting x� i+1

. By definition from (6), 
xt∗+1 =

[
Yt∗+1,Yt∗ , … ,Yt∗−E+2

]
; it is only the first component of this 

vector that we are estimating (the other components are already 
known). Hence the weighted average only concerns the first compo-
nent of the nearest-neighbour vectors, namely the Y� i+1

. We make a 
prediction Ŷ t∗+1 for Yt∗+1 using equation S1 from Deyle et al. (2013):

where the weights wi are

The weights downweight the contribution of each Y� i+1
 based on 

the closeness of x� i
 to xt∗ relative to the closeness of x�1

 (the closest 
vector) to xt∗; note that Deyle et al. (2013) had the above summations 
to E, but they should be to E + 1 for the E + 1 nearest neighbours, as 
in Sguotti et al. (2020). By definition, the weight of the closest vector 
is always w1 = exp( − 1) = 0.368.

(vii) For short time series (like our example) cross-validation is 
used to test how well the method performs on the known data. This 
involves repeating steps (ii)-(vi) with all valid values of t∗ for which 
we can compare the observed Yt∗+1 with the predicted Ŷ t∗+1. Longer 
time series can be split to use the first half to predict the second half 
(Deyle et al., 2013).

(viii) Determine the correlation coefficient, �, between the ob-
served Yt∗+1 and predicted Ŷ t∗+1, defined as

where Y = mean
(
Yt∗+1

)
 and Ŷ = mean

(
Ŷ t∗+1

)
, and these means, and 

the summations in (15) are over the valid values of t∗ (as in Figure 4).

(12)∥ a − b ∥ =
[(
a1−b1

)2
+
(
a2−b2

)2
+ … +

(
aE−bE

)2]1∕2
.

(13)Ŷ t∗+1 =

∑E+1

i=1
wiY� i+1∑E+1

j=1
wj

,

(14)wi = exp

(
−

∥ xt∗ − x� i
∥

∥ xt∗ − x�1
∥

)
.

(15)� =

∑
t∗

�
Yt∗+1 − Y

��
Ŷ t∗+1 − Ŷ

�
�∑

t∗

�
Yt∗+1−Y

�2
⋅
∑

t∗

�
Ŷ t∗+1− Ŷ

�2

F I G U R E  4 The number of components of the library, CE,t∗,  
depends on the interplay between embedding dimension E and 
focal time t∗, as derived in (11) and shown here for any univariate 
time series of length T = 50. The t∗ axis is inverted to compare 
with (6). The top grey area indicates t∗ values that are not possible 
because the required lagged values (based on E) extend before the 
start of the time series. The bottom grey area indicates t∗ values 
that are not possible because for t = 50 the first-difference value is 
not known, and for t = 49 the predicted state at t = 50 is not known 
(and we first want to compare predictions to known values.) For 
each value of E, the majority of CE,t∗ values are CE = T − 2(E + 1), as 
shown by the large-font numbers (indicating C2 = 44, C3 = 42 etc.; 
see later text) that define the colours. Colours increment by one 
going down the figure, as illustrated by the small-font numbers. For 
E = 8, for example, t∗ can only take values between 8 and 48, and 
the library size is usually 32, but incrementally increases from 33 to 
40 as t∗ increases from 41 to 48.
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(ix) Repeat steps (i) to (viii) for a sequence of embedding di-
mensions E. The E that gives the highest � is considered to perform 
best, namely E = 3 (giving � = 0.83) for our example time series 
(Figure  3). That E is used to forecast the future value of the pop-
ulation, N̂T+1 = N̂101, by setting t∗ = 99 to estimate Ŷ100 and rear-
ranging (1) to give N̂101 = Ŷ100 + N100. Note that, regarding aspect 
1, t∗ = T − 1 = 99 is allowed here for forecasting N̂101; its exclusion 
in (6) is only for determining �. If � increases with E such that there 
is no optimal E, this suggests a high-dimensional essentially random 
process for all practical purposes, such that the system is difficult to 
model (Hsieh et al., 2005).

For our simulated data and E = 3, our pbsEDM imple-
mentation of steps (i)–(ix) gives Ŷ100 = − 0.077 yielding 
N̂101 = − 0.077 + 0.060 = − 0.017. Thus, the forecast is of a neg-
ative population, which is obviously unrealistic. Predictions of the 
first-differenced Ŷ t are weighted averages of observed values of 
Yt, so they must lie within the range of the observed values (e.g. 
Figure 2). More extreme values are not possible. But there is noth-
ing to stop the resulting N̂t predictions being more extreme than 
for the observed values of Nt, which includes allowing negative 
values. Negative values are predicted for six N̂t in our example 
time series (see File S1). We suggest the simple remedy of replac-
ing the negative predictions with the smallest observed value from 
the original Nt time series. A second option is to replace Nt with 
logNt (which can be negative), although results will differ because 
relative distances of nearest neighbours will change, altering the 
weights in (14); Rogers et al. (2022) implemented both Nt and logNt.  
A third option is to not first-difference the original data (discussed 
below).

Relatedly, we find � = 0.83, but calculating the correlation based 
on Nt and N̂t instead, by replacing Y with N in (15), gives 0.54; for 
E = 2 we get 0.70 and 0.28. Thus, we caution that high correlation 
based on Yt does not necessarily imply high correlation based on Nt, 
which is what we are interested in (see below and File S1).

Condition (d) above is that it may be appropriate to exclude 
xt∗+1, xt∗+2, … , xt∗+E from the library of candidate nearest neigh-
bours of the focal point xt∗. This is based on the principle that when 
testing the predictive accuracy of a method it is problematic to use 
information about the value being predicted. The method should not 
have any knowledge of the known value of the quantity.

For our simulated data and E = 2, we find that predictions Ŷ t∗+1 
are the same when using pbsEDM or rEDM, except for t∗ = 75 (0.838 
for pbsEDM versus 1.368 for rEDM) and t∗ = 94 (0.412 versus 0.177). 
For t∗ = 75, we find that rEDM uses xt∗+1 = x76 =

(
Y76,Y75

)
 as one of 

the three nearest neighbours to x75, and hence uses it in the predic-
tion Ŷ76, despite it including Y76 (which is what we are trying to pre-
dict). We find this by changing the value of Y76 to a large value such 
that x76 is no longer a close neighbour of x75, and the rEDM code then 
gives the exact same answer as for pbsEDM (also agreeing with some 
earlier code that we wrote independently of pbsEDM); see File S1.

Similarly, for t∗ = 94 we find that rEDM uses xt∗+2 = x96 =
(
Y96,Y95

)
 

as a nearest neighbour of x94, but this neighbour includes the value 

of Y95 that we are trying to predict (and we suggest it should be ex-
cluded). The default in rEDM is to not exclude any temporally adja-
cent neighbours, although the exclusionRadius argument allows 
the user to exclude nearest temporal neighbours within exclu-
sionRadius time steps of t∗ (i.e. this would exclude the exclu-
sionRadius number of xt both above and below xt∗ in (6), which can 
help deal with autocorrelation). For short time series as we have in 
our fisheries applications, we would like to retain as many potential 
neighbours as possible, and so in pbsEDM our default is as described 
above in (6) and (7), and we also provide options to match the set-
tings from rEDM. Differences between such options will become 
more important for higher embedding dimensions than 2, since the 
excluded points xt∗+1, xt∗+2, … , xt∗+E, become more numerous as E 
increases.

Note that forecasting N̂T+1 involves setting t∗ = T − 1, for 
which the excluded points just referred to would be the undefined 
xT , xT+1, … , xT−1+E. So although the different options will not di-
rectly affect the nearest neighbours of xT−1 and the N̂T+1 calculation, 
they do affect the calculation of � and hence the choice of E used for 
forecasting, which can indeed influence N̂T+1.

For our simulated data the largest Yt is Y3 for t = 3 (Figure 1c). 
Predicting Ŷ3 requires t∗ = 2 which is valid for E = 2 but no higher 
E (Figure 4). Yet Y3 is the poorest estimated value of all (being the 
right-most point of Figure 1f). So the most poorly estimated point is 
included in the � calculations only for E = 2, which seems an unfair 
constraint when comparing � for different E (Figure 3) to find the 
optimal E to use for forecasting. Future investigations could exam-
ine whether restricting calculations to the same set of t∗, based on 
Figure 4, should be done when determining the optimal E.

Whether to apply the first-differencing or not will be time-series 
dependent. Chang et al. (2017) state that linear trends in the original 
data should be removed, either by simple regression or taking the 
first-difference, to make the time series stationary. First-differencing 
was not strictly necessary for our example time series (there was no 
clear linear trend in the Nt), yet the first-differenced lagged values 
in Figure  1d do demonstrate geometric structure that is not seen 
in the non-first-differenced values in Figure  1b. Our explanations 
are the same without first-differencing, with Yt simply taking the 
value Nt instead of Nt+1 − Nt. Real applications can test sensitivity to 
first-differencing.

In Appendix S1 we extend the above mathematical description 
to the multivariate situation of analysing multiple variables, such as 
populations of several species or a population and an index of local 
temperature. The library of candidate nearest neighbours to the 
focal point can again be calculated. The size of the library does not 
depend on the chosen embedding dimension, just on the maximum 
lag, m, used for any of the variables. The size is once more repre-
sented by Figure 4, but with the E-axis replaced by m + 1. So the li-
brary size does not change if further variables are added unless they 
are lagged more than the existing variables such that m increases. 
We describe the S-map algorithm in Appendix S1 and apply it to our 
simulated data set.
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5  |  DISCUSSION

We have derived a thorough description of the core methods of 
EDM, yielding previously undocumented aspects that improve un-
derstanding. Having gained a deeper understanding of EDM, our 
work suggests potential enhancements. For example, the closest 
E + 1 neighbours are typically selected for the simplex algorithm (to 
form a simplex in the E-dimensional space), but simulations could in-
vestigate how altering the numbers of neighbours (an easily changed 
parameter in rEDM) might improve accuracy. This could lead to de-
veloping a bootstrapping approach to produce confidence intervals 
for simplex predictions. Simulation testing could determine the ob-
served coverage of such intervals (and also for bootstrap intervals 
from the S-map algorithm, as used by Karakoç et al., 2020).

Readers searching the literature should be aware of other terms 
that describe EDM-type approaches, including nonlinear forecast-
ing, state-space reconstruction, Takens' theorem, time-delay em-
bedding and Jacobian Lyapunov exponents. To delve into the more 
technical background behind EDM, we recommend the books by Ott 
et al. (1994), particularly Chapter 5 on ‘The Theory of Embedding’ and 
the included reprints of Sauer (1993) and Sugihara and May (1990), 
and Huffaker et al. (2017), particularly Chapter 3 on ‘Phase Space 
Reconstruction’.

The use of EDM can allow for time-varying productivity (or 
other ecosystem changes) to be implicitly accounted for in applica-
tions such as fisheries management. For example, Ye et  al.  (2015) 
found that including time series of sea surface temperature when 
forecasting salmon populations using EDM performed better than 
not including temperature, and that EDM outperformed parametric 
models. Fruitful research could further compare EDM with paramet-
ric time-varying models (for which it is necessary but hard to pre-
scribe an explicit mathematical relationship between productivity 
and time). How this would directly inform decision-making requires 
further investigation, since, in general, accounting for nonstationar-
ity in the ecosystem requires careful consideration of how to deter-
mine the benchmarks or reference points that are used to determine 
the status of stocks (Holt & Michielsens, 2020). So although we have 
described EDM as an alternative to parametric mechanistic model-
ling, both approaches can be used together in various complemen-
tary ways (Munch et al., 2020), and this may indeed be how EDM 
fulfils its potential in practical management applications.
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