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Abstract
Empirical	dynamic	modelling	(EDM)	is	becoming	an	increasingly	popular	method	for	
understanding	 the	dynamics	of	 ecosystems.	 It	 has	 been	 applied	 to	 laboratory,	 ter-
restrial,	freshwater	and	marine	systems,	used	to	forecast	natural	populations	and	has	
addressed	fundamental	ecological	questions.	Despite	its	increasing	use,	we	have	not	
found	full	explanations	of	EDM	in	the	ecological	literature,	limiting	understanding	and	
reproducibility.	Here	we	expand	upon	existing	work	by	providing	a	detailed	introduc-
tion	to	EDM.	We	use	three	progressively	more	complex	approaches.	A	short	verbal	
explanation	of	EDM	is	then	explicitly	demonstrated	by	graphically	working	through	
a	 simple	 example.	We	 then	 introduce	 a	 full	mathematical	 description	 of	 the	 steps	
involved.	Conceptually,	EDM	translates	a	 time	series	of	data	 into	a	path	 through	a	
multi-	dimensional	space,	whose	axes	are	lagged	values	of	the	time	series.	A	time	step	
is	chosen	from	which	to	make	a	prediction.	The	state	of	the	system	at	that	time	step	
corresponds	to	a	 ‘focal	point’	 in	the	multi-	dimensional	space.	The	set	 (called	the	 li-
brary)	of	candidate	nearest	neighbours	to	the	focal	point	is	constructed,	to	determine	
the	nearest	neighbours	that	are	then	used	to	make	the	prediction.	Our	mathematical	
explanation	explicitly	documents	which	points	in	the	multi-	dimensional	space	should	
not	be	considered	as	focal	points.	We	suggest	a	new	option	for	excluding	points	from	
the	library	that	may	be	useful	for	short-	term	time	series	that	are	often	found	in	ecol-
ogy.	We	focus	on	the	core	simplex	and	S-	map	algorithms	of	EDM.	Our	new	R	package,	
pbsEDM,	enhances	understanding	 (by	outputting	 intermediate	 calculations),	 repro-
duces	our	results	and	can	be	applied	to	new	data.	Our	work	improves	the	clarity	of	the	
inner	workings	of	EDM,	a	prerequisite	for	EDM	to	reach	its	full	potential	in	ecology	
and	have	wide	uptake	in	the	provision	of	advice	to	managers	of	natural	resources.
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1  |  INTRODUC TION

Population	 forecasts	 are	widely	 used	 to	provide	 advice	 to	natu-
ral	resource	managers	and	to	understand	how	ecosystems	might	
respond	 to	 a	 changing	 environment.	 They	 are	 usually	 made	 by	
prescribing	a	mathematical	model	to	describe	the	system,	fitting	
the	model	to	data	to	estimate	parameters	and	iterating	the	model	
forward	 in	 time,	 possibly	 under	 a	 range	of	 future	 scenarios.	 For	
single	populations,	such	models	include	Ricker	models	(e.g.	Dorner	
et	al.,	2009),	matrix	population	models	 (e.g.	Caswell	et	al.,	1999)	
and	age-	structured	models	that	require	complex	 likelihood	func-
tions	 and	 computational	 Bayesian	 techniques	 to	 fit	 to	 data	 (e.g.	
Cleary	et	al.,	2019).	Multi-	trophic	models	of	the	marine	ecosystem	
can	consist	of	several	coupled	differential	equations	(e.g.	Fasham	
et	al.,	1990).

Ecologists	do	have	basic	equations	that	might	be	considered	as	
laws,	such	as	a	population	will	exponentially	grow	(or	decline)	under	a	
constant	environment	(Turchin,	2001).	However,	even	simple	single-	
species	models	consisting	of	a	single	difference	equation	can	display	
qualitatively	different	behaviour	with	just	slight	changes	in	parame-
ters	(May,	1976).	Multi-	trophic	models	of	the	marine	ecosystem	also	
exhibit	such	behaviour,	yet	it	is	hard	to	prescribe	specific	values	to	
many	 parameters,	 such	 as	 growth	 and	 mortality	 (Edwards,	 2001; 
Yool,	1998).	Even	slight	structural	changes	in	model	formulation	can	
also	drastically	change	predictions	(Wood	&	Thomas,	1999).

Empirical	dynamic	modelling	(EDM)	aims	to	avoid	such	issues	by	
not	requiring	a	mathematical	model	of	the	system	being	considered	
(Chang	et	al.,	2017;	Deyle	et	al.,	2013;	Munch	et	al.,	2020;	Sugihara	
&	May,	1990;	Ye	et	al.,	2015).	Therefore,	there	is	no	need	to	estimate	
parameters.	Rather,	EDM	uses	only	 the	available	data	 to	calculate	
forecasts.	It	does	this	by	translating	time	series	of	data	into	a	path	
through	 multi-	dimensional	 space	 and	 making	 forecasts	 based	 on	
nearest	spatial	neighbours.

Recent	examples	demonstrate	EDM's	continuing	application	to	
fundamental	problems	in	ecology.	Ushio	(2022)	proposed	a	new	hy-
pothesis	of	how	patterns	of	community	diversity	emerge,	based	on	
EDM	 analysis	 of	 environmental	DNA	data	 from	 experimental	 rice	
plots	in	Japan.	Deyle	et	al.	(2022)	improved	the	quantitative	under-
standing	of	food-	web	and	chemical	changes	in	Lake	Geneva	by	using	
a	novel	hybrid	combination	of	a	parametric	physical	model	and	an	
EDM	analysis	of	the	biogeochemical	variables.	Rogers	et	al.	 (2022)	
demonstrated	 that	 chaos	 is	 not	 rare	 in	 natural	 ecosystems	by	 an-
alysing	 a	 global	 database	 of	 single-	species	 population	 time	 series.	
Grziwotz	 et	 al.	 (2018)	 revealed	 complex	 environmental	 drivers	
of	 nine	 mosquito	 sub-	populations	 in	 French	 Polynesia.	 Karakoç	
et	al.	(2020)	investigated	community	assembly	and	stability	through	
an	EDM	analysis	 of	 populations	of	 laboratory	microbial	 communi-
ties.	They	found	changes	in	species	interactions	that	were	driven	by	
the	presence	of	a	predator,	behaviour	that	is	difficult	to	model	with	
traditional	Lotka-	Volterra-	type	ecological	models.

Such	dependence	of	dynamics	on	another	variable	(predators	in	
this	 case)	 is	 particularly	 amenable	 to	 analysis	 using	 EDM	because	
EDM	 does	 not	 require	 explicitly	 prescribing	 equations,	 from	 the	

many	choices	available,	 to	model	 such	processes	 (Ye	et	 al.,	2015).	
As	such,	there	may	be	a	role	for	EDM	in	Ecosystem	Based	Fisheries	
Management,	a	current	focus	of	several	government	agencies	that	
takes	into	account	the	ecosystem	when	managing	fisheries	(Howell	
et	al.,	2021).	Applications	to	fish	populations	have	already	been	wide-
spread,	including	cod	(Sguotti	et	al.,	2020),	salmon	(Ye	et	al.,	2015)	
and	tuna	(Harford	et	al.,	2017),	plus	forage	fish	such	as	menhaden,	
sardine	 and	 anchovy	 (Deyle	 et	 al.,	2018;	 Sugihara	 et	 al.,	2012).	 In	
simulation	 studies,	 EDM	was	 found	 to	provide	 low	errors	 in	 fore-
casted	fish	recruitment	(Van	Beveren	et	al.,	2021).

Here	we	expand	upon	the	current	literature	that	describes	EDM,	
e.g.	 Chang	 et	 al.	 (2017),	 Deyle	 et	 al.	 (2013),	Munch	 et	 al.	 (2020),	
Sugihara	 and	May	 (1990),	 Ye	 et	 al.	 (2015),	 the	 third	 of	 which	 in-
cludes	a	useful	glossary;	see	Munch	et	al.	(2022)	for	an	overview	of	
recent	advances	 in	EDM,	 including	methods	for	dealing	with	miss-
ing	data.	We	build	up	a	comprehensive	description	of	the	core	sim-
plex	algorithm	of	EDM	that	explicitly	gives	the	steps	involved;	such	
steps	have	probably	not	previously	been	described	in	such	detail	(G.	
Sugihara,	Scripps	Institution	of	Oceanography,	pers.	comm.).	We	use	
three	progressively	more	detailed	approaches,	starting	with	a	short	
verbal	 explanation.	Next	we	give	 a	 graphical	 explanation	 (without	
all	 the	 precise	 details)	 for	 a	 simple	 example	 time	 series.	 Then	we	
extend	 existing	 notation	 and	 derive	 the	mathematics	 for	 the	 uni-
variate	situation,	building	on	the	explanation	by	Deyle	et	al.	(2013).	
Technical	mathematical	concepts	are	kept	to	a	minimum.	We	extend	
our	derivation	to	the	multivariate	situation	and	the	S-	map	algorithm	
in	Appendix	S1.

Our	motivation	to	obtain	a	deeper	understanding	of	EDM	orig-
inated	 in	 our	 desire	 to	 investigate	 the	 potential	 of	 using	 EDM	 to	
provide	advice	to	fisheries	managers,	particularly	in	the	context	of	
considering	ecosystem	effects.	We	wanted	to	fully	understand	the	
methods	so	that	we	could	write	our	own	R	package,	pbsEDM	(Rogers	
&	Edwards,	2023),	tailored	to	our	specific	applications.	Despite	the	
widespread	use	of	EDM,	we	did	not	find	a	full	description	that	ex-
plained	all	the	steps	unambiguously	in	sufficient	detail	for	us	to	write	
our	own	independent	code.

This	lack	of	explanatory	detail	led	to	us	developing	the	descrip-
tions	 presented	 here	 to	 help	 users,	 particularly	 new	 ones,	 under-
stand	 the	 inner	workings	of	EDM.	These	descriptions	 include	 two	
aspects	of	EDM	that	we	had	not	seen	previously	reported	(though	
some	practitioners	may	well	 be	 aware	of	 them).	We	explicitly	 de-
fine	the	allowable	focal	points	from	which	predictions	can	be	made	
(aspect	 1),	 and	 calculate	 the	 library	 (or	 set)	 of	 candidate	 nearest	
neighbours	to	use	for	predictions	(aspect	2).	This	allows	for	a	clearer	
understanding	of	how	the	size	of	 the	 library	depends	on	both	the	
number	of	lags	being	considered	in	an	analysis	and	on	the	time	step	
from	which	a	prediction	is	being	made.

Note	 that	 EDM	 has	 been	 called	 ‘an	 equation-	free	 approach’	
(Ye	 et	 al.,	2015)	 due	 to	 it	 not	 specifying	 equations	 that	 represent	
a	mathematical	model	 to	 represent	 the	 system.	The	equations	we	
introduce	here	do	not	represent	a	model,	but	explicitly	and	unam-
biguously	 explain	 the	 inner	 workings	 of	 EDM.	 The	 mathematical	
details	 themselves	 are	 not	 overly	 technical,	 mainly	 dealing	 with	
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careful	 definitions	 of	 vectors	 and	 matrices,	 which	 first	 requires	
thoughtful	consideration	of	notation,	as	is	often	the	case	(Edwards	
&	Auger-	Méthé,	2019).

Practitioners	 of	 EDM	 should	 be	 aware	 that	 it	 has	 a	 long	 and	
strong	 theoretical	 background	 (Kantz	 &	 Schreiber,	2004;	 Packard	
et	al.,	1980;	Schaffer	&	Kot,	1986;	Stark	et	al.,	2003;	Takens,	1981),	
but	do	not	need	to	understand	the	full	details.

In	 our	 examples,	 the	 variables	 represent	 population	 numbers	
and	 associated	 environmental	 variables,	 but	 the	 methods	 are	 ap-
plicable	 to	 time	series	of	any	quantities	 in	ecology	or	other	 fields.	
This	does	require	that	the	system	is	not	completely	stochastic,	and	
has	 some	 underlying	 deterministic	 rules	 (that	may	 still	 be	 subject	
to	 some	 randomness).	Our	 intention	 is	 for	our	pbsEDM	R	package	
to	complement	the	popular	R	package	rEDM	(Park	et	al.,	2023,	with	
a	 tutorial	 at	 https://	github.	com/	Sugih	araLab/	rEDM/	blob/	master/	
vigne	ttes/	rEDM-		tutor	ial.	pdf)	 and	 Python	 package	 pyEDM	 (Park	 &	
Smith,	2023),	to	aid	understanding	and	reproducibility.	All	interme-
diate	calculations	are	available	as	output	in	pbsEDM	and	all	code	is	
in	R,	while	rEDM	contains	C++	code	(which	is	faster	than	R	code	but	
less	readable	than	R	to	many	ecologists);	however,	rEDM	and	pyEDM 
also	include	advanced	algorithms	that	are	not	in	pbsEDM.	All	code	for	
reproducing	our	calculations	and	figures	(each	as	a	single	function),	
and	 for	 applying	methods	 to	 users'	 own	data,	 is	 publicly	 available	
within	pbsEDM	(and	File	S1).

2  |  E XPL AINING EDM VERBALLY

The	idea	behind	EDM	is	that	we	start	with	a	simple	time	series	of	a	
variable,	such	as	the	annual	values	of	the	size	of	a	population.	We	
then	construct	additional	time	series	of	first-	differenced	values	(dif-
ferences	between	consecutive	values)	and	lags	of	those	values	(which	
compare	the	first-	differenced	values	with	those	in	the	past,	such	as	
1	year	previously	or	2 years	previously).	These	first-	differenced	and	
lagged	 values	 then	make	 up	 the	 components	 of	 vectors	 that	 can	
be	plotted	as	points	 in	a	multi-	dimensional	space	known	as	a	state 
space.	Joining	these	points	together	in	temporal	order	traces	a	path	
through	 the	state	space.	To	make	a	prediction	 from	a	point	 in	 the	
state	space,	the	simplex	algorithm	finds	the	nearest	neighbours	(in	
terms	of	spatial	distance	 in	the	state	space)	and	sees	where	those	
neighbours	went	in	their	subsequent	time	step.	A	weighted	average	
of	these	destinations	yields	the	prediction.	The	key	concept	of	EDM	
is	the	transforming	of	the	time	series	of	single	values	at	each	point	
in	time,	into	points	that	lie	in	the	multi-	dimensional	state	space.	The	
points	in	the	state	space	can	reveal	a	geometric	structure	that	is	not	
apparent	when	viewing	the	data	as	a	simple	time	series.

The	 reason	 that	 EDM	 can	 work	 is	 because	 the	 lagged	 values	
contain	intrinsic	information	concerning	the	system.	Ye	et	al.	(2015)	
described	 the	 general	 concept	 as	 “local	 neighborhoods	 (and	 their	
trajectories)	 in	 the	 reconstruction	 [our	 state	 space]	 map	 to	 local	
neighborhoods	(and	their	trajectories)	of	the	original	system”.

To	expand	on	our	brief	verbal	description,	we	now	work	through	
an	analysis	of	an	example	 time	series	using	graphical	explanations	

and	then	derive	an	explicit	mathematical	description	of	the	simplex	
algorithm.

3  |  E XPL AINING EDM GR APHIC ALLY

3.1  |  Plotting values from a simple time series in 
various ways

We	 start	 with	 a	 simple	 example	 time	 series	 of	 simulated	 data	
generated	 from	 a	 stochastic	 salmon	 population	 model	 that	 gives	
populations	at	 times	t = 1,2,3, … , 100.	The	 time	series	 is	used	 for	
illustrative	purposes,	not	to	make	any	claims	about	applying	EDM	to	
any	particular	scenario.	Figure 1	shows	how	the	data	can	be	plotted	
in	five	different	ways,	to	introduce	the	concepts	underpinning	EDM.

Figure 1a	shows	the	simple	time	series	of	the	size	of	the	popu-
lation	at	time	t,	Nt,	with	generally	low	and	occasionally	high	values.	
In	Figure 1b	 the	 same	data	are	 shown	with	Nt	 plotted	against	 the	
value	at	the	previous	time	step,	namely	Nt−1.	This	 is	a	phase	plane	
because	there	are	two	axes	that	represent	variables	and	there	is	no	
time	axis.	Figure 1c	introduces	the	first-	differenced	values,	defined	
as	the	difference	between	the	population	at	the	next	time	step	and	
the	current	time	step,	that	is,	Yt = Nt+1 − Nt.	By	definition,	Yt	can	take	
negative	and	positive	values	(while	Nt ≥ 0	since	it	represents	the	size	
of	a	population).

Figure 1d	 shows	 the	phase	plane	of	 each	Yt	 against	 its	 lagged	
value	 Yt−1,	 revealing	 some	 geometric	 structure	 in	 the	 data.	 This	
structure	is	inherently	coming	from	the	population	Nt	being	mostly	
at	low	levels,	but	with	occasional	high	values	followed	by	immediate	
drops	back	down	to	 low	levels.	There	 is	clearly	a	cluster	of	points	
around	the	origin,	representing	low	values	of	Yt	(and	Yt−1)	for	most	
of	the	time	series,	due	to	small	changes	between	consecutive	values	
of	Nt.	There	are	 three	 ‘arms’	along	which	 the	 remaining	points	 lie,	
plus	empty	areas	of	 the	phase	plane	 that	never	 appear	 to	be	vis-
ited.	The	central	top	arm	contains	points	representing	values	of	Yt−1 
close	to	zero	that	are	then	followed	by	a	large	value	of	Yt	(a	large	in-
crease	in	the	population).	When	t = 98	the	system	is	at	the	location	(
Yt−1,Yt

)
=
(
Y97,Y98

)
,	as	indicated	by	the	red	open	circle	in	Figure 1d. 

At	the	next	time	step,	t = 99,	the	system	moves	to	
(
Y98,Y99

)
,	given	

by	the	red	closed	circle.	A	graphical	way	to	view	this	 is	shown	by	
the	red	lines	in	Figure 1d.	First,	trace	horizontally	from	

(
Y97,Y98

)
 to 

the	1:1	line	Yt−1 = Yt,	so	that	the	previous	Yt	value	on	the	y-	axis	(Y98 )	
becomes	the	new	Yt−1	value	on	the	x-	axis	(when	t	increases	by	1,	the	
old Yt	becomes	the	new	Yt−1).	Then	trace	up	or	down	to	reach	the	
new	Yt	value.	This	approach,	inspired	by	the	dynamical	systems	con-
cept	of	‘cobwebbing’	(Murray,	1989),	leads	to	the	tracing	out	of	the	
path	of	the	grey	lines	in	Figure 1d.	This	path	is	always	clockwise.	For	
the	full	time	series,	this	results	in	the	bottom-	right	arm,	for	which	a	
large	value	of	Yt−1	is	always	immediately	followed	by	a	large	negative	
Yt	 (a	 large	decline).	Continuing	clockwise	 leads	to	the	 left	arm,	for	
which	the	large	declines	are	followed	by	very	minor	changes	close	
to	zero,	and	so	in	the	next	time	step	the	trajectory	heads	back	into	
the	central	cluster.

https://github.com/SugiharaLab/rEDM/blob/master/vignettes/rEDM-tutorial.pdf
https://github.com/SugiharaLab/rEDM/blob/master/vignettes/rEDM-tutorial.pdf
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The	cobwebbing	idea	graphically	shows	that,	for	example,	when	
the	population	experiences	a	large	increase	(large	Yt),	the	next	few	
time	steps	are	expected	to	follow	a	certain	path	clockwise	around	
the	phase	plane	(namely,	a	large	decrease	in	Yt	shown	in	the	bottom-	
right	arm,	followed	by	a	small	value	of	Yt	close	to	zero	in	the	left	arm).	
The	idea	of	EDM	is	to	harness	such	geometric	structure	in	the	spatial	
phase	plane	to	make	predictions	in	the	time	dimension.

Figure 1d	 also	 shows	empty	 regions	 that	 the	 system	does	not	
visit,	namely	 the	top-	right	area	 (a	 large	 increase	of	Nt	 is	never	 fol-
lowed	by	another	 large	 increase:	Yt−1	 and	Yt	 are	never	both	 large),	
the	bottom-	left	area	 (a	decline	or	slight	 increase	 is	never	followed	
by	a	large	decline:	Yt−1	and	Yt	are	never	both	very	negative),	and	the	
top-	left	area	(a	large	decline	is	never	followed	by	a	large	increase:	a	
very	negative	Yt−1	is	never	followed	by	a	large	Yt).	This	last	descrip-
tion	 translates	 to	Nt	 never	going	high,	 then	 low,	 then	 immediately	
high	again.

The	structure	in	Figure 1d	represents	the	attractor	on	which	the	
system	 evolves	 through	 time.	 This	 gives	 a	 useful	 way	 of	 thinking	
about	EDM	–	the	 fundamental	description	of	 the	dynamics	of	 the	
system	can	be	thought	of	as	being	given	by	the	observed	attractor	

(based	solely	on	the	data),	rather	than	by	a	prescribed	set	of	equa-
tions	(Munch	et	al.,	2020).

Figure 1e	extends	the	two-	dimensional	phase	plane	idea	to	three	
dimensions,	showing	Yt	against	Yt−1	and	Yt−2.	While	Figure 1d	included	
a	lag	of	one	time	step,	Figure 1e	includes	lags	of	one	(Yt−1 )	and	two	
(Yt−2)	time	steps.	Again,	this	reveals	an	underlying	geometric	struc-
ture	of	 the	 system	 (seen	more	 clearly	 in	 the	animated	Figure A.1: 
Appendix S1	 which	 shows	 the	 structure	 being	 built	 up	 through	
time).	 The	 three	 dimensions	 correspond,	 in	 EDM	 language,	 to	 an	
embedding dimension	of	E = 3,	because	the	points	are	embedded	in	
three-	dimensional	space.	This	space	is	known	as	the	state space	(the	
multi-	dimensional	equivalent	of	the	two-	dimensional	phase	plane).	
The	phase	plane	in	Figure 1d	corresponds	to	E = 2. Higher embed-
ding	dimensions	(4,	5,	6,	etc.)	are	also	used,	but	obviously	not	easily	
plotted.	The	points	at	the	left	of	Figure 1c	show	the	distribution	of	
values	of	Yt	in	one	dimension,	which	is	essentially	an	embedding	di-
mension	of	E = 1.	This	is	not	commonly	used	in	EDM	but	is	shown	
here	 to	 illustrate	 how	we	 can	 have	 the	 points	 on	 a	 line	 for	E = 1,	
on	a	phase	plane	(Figure 1d)	for	E = 2	and	a	three-	dimensional	plot	
(Figure 1e)	for	E = 3.

F I G U R E  1 Different	ways	of	plotting	a	simple	simulated	time	series.	Panels	are	arranged	so	that	the	y	axes	are	the	same	for	(a)	and	(b),	
and	then	for	(c),	(d)	and	(f).	(a)	Population	values	Nt	(units	of	100,000	individuals)	are	shown	through	time.	The	final	time	step	(t = 100)	is	
shown	in	the	title,	and	the	final	three	values	of	Nt	are	shown	in	red	using	the	symbols	indicated	(these	carry	through	to	the	other	panels	
except	(f)).	(b)	Same	values	in	a	phase	plane,	with	Nt	against	Nt−1.	The	grey	lines	demonstrate	the	points	progressing	clockwise	around	the	
phase	plane	(see	text).	(c)	Time	series	of	resulting	first-	differenced	values	Yt = Nt+1 − Nt,	with	all	values	also	overlaid	in	a	single	column	to	
the	left	of	t = 0.	(d)	Phase	plane	of	Yt	against	Yt−1	reveals	a	geometric	structure	that	is	not	apparent	in	the	preceding	panels.	(e)	Extends	(d)	to	
three	dimensions,	showing	Yt,	Yt−1	and	Yt−2.	(f)	The	predicted	results	and	corresponding	Pearson	correlation	coefficients,	�,	of	the	observed	
values	of	Yt	for	different	values	of	embedding	dimension	E. Figure A.1:	Appendix	S1	shows	a	controllable	frame-	by-	frame	animation	of	this	
figure	for	t = 1 to t = 100,	and	Movie S1	gives	a	narrated	version.
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In	 hindsight,	 some	 of	 the	 aforementioned	 conclusions	 from	
Figure 1d	can	be	teased	out	from	Figures 1a,c,	but	the	phase	plane	
in	 (d)	 makes	 them	 much	 more	 apparent.	 However,	 EDM	 utilises	
structure	in	higher	dimensions	(i.e.	using	more	lags)	that	cannot	be	
easily	visualised	and	cannot	be	inferred	from	the	simple	time	series.	
Certainly,	 the	structure	 in	 the	 three-	dimensional	Figure 1e	 cannot	
be	easily	ascertained	from	the	simple	time	series.

Figures 1a–e	 have	 simply	 plotted	 the	 data	 in	 different	 ways,	
there	have	been	no	statistical	analyses	or	calculations	beyond	first-	
differencing	and	lagging.	Such	plotting	has	revealed	some	structure	
behind	the	time	series	that	is	not	immediately	apparent	in	the	simple	
time series plots. Figure 1f	is	discussed	after	we	explain	how	EDM	
uses	the	geometric	structure	to	make	predictions.

3.2  |  Graphically demonstrating the 
simplex algorithm

For	our	example	time	series,	we	first	choose	a	focal	time	t∗,	which	
means	that	we	want	to	use	EDM	to	predict	where	the	system	goes	in	
the	subsequent	time	step	(Deyle	et	al.,	2013).	We	choose,	as	an	ex-
ample,	t∗ = 39,	such	that	we	want	to	estimate	Y40	(where	the	system	
goes	in	the	next	time	step)	given	knowledge	of	the	rest	of	the	time	
series.	We	denote	the	estimated	value	as	̂Y40,	and	more	generally,	for	
a	given	t∗	we	want	to	estimate	Ŷ t∗+1.

We	can	then	compare	the	predicted	value	Ŷ40	to	its	known	value	
to	 see	 how	 well	 the	 simplex	 algorithm	 performs	 for	 t∗ = 39. The 
state	of	the	system	at	t∗ = 39	is	highlighted	in	Figure 2,	showing	the	
values	of	Yt−1 = Y38	and	Yt = Y39	 in	the	lagged	phase	plane.	For	the	
phase	plane	the	nearest	three	neighbours	are	 located	 (red	circles).	
These	are	the	nearest	neighbours	spatially,	but	this	does	not	mean	
that	they	are	close	to	each	other	in	time;	the	actual	times	of	these	
points	are	t = 11, 43,	and	98.	The	crux	of	EDM	is	to	see	where	these	
points	move	to	in	the	phase	plane	in	their	next	time	step,	to	make	
a	 prediction	 of	where	 the	 focal	 point	will	 go.	 The	 idea	 being	 that	
close	points	 in	 the	phase	plane	will	move	 to	close	points	 for	 their	
subsequent	time	step,	and	this	structure	in	the	system	allows	us	to	
estimate	Ŷ t∗+1 = Ŷ40.

The	 purple	 arrows	 in	 Figure 2	 show	where	 the	 three	 nearest	
neighbours	move	 to	 in	 their	 subsequent	 time	steps	t = 12, 44,	 and	
99	(recall	from	the	cobwebbing	idea	that	the	Yt	values	become	the	
new	Yt−1	 values,	 and	 so	 it	 is	only	 the	new	Yt	 values	 that	give	new	
information).	A	weighted	average	of	these	new	Yt	values	then	gives	
our	prediction	of	Ŷ t∗+1 = Ŷ40	 (the	blue	star),	which	here	 is	close	to	
the	value	of	Y40	already	known	from	our	time	series	 (green	circle).	
The	weighting	is	based	on	the	relative	closeness	of	the	three	nearest	
neighbours	to	the	focal	point	(explained	in	detail	later).

We	can	make	similar	predictions	for	all	alternative	values	of	the	
focal	time	t∗	(in	addition	to	t∗ = 39),	and	evaluate	how	the	predicted	
values	Ŷ t∗+1	compare	to	the	known	values	Yt.	We	then	calculate	the	
Pearson	correlation	coefficient	 (�)	of	these,	which	is	the	usual,	but	
not	the	only,	way	to	characterise	the	performance	of	EDM	predic-
tions	 (Ye	et	al.,	2015),	with	� = 1.0	 representing	a	perfect	positive	

correlation	 between	 observations	 and	 predictions.	 For	 the	 phase	
plane	from	Figure 2,	which	has	embedding	dimension	E = 2,	we	have	
� = 0.70.

This	idea	is	then	repeated	for	prescribed	embedding	dimensions	
of	E = 3,4,5, …,	and	the	predicted	and	observed	values	up	to	E = 6 
are	shown	in	Figure 1f,	together	with	the	corresponding	�.	The	best-	
performing	(highest	�)	embedding	dimension	is	E = 3	(Figure 3),	and	
this	is	the	dimension	that	would,	therefore,	be	used	in	EDM	to	fore-
cast	the	population	into	the	future,	beyond	the	timespan	of	the	data.

4  |  E XPL AINING EDM MATHEMATIC ALLY

We	now	develop	the	above	 ideas	using	a	more	formal	mathemati-
cal	approach.	We	mostly	follow	and	adapt	the	description	given	by	
Deyle	et	al.	(2013),	extending	their	work	to	give	a	full	mathematical	
description	that	leads	to	a	deeper	understanding	of	EDM	and	its	lim-
itations.	The	simplex	algorithm	is	described	for	a	univariate	time	se-
ries,	such	as	an	annual	survey	estimate	of	a	population,	and	extended	
to	the	multivariate	case	and	the	S-	map	technique	 (Sugihara,	1994)	

F I G U R E  2 For	the	example	time	series,	embedding	dimension	
E = 2	yields	the	phase	plane	of	Yt	against	Yt−1	as	in	Figure 1d.	Given	
focal	time	t∗ = 39	(blue	circle	indicating	Y38	and	Y39)	we	want	to	
predict Yt∗+1 = Y40.	The	three	nearest	neighbours	to	the	blue	circle	
in	the	phase	plane	are	shown	by	the	red	circles.	These	are	at	times	
11,	43	and	98,	though	the	times	cannot	be	inferred	from	the	phase	
plane.	The	purple	arrows	show	where	these	points	move	to	in	the	
phase	plane	one	time	step	later,	namely	to	the	points	corresponding	
to	times	12,	44	and	99.	A	weighted	average	of	Y12,Y44	and	Y99 
(grey	horizontal	lines)	then	gives	the	estimate	of	Y40	(blue	star).	In	
this	case	it	is	close	to	the	known	true	value	of	Y40	(green	circle).	
An	annotated	animation	of	this	figure	is	shown	in	Figure	A.2:	
Appendix	S1,	and	the	figures	for	all	valid	t∗	values	are	shown	in	
Figure	A.3:	Appendix	S1.
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in	Appendix	S1.	Notation	 is	extended	from	that	defined	clearly	by	
Deyle	et	al.	(2013),	and	summarised	in	Table 1	for	reference.

4.1  |  Algorithm for simplex projection

We	consider	a	univariate	 time	series	of	population	 size	Nt	 at	each	
time t = 1,2,3, … , T.	As	earlier,	we	first-	difference	the	data	to	give	
scalars

for	 t = 1, … , T − 1,	 such	 that	 the	 first	 value,	Y1,	 is	 defined,	with	YT 
undefined.	First-	differencing	is	often	done	to	help	remove	any	simple	
linear	mean	 trend	 (Chang	et	al.,	2017).	The	aim	of	 the	analysis	 is	 to	
estimate	N̂T+1,	 that	 is,	 the	population	the	year	after	the	final	year	of	
data,	by	estimating	ŶT	and	then	rearranging	(1)	to	give	N̂T+1 = ŶT + NT.

The	simplex	algorithm	was	detailed	as	steps	(i)	to	(vii)	by	Deyle	
et	al.	(2013).	These	are	summarised	and	extended	in	Table 2 to give 
an	overall	idea	of	the	approach	and	then	expanded	upon	here.

(i)	For	a	given	embedding	dimension	E,	we	define	the	vector	x̃t	in	
lagged	space	as	containing	Yt	and	consecutive	lags	down	to	Yt−E+1:

So	x̃t	has	length	E	with	each	element	defining	an	axis	that	we	will	
be	using	to	construct	the	E-	dimensional	state	space.	Actual	realised	
values	 (numbers)	 for	a	particular	 t	are	recorded	 in	vectors	xt,	with	
each	element	referring	to	its	corresponding	axis	definition	in	x̃t. For 
example,	with	our	simulated	time	series	from	Figure 1,	E = 4	yields

with x̃t	defining	the	axes	of	the	state	space.

(1)Yt = Nt+1 − Nt

(2)x̃t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yt

Yt−1

…

Yt−E+2

Yt−E+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

x̃t =

⎡⎢⎢⎢⎢⎢⎢⎣

Yt

Yt−1

Yt−2

Yt−3

⎤⎥⎥⎥⎥⎥⎥⎦

yielding x4 =

⎡⎢⎢⎢⎢⎢⎢⎣

Y4

Y3

Y2

Y1

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

−4.854

5.241

0.059

−0.057

⎤⎥⎥⎥⎥⎥⎥⎦

, x5 =

⎡⎢⎢⎢⎢⎢⎢⎣

Y5

Y4

Y3

Y2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

−0.461

−4.854

5.241

0.059

⎤⎥⎥⎥⎥⎥⎥⎦

, … ,

F I G U R E  3 Dependence	of	the	Pearson	correlation	coefficient,	
�,	on	embedding	dimension,	E,	for	the	example	time	series	from	
Figure 1.	The	best	fitting	model	is	given	by	the	highest	�,	and	
corresponds	to	E = 3	which	is	what	would	be	used	to	forecast	N̂T+1 .	
We	have	shown	high	enough	values	of	E	to	show	a	clear	decline	in	
�,	but	in	general	the	maximum	E	considered	should	be	about	

√
T 

(Munch	et	al.,	2020),	which	is	10	here.
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TA B L E  1 The	main	notation	used	here.

Notation Definition

Indices

t Index	for	time;	t = 1,2,3, … , T

T Number	of	time	steps

t∗ Focal	time	at	which	we	know	the	state	of	the	system	
and	want	to	predict	the	state	at	t∗ + 1

Variables

Nt Value,	such	as	population	size,	at	t = 1, … , T

Yt First-	difference	value	Yt = Nt+1 − Nt

⋅̂ Estimate	of	⋅

EDM calculations

x̃t Vector	of	length	E defining	the	axes	of	the	lagged	state	
space,	for	example,	x̃t =

(
Yt ,Yt−1,Yt−2

)

xt Realised values	of	the	components	of	x̃t,	for	example,	
xt = (3, − 5, 1);	each	element	of	xt	is	the	value	
along	each	axis	of	the	E-	dimensional	space,	where	
the	axes	are	defined	by	components	of	x̃t

xt∗ Realised values	of	the	components	of	x̃t	at	the	focal	
time t = t∗

E Embedding	dimension,	the	number	of	dimensions	
of	the	state	space	in	which	the	system	is	being	
embedded	to	look	for	the	nearest	E + 1	neighbours	
to	the	focal	point	xt∗; E	is	the	length	of	x̃t

X Matrix	with	rows	representing	time	and	columns	
representing	each	of	the	E	components	of	x̃t; row 
t	represents	the	system	state	at	time	t with the jth 
element	representing	the	jth	component	of	xt

ℒ(E, t∗) Library	for	a	given	E	and	t∗,	consisting	of	the	set	of	xt 
that	are	candidates	to	be	considered	as	nearest	
neighbours	of	xt∗

CE,t∗ The	number	of	vectors	xt	in	the	library	ℒ(E, t∗)

CE The	usual	value	of	CE,t∗	for	a	given	E,	defined	as	
CE = T − 2(E + 1); CE,t∗ ≥ CE

� i After	calculating	the	distance	between	xt∗	and	each	xt 
in	the	library,	�1	gives	the	time	index	of	the	xt	that	
is	the	nearest	neighbour	to	xt∗,	�2	corresponds	to	
the	second	nearest	neighbour,	etc.
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The	components	of	x̃t	from	(3)	give	the	column	headings	of	ma-
trix	X:

for	which	row	t	consists	of	the	explicit	values	of	xt	 (implicitly	under-
stood	to	be	written	here	as	a	 row	vector)	with	undefined	values	 in-
dicated	by	×.	Vectors	x1, x2	and	x3	are	undefined	because	the	Yt	 for	
t ≤ 0	are	undefined.	Some	brief	descriptions	of	the	simplex	algorithm	
do	not	mention	that	some	points	should	be	excluded	from	the	library	
(e.g.	Hsieh	et	al.,	2005;	Ye	et	al.,	2015),	while	Deyle	et	al.	 (2013)	did	
note	that	the	first	few	time	values	will	not	have	a	vector	in	the	state	

space;	here	we	make	that	more	explicit.	Also,	xT	does	not	exist	because	
YT	is	undefined	in	(1);	however,	we	include	it	in	X	because	we	will	want	
to	forecast	YT	and	it	is	helpful	for	X	to	have	T rows.

Matrix	(4)	is	for	E = 4.	Extending	this	for	a	general	value	of	E we 
have

For	a	given	time	series	of	 length	T,	 the	 larger	the	value	of	E,	 the	
larger	the	size	of	the	upper-	right	triangle	of	undefined	values,	because	
a	larger	embedding	dimension	requires	more	lagged	values.	The	first	
row	that	is	fully	known	(requiring	that	Yt−E+1	exists)	is	when	t = E.

(ii)	Pick	a	 focal	 time	t∗	 for	which	we	know	Yt∗	and	want	to	pre-
dict	 the	 value	 of	Yt∗+1,	with	 the	 prediction	 denoted	Ŷ t∗+1.	 In	 the	E
-	dimensional	state	space,	we	do	this	by	requiring	knowledge	of	the	
full	xt∗	and	then	estimating	x̂t∗+1	to	give	us	our	estimate	of	Ŷ t∗+1	from	
(2).	Not	all	values	of	t	are	available	to	use	for	t∗	(aspect	1;	briefly	ex-
plained	in	Table 3),	which	will	be	made	explicit	shortly.	Note	that	we	
call	Ŷ t∗+1	for	general	t∗	a	‘prediction’,	reserving	the	term	‘forecast’	for	
estimating	future	ŶT	and	N̂T+1	beyond	the	existing	data.

(iii)	Given	t∗,	define	the	library	
{
xt

}
	of	candidate	nearest	neigh-

bours	of	xt∗.	To	determine	the	library	
{
xt

}
	we	start	with	an	expanded	

version	of	X	from	(5)	for	general	t∗,	and	systematically	cross	out	Yt∗+1 
and	various	xt	 that	must	be	excluded	 from	the	 library	due	 to	 four	
conditions,	resulting	in

(4)

Yt Yt−1 Yt−2 Yt−3

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⋮

xT−2

xT−1

xT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 × × ×

Y2 Y1 × ×

Y3 Y2 Y1 ×

Y4 Y3 Y2 Y1

Y5 Y4 Y3 Y2

⋮ ⋮ ⋮ ⋮

YT−2 YT−3 YT−4 YT−5

YT−1 YT−2 YT−3 YT−4

× YT−1 YT−2 YT−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

Yt Yt−1 Yt−2 Yt−3 ⋯ Yt−E+2 Yt−E+1

X=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⋮

xE−1

xE

xE+1

⋮

xT−4

xT−3

xT−2

xT−1

xT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1 × × × ⋯ × ×

Y2 Y1 × × ⋯ × ×

Y3 Y2 Y1 × ⋯ × ×

Y4 Y3 Y2 Y1 ⋯ × ×

Y5 Y4 Y3 Y2 ⋯ × ×

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

YE−1 YE−2 YE−3 YE−4 ⋯ Y1 ×

YE YE−1 YE−2 YE−3 ⋯ Y2 Y1

YE+1 YE YE−1 YE−2 ⋯ Y3 Y2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

YT−4 YT−5 YT−6 YT−7 ⋯ YT−E−2 YT−E−3

YT−3 YT−4 YT−5 YT−6 ⋯ YT−E−1 YT−E−2

YT−2 YT−3 YT−4 YT−5 ⋯ YT−E YT−E−1

YT−1 YT−2 YT−3 YT−4 ⋯ YT−E+1 YT−E

× YT−1 YT−2 YT−3 ⋯ YT−E+2 YT−E+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

TA B L E  2 The	steps	of	the	simplex	algorithm	(extended	from	
Deyle	et	al.,	2013).

Step Brief description

(i) Translate	the	time	series	values	into	vectors	in	the	multi-	
dimensional	state	space	defined	by	a	given	embedding	
dimension	E

(ii) Pick	a	focal	time	from	which	to	predict

(iii) Define	the	set	of	library	vectors	of	candidate	nearest	
neighbours	to	the	focal	point

(iv) Calculate	the	distances	between	appropriate	points	in	the	
state	space

(v) Identify	the	nearest	neighbours	to	the	focal	point

(vi) Make	a	prediction	using	a	weighted	average	of	the	known	
next	positions	of	the	nearest	neighbours

(vii) Repeat	steps	(ii)–(vi)	for	all	appropriate	focal	times

(viii) Calculate	the	correlation	coefficient	between	predictions	
and	the	known	observations

(ix) Repeat	steps	(i)–(viii)	for	different	values	of	E,	using	the	
optimal	one	(E	with	maximum	correlation	coefficient)	
to	forecast	the	future	value	of	the	population

Aspect Brief description

1 The	allowable	focal	point	times	t∗	(from	which	to	make	predictions)	
depend	explicitly	upon	the	embedding	dimension	E.	They	require	
lagged	values	that	do	not	extend	before	the	start	of	the	time	series	
or	beyond	the	end	of	it

2 We	explicitly	calculate	the	library	of	candidate	nearest	neighbours	of	
the	focal	point,	and	derive	a	new	relationship	showing	how	the	size	
of	the	library	depends	on	both	t∗	and	E

TA B L E  3 Two	aspects	of	EDM	that	we	
document	here	to	aid	new	users	of	EDM.
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The	four	conditions	for	excluding	components	from	the	library	of	
candidate	nearest	neighbours	are:

a.	 xt∗	cannot	be	a	nearest	neighbour	to	itself—excludes	xt∗;
b.	 Several	 xt	 are	 not	 fully	 defined	 (contain	 ×)—excludes	

x1, x2, … , xE−1	and	xT;
c.	 Exclude	any	t	for	which	we	do	not	know	xt+1	(since	we	need	to	
know	where	the	nearest	neighbours	go	in	the	subsequent	time	
step	in	(vi))—excludes	xT−1;

d.	 It	may	not	be	appropriate	to	use	any	xt	that	includes	Yt∗+1,	since	
we	are	trying	to	predict	Yt∗+1—excludes	xt∗+1, xt∗+2, … , xt∗+E. This 
is	further	investigated	later.

The	resulting	library	is	given	by	the	remaining	set	of	xt vectors 
that	are	not	crossed	out	in	(6),	namely:

for	those	xt	that	are	defined,	where	the	notation	ℒ(E, t∗)	emphasises	
that	the	library	depends	upon	both	E	and	t∗;	this	is	aspect	2.	For	a	time	
series	of	length	T = 50,	Figure 4	shows	how	the	size	of	the	library,	CE,t∗ ,	
varies	with	E	and	t∗.

Returning	to	the	idea	from	(ii)	of	determining	the	valid	values	of	
t∗,	we	now	flesh	out	aspect	1,	determining	the	allowable	values	of	t∗ 
and	how	these	depend	on	E.	Matrix	X	in	(6)	shows	that	xt	is	not	de-
fined	for	t = 1, 2, … , E − 1,	such	that	t∗	cannot	take	these	values;	this	

is	the	top-	right	grey	region	of	Figure 4.	Also,	xT	is	not	defined	and	so	
t∗	 cannot	equal	T.	The	value	t∗ = T − 1	 is	also	excluded	because	 in	
step	(viii)	we	want	to	compare	the	prediction	with	the	known	state,	
which	cannot	be	done	for	t∗ = T − 1	since	xt∗+1 = xT	is	not	defined.	
Though	 note	 that	 t∗ = T − 1	 can	 later	 be	 used	 to	 forecast	 x̂T	 and	
hence	ŶT	and	N̂T+1,	which	is	the	aim	of	the	analysis.	Excluding	T	and	
T − 1	corresponds	to	the	bottom	grey	region	in	Figure 4,	leaving	al-
lowable	values	for	the	focal	time	t∗	of	E, E + 1, … , T − 3, T − 2,	which	
are	the	non-	grey	combinations	in	Figure 4.

Usually,	 the	 library	 has	 CE = T − 2(E + 1)	 components,	 as	 in-
dicated	by	 the	 bulk	 of	 values	 for	 each	 value	of	E	 in	 Figure 4	 (e.g.	
C2 = 44,	since	T = 50).	Intuitively,	the	library	has	fewer	components	
as	E	gets	larger	because	the	larger	E	uses	more	temporal	lags	which	
creates	a	higher	dimensional	state	space,	resulting	in	X	having	more	
columns	and	subsequently	more	xt	crossed	out	in	(6)	and	more	grey	
area	at	the	top	(small	t∗	values)	of	Figure 4.

However,	the	library	size	also	depends	on	t∗,	and	we	denote	
it	by	CE,t∗.	We	now	derive	CE,t∗,	as	used	to	create	Figure 4.	For	a	
given	E  ,	CE,t∗ > CE	 for	 certain	 values	of	t∗,	 because	 for	 larger	t∗ 
the	 crossed	 out	xt∗+1, xt∗+2, … , xt∗+E	 components	 in	 the	middle	
rows	 of	 (6)	 overlap	 with	 the	 crossed	 out	 xT−1	 and	 xT compo-
nents,	or	do	not	exist	since	they	have	times	> T .	This	overlap-
ping	 first	 happens	 when	 t∗ + E = T − 1,	 such	 that	 t∗ = T − E − 1 
and	the	library	is

which	 has	 size	 CE,t∗ = CE,T−E−1 = T − E − 2 − (E − 1) = CE + 1.	 In	
Figure 4,	this	corresponds	to	C2,47 = 45	(for	E = 2)	and	C3,46 = 43	(for	
E = 3).

For	the	next	value,	t∗ = T − E,	we	have

which	 has	 size	 CE,t∗ = CE,T−E = T − E − 1 − (E − 1) = CE + 2,	 corre-
sponding	to	C2,48 = 46	and	C3,47 = 44	in	Figure 4.

This	pattern	 incrementally	 increases	until	we	get	 to	t∗ = T − 2,	
near	the	end	of	the	time	series,	for	which	xt∗+1	and	xT−1	are	the	same.	
So	 in	 (6),	xT−1	gets	excluded	both	because	we	do	not	know	xT	 (ex-
clusion	condition	c)	and	because	it	contains	Yt∗+1	(condition	d).	This	
overlap	means	that	the	library	is

which	has	size	CE,T−2 = T − 3 − (E − 1) = CE + E.	In	Figure 4,	for	E = 2 
this	is	the	aforementioned	C2,48 = 46,	and	for	E = 3,	this	is,	C3,48 = 45.

In	summary,	the	library	is	given	by	(7)	and	is	bigger	for	relatively	
large	t∗,	with	size	explicitly	given	by

(7)ℒ(E, t∗) =
{
xE , xE+1, … , xt∗−2, xt∗−1, xt∗+E+1, xt∗+E+2, … , xT−2

}
,

(8)ℒ(E, t∗) = ℒ(E, T − E − 1) =
{
xE , xE+1, … , xT−E−3, xT−E−2

}
,

(9)ℒ(E, T − E) =
{
xE , xE+1, … , xT−E−2, xT−E−1

}
,

(10)ℒ(E, T − 2) =
{
xE , xE+1, … , xT−4, xT−3

}
,

(11)CE,t∗ =

⎧
⎪⎨⎪⎩

T−2(E+1)=CE , t
∗ =E, E+1, … , T−E−2,

t
∗ −E, t

∗ =T−E−1, T−E, … , T−2.
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It	was	previously	noted	that	(for	a	given	E)	the	library	will	con-
sist	 of	 all	 possible	 vectors	 formed	 from	 the	 time	 series,	 except	
for	the	target	vector	(Deyle	et	al.,	2013).	However,	here	we	have	
shown	that	other	vectors	also	need	to	be	excluded	and	 that	 the	
library	 size	 also	 depends	 explicitly	 on	 t∗	 (that	we	 have	 not	 seen	
stated	previously).	 In	our	 example,	 this	means	 that	 for	E = 8 the 
library	 size	can	vary	 from	32	 to	40	depending	on	 the	 focal	 time	
(Figure 4).

(iv)	 The	next	 step	 is	 to	 calculate	 the	Euclidean	distance	 in	 the	
state	space	between	the	focal	point	xt∗	and	each	point	in	the	library.	
The	Euclidean	distance	between	two	vectors	a =

(
a1, a2, … , aE

)
	and	

b =
(
b1, b2, … , bE

)
	is	defined	as

(v)	Rank	every	vector	in	the	library	with	respect	to	its	Euclidean	
distance	from	xt∗,	and	define	� i	 to	be	the	time	 index	of	the	vector	
with	rank	 i .	So	the	nearest	neighbour	has	rank	1	and	will	have	time	
index	�1,	the	second	nearest	will	have	rank	2	and	time	index	�2,	etc.	

The	 closest	 state-	space	 vectors	x�1
	 and	x�2

	 indicate	 points	 in	 the	
library	for	which	the	system	was	in	the	most	similar	state	to	the	focal	
time t∗,	for	this	particular	state-	space	reconstruction	(value	of	E).	Of	
interest	are	the	E + 1	nearest	neighbours,	which	form	a	simplex	 in	
the E-	dimensional	state	space	(hence	the	‘simplex	algorithm’).	A	sim-
plex	in	an	E-	dimensional	space	consists	of	E + 1	points	(a	triangle	for	
E = 2,	a	tetrahedron	or	triangular	pyramid	for	E = 3,	etc.).	In	Figure 2,	
for	which	t∗ = 39,	the	nearest	E + 1 = 3	neighbours	(red	points)	are	at	
times �1 = 43,�2 = 11	and	�3 = 98.	Thus,	based	on	Yt	and	its	lagged	
value	Yt−1,	the	system	appears	closest	to	its	state	at	time	39	at	times	
43,	11	and	98	 (times	 that	 are	not	necessarily	 close	 to	39,	 but	 the	
system	is	similar	in	the	state	space);	this	is	the	core	concept	of	EDM,	
and	 is	 certainly	 not	 discernible	 from	viewing	 the	 data	 as	 a	 simple	
time series.

(vi)	 In	 one	 time	 step,	 each	 vector	 x� i
 moves to its cor-

responding	 location	 x� i+1
.	 We	 use	 the	 nearest	 E + 1	 neigh-

bours	 (so	 i = 1, 2, … , E + 1 )	 and	 take	 a	 weighted	 average	 of	 the	
first	 components	 of	 the	 resulting	 x� i+1

.	 By	 definition	 from	 (6),	
xt∗+1 =

[
Yt∗+1,Yt∗ , … ,Yt∗−E+2

]
;	 it	 is	only	 the	 first	component	of	 this	

vector	 that	we	 are	 estimating	 (the	 other	 components	 are	 already	
known).	Hence	the	weighted	average	only	concerns	the	first	compo-
nent	of	the	nearest-	neighbour	vectors,	namely	the	Y� i+1

.	We	make	a	
prediction	Ŷ t∗+1	for	Yt∗+1	using	equation	S1	from	Deyle	et	al.	(2013):

where the weights wi	are

The	weights	 downweight	 the	 contribution	 of	 each	Y� i+1
	 based	 on	

the	closeness	of	x� i
 to xt∗	relative	to	the	closeness	of	x�1

	(the	closest	
vector)	to	xt∗;	note	that	Deyle	et	al.	(2013)	had	the	above	summations	
to E,	but	they	should	be	to	E + 1	for	the	E + 1	nearest	neighbours,	as	
in	Sguotti	et	al.	(2020).	By	definition,	the	weight	of	the	closest	vector	
is	always	w1 = exp( − 1) = 0.368.

(vii)	 For	 short	 time	 series	 (like	 our	 example)	 cross-	validation	 is	
used	to	test	how	well	the	method	performs	on	the	known	data.	This	
involves	repeating	steps	(ii)-	(vi)	with	all	valid	values	of	t∗	 for	which	
we	can	compare	the	observed	Yt∗+1 with the predicted Ŷ t∗+1.	Longer	
time	series	can	be	split	to	use	the	first	half	to	predict	the	second	half	
(Deyle	et	al.,	2013).

(viii)	Determine	 the	correlation	coefficient,	�,	 between	 the	ob-
served Yt∗+1	and	predicted	Ŷ t∗+1,	defined	as

where Y = mean
(
Yt∗+1

)
	and	Ŷ = mean

(
Ŷ t∗+1

)
,	and	these	means,	and	

the	summations	in	(15)	are	over	the	valid	values	of	t∗	(as	in	Figure 4).

(12)∥ a − b ∥ =
[(
a1−b1

)2
+
(
a2−b2

)2
+ … +

(
aE−bE

)2]1∕2
.

(13)Ŷ t∗+1 =

∑E+1

i=1
wiY� i+1∑E+1

j=1
wj

,

(14)wi = exp

(
−

∥ xt∗ − x� i
∥

∥ xt∗ − x�1
∥

)
.

(15)� =

∑
t∗

�
Yt∗+1 − Y

��
Ŷ t∗+1 − Ŷ

�
�∑

t∗

�
Yt∗+1−Y

�2
⋅
∑

t∗

�
Ŷ t∗+1− Ŷ

�2

F I G U R E  4 The	number	of	components	of	the	library,	CE,t∗,	 
depends	on	the	interplay	between	embedding	dimension	E	and	
focal	time	t∗,	as	derived	in	(11)	and	shown	here	for	any	univariate	
time	series	of	length	T = 50. The t∗	axis	is	inverted	to	compare	
with	(6).	The	top	grey	area	indicates	t∗	values	that	are	not	possible	
because	the	required	lagged	values	(based	on	E)	extend	before	the	
start	of	the	time	series.	The	bottom	grey	area	indicates	t∗	values	
that	are	not	possible	because	for	t = 50	the	first-	difference	value	is	
not	known,	and	for	t = 49	the	predicted	state	at	t = 50	is	not	known	
(and	we	first	want	to	compare	predictions	to	known	values.)	For	
each	value	of	E,	the	majority	of	CE,t∗	values	are	CE = T − 2(E + 1),	as	
shown	by	the	large-	font	numbers	(indicating	C2 = 44,	C3 = 42 etc.; 
see	later	text)	that	define	the	colours.	Colours	increment	by	one	
going	down	the	figure,	as	illustrated	by	the	small-	font	numbers.	For	
E = 8,	for	example,	t∗	can	only	take	values	between	8	and	48,	and	
the	library	size	is	usually	32,	but	incrementally	increases	from	33	to	
40	as	t∗	increases	from	41	to	48.
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(ix)	 Repeat	 steps	 (i)	 to	 (viii)	 for	 a	 sequence	 of	 embedding	 di-
mensions	E. The E	that	gives	the	highest	�	is	considered	to	perform	
best,	 namely	 E = 3	 (giving	 � = 0.83)	 for	 our	 example	 time	 series	
(Figure 3).	 That	E	 is	 used	 to	 forecast	 the	 future	value	of	 the	pop-
ulation,	 N̂T+1 = N̂101,	 by	 setting	 t∗ = 99	 to	 estimate	 Ŷ100	 and	 rear-
ranging	 (1)	 to	 give	N̂101 = Ŷ100 + N100.	 Note	 that,	 regarding	 aspect	
1,	t∗ = T − 1 = 99	 is	allowed	here	for	forecasting	N̂101;	 its	exclusion	
in	(6)	is	only	for	determining	�.	If	�	increases	with	E	such	that	there	
is	no	optimal	E,	this	suggests	a	high-	dimensional	essentially	random	
process	for	all	practical	purposes,	such	that	the	system	is	difficult	to	
model	(Hsieh	et	al.,	2005).

For	 our	 simulated	 data	 and	 E = 3,	 our	 pbsEDM imple-
mentation	 of	 steps	 (i)–(ix)	 gives	 Ŷ100 = − 0.077	 yielding	
N̂101 = − 0.077 + 0.060 = − 0.017.	Thus,	 the	 forecast	 is	of	a	neg-
ative	population,	which	is	obviously	unrealistic.	Predictions	of	the	
first-	differenced	Ŷ t	are	weighted	averages	of	observed	values	of	
Yt,	so	they	must	 lie	within	the	range	of	the	observed	values	 (e.g.	
Figure 2).	More	extreme	values	are	not	possible.	But	there	is	noth-
ing	to	stop	the	resulting	N̂t	predictions	being	more	extreme	than	
for	 the	 observed	 values	 of	Nt,	 which	 includes	 allowing	 negative	
values.	 Negative	 values	 are	 predicted	 for	 six	 N̂t	 in	 our	 example	
time	series	(see	File	S1).	We	suggest	the	simple	remedy	of	replac-
ing	the	negative	predictions	with	the	smallest	observed	value	from	
the	original	Nt	 time	series.	A	second	option	 is	 to	 replace	Nt with 
logNt	(which	can	be	negative),	although	results	will	differ	because	
relative	distances	of	nearest	neighbours	will	change,	altering	the	
weights	in	(14);	Rogers	et	al.	(2022)	implemented	both	Nt	and	logNt.  
A	third	option	is	to	not	first-	difference	the	original	data	(discussed	
below).

Relatedly,	we	find	� = 0.83,	but	calculating	the	correlation	based	
on	Nt	 and	N̂t	 instead,	by	 replacing	Y with N	 in	 (15),	 gives	0.54;	 for	
E = 2	we	get	0.70	and	0.28.	Thus,	we	caution	that	high	correlation	
based	on	Yt	does	not	necessarily	imply	high	correlation	based	on	Nt,	
which	is	what	we	are	interested	in	(see	below	and	File	S1).

Condition	 (d)	 above	 is	 that	 it	 may	 be	 appropriate	 to	 exclude	
xt∗+1, xt∗+2, … , xt∗+E	 from	 the	 library	 of	 candidate	 nearest	 neigh-
bours	of	the	focal	point	xt∗.	This	is	based	on	the	principle	that	when	
testing	the	predictive	accuracy	of	a	method	it	is	problematic	to	use	
information	about	the	value	being	predicted.	The	method	should	not	
have	any	knowledge	of	the	known	value	of	the	quantity.

For	our	simulated	data	and	E = 2,	we	find	that	predictions	Ŷ t∗+1 
are	the	same	when	using	pbsEDM or rEDM,	except	for	t∗ = 75	(0.838	
for	pbsEDM	versus	1.368	for	rEDM)	and	t∗ = 94	(0.412	versus	0.177).	
For t∗ = 75,	we	find	that	rEDM	uses	xt∗+1 = x76 =

(
Y76,Y75

)
	as	one	of	

the	three	nearest	neighbours	to	x75,	and	hence	uses	it	in	the	predic-
tion	Ŷ76,	despite	it	including	Y76	(which	is	what	we	are	trying	to	pre-
dict).	We	find	this	by	changing	the	value	of	Y76	to	a	large	value	such	
that	x76	is	no	longer	a	close	neighbour	of	x75,	and	the	rEDM	code	then	
gives	the	exact	same	answer	as	for	pbsEDM	(also	agreeing	with	some	
earlier	code	that	we	wrote	independently	of	pbsEDM);	see	File	S1.

Similarly,	for	t∗ = 94	we	find	that	rEDM	uses	xt∗+2 = x96 =
(
Y96,Y95

)
 

as	a	nearest	neighbour	of	x94,	but	this	neighbour	includes	the	value	

of	Y95	that	we	are	trying	to	predict	(and	we	suggest	it	should	be	ex-
cluded).	The	default	in	rEDM	is	to	not	exclude	any	temporally	adja-
cent	neighbours,	although	the	exclusionRadius	argument	allows	
the	 user	 to	 exclude	 nearest	 temporal	 neighbours	 within	 exclu-
sionRadius	 time	 steps	of	t∗	 (i.e.	 this	would	 exclude	 the	exclu-
sionRadius	number	of	xt	both	above	and	below	xt∗	in	(6),	which	can	
help	deal	with	autocorrelation).	For	short	time	series	as	we	have	in	
our	fisheries	applications,	we	would	like	to	retain	as	many	potential	
neighbours	as	possible,	and	so	in	pbsEDM	our	default	is	as	described	
above	in	(6)	and	(7),	and	we	also	provide	options	to	match	the	set-
tings	 from	 rEDM.	 Differences	 between	 such	 options	 will	 become	
more	important	for	higher	embedding	dimensions	than	2,	since	the	
excluded	points	xt∗+1, xt∗+2, … , xt∗+E,	 become	more	numerous	as	E 
increases.

Note	 that	 forecasting	 N̂T+1	 involves	 setting	 t∗ = T − 1,	 for	
which	the	excluded	points	just	referred	to	would	be	the	undefined	
xT , xT+1, … , xT−1+E.	 So	 although	 the	 different	 options	 will	 not	 di-
rectly	affect	the	nearest	neighbours	of	xT−1	and	the	N̂T+1	calculation,	
they	do	affect	the	calculation	of	�	and	hence	the	choice	of	E	used	for	
forecasting,	which	can	indeed	influence	N̂T+1.

For	our	simulated	data	the	largest	Yt is Y3	for	t = 3	 (Figure 1c).	
Predicting	Ŷ3	requires	t∗ = 2	which	is	valid	for	E = 2	but	no	higher	
E	(Figure 4).	Yet	Y3	is	the	poorest	estimated	value	of	all	(being	the	
right-	most	point	of	Figure 1f).	So	the	most	poorly	estimated	point	is	
included	in	the	�	calculations	only	for	E = 2,	which	seems	an	unfair	
constraint	when	comparing	�	for	different	E	 (Figure 3)	to	find	the	
optimal	E	to	use	for	forecasting.	Future	investigations	could	exam-
ine	whether	restricting	calculations	to	the	same	set	of	t∗,	based	on	
Figure 4,	should	be	done	when	determining	the	optimal	E.

Whether	to	apply	the	first-	differencing	or	not	will	be	time-	series	
dependent.	Chang	et	al.	(2017)	state	that	linear	trends	in	the	original	
data	should	be	removed,	either	by	simple	regression	or	 taking	the	
first-	difference,	to	make	the	time	series	stationary.	First-	differencing	
was	not	strictly	necessary	for	our	example	time	series	(there	was	no	
clear	 linear	trend	 in	the	Nt),	yet	the	first-	differenced	 lagged	values	
in	 Figure 1d	 do	demonstrate	 geometric	 structure	 that	 is	 not	 seen	
in	 the	 non-	first-	differenced	 values	 in	 Figure 1b.	 Our	 explanations	
are	 the	 same	without	 first-	differencing,	 with	Yt	 simply	 taking	 the	
value	Nt	instead	of	Nt+1 − Nt.	Real	applications	can	test	sensitivity	to	
first-	differencing.

In	Appendix	S1	we	extend	the	above	mathematical	description	
to	the	multivariate	situation	of	analysing	multiple	variables,	such	as	
populations	of	several	species	or	a	population	and	an	index	of	local	
temperature.	 The	 library	 of	 candidate	 nearest	 neighbours	 to	 the	
focal	point	can	again	be	calculated.	The	size	of	the	library	does	not	
depend	on	the	chosen	embedding	dimension,	just	on	the	maximum	
lag,	m,	 used	 for	any	of	 the	variables.	The	size	 is	once	more	 repre-
sented	by	Figure 4,	but	with	the	E-	axis	replaced	by	m + 1.	So	the	li-
brary	size	does	not	change	if	further	variables	are	added	unless	they	
are	 lagged	more	 than	 the	existing	variables	such	 that	m	 increases.	
We	describe	the	S-	map	algorithm	in	Appendix	S1	and	apply	it	to	our	
simulated	data	set.
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5  |  DISCUSSION

We	 have	 derived	 a	 thorough	 description	 of	 the	 core	 methods	 of	
EDM,	yielding	previously	undocumented	aspects	that	 improve	un-
derstanding.	 Having	 gained	 a	 deeper	 understanding	 of	 EDM,	 our	
work	 suggests	 potential	 enhancements.	 For	 example,	 the	 closest	
E + 1	neighbours	are	typically	selected	for	the	simplex	algorithm	(to	
form	a	simplex	in	the	E-	dimensional	space),	but	simulations	could	in-
vestigate	how	altering	the	numbers	of	neighbours	(an	easily	changed	
parameter	in	rEDM)	might	improve	accuracy.	This	could	lead	to	de-
veloping	a	bootstrapping	approach	to	produce	confidence	intervals	
for	simplex	predictions.	Simulation	testing	could	determine	the	ob-
served	coverage	of	such	 intervals	 (and	also	for	bootstrap	 intervals	
from	the	S-	map	algorithm,	as	used	by	Karakoç	et	al.,	2020).

Readers	searching	the	literature	should	be	aware	of	other	terms	
that	describe	EDM-	type	approaches,	 including	nonlinear	 forecast-
ing,	 state-	space	 reconstruction,	 Takens'	 theorem,	 time-	delay	 em-
bedding	and	Jacobian	Lyapunov	exponents.	To	delve	into	the	more	
technical	background	behind	EDM,	we	recommend	the	books	by	Ott	
et	al.	(1994),	particularly	Chapter	5	on	‘The	Theory	of	Embedding’	and	
the	included	reprints	of	Sauer	(1993)	and	Sugihara	and	May	(1990),	
and	Huffaker	et	al.	 (2017),	particularly	Chapter	3	on	 ‘Phase	Space	
Reconstruction’.

The	 use	 of	 EDM	 can	 allow	 for	 time-	varying	 productivity	 (or	
other	ecosystem	changes)	to	be	implicitly	accounted	for	in	applica-
tions	 such	as	 fisheries	management.	 For	 example,	Ye	et	 al.	 (2015)	
found	 that	 including	 time	series	of	 sea	 surface	 temperature	when	
forecasting	salmon	populations	using	EDM	performed	better	 than	
not	including	temperature,	and	that	EDM	outperformed	parametric	
models.	Fruitful	research	could	further	compare	EDM	with	paramet-
ric	 time-	varying	models	 (for	which	 it	 is	necessary	but	hard	to	pre-
scribe	 an	 explicit	 mathematical	 relationship	 between	 productivity	
and	time).	How	this	would	directly	inform	decision-	making	requires	
further	investigation,	since,	in	general,	accounting	for	nonstationar-
ity	in	the	ecosystem	requires	careful	consideration	of	how	to	deter-
mine	the	benchmarks	or	reference	points	that	are	used	to	determine	
the	status	of	stocks	(Holt	&	Michielsens,	2020).	So	although	we	have	
described	EDM	as	an	alternative	to	parametric	mechanistic	model-
ling,	both	approaches	can	be	used	together	in	various	complemen-
tary	ways	 (Munch	et	al.,	2020),	and	this	may	 indeed	be	how	EDM	
fulfils	its	potential	in	practical	management	applications.
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