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N E U R O S C I E N C E

Accurate detection of acute sleep deprivation using a 
metabolomic biomarker—A machine 
learning approach
Katherine Jeppe1,2, Suzanne Ftouni1,2, Brunda Nijagal3, Leilah K. Grant1,2,4,5,  
Steven W. Lockley1,2,4,5, Shantha M. W. Rajaratnam1,2,4,5, Andrew J. K. Phillips1, 
Malcolm J. McConville3, Dedreia Tull3, Clare Anderson1,2,6*

Sleep deprivation enhances risk for serious injury and fatality on the roads and in workplaces. To facilitate future 
management of these risks through advanced detection, we developed and validated a metabolomic biomarker 
of sleep deprivation in healthy, young participants, across three experiments. Bi-hourly plasma samples from 2 × 
40-hour extended wake protocols (for train/test models) and 1 × 40-hour protocol with an 8-hour overnight sleep 
interval were analyzed by untargeted liquid chromatography–mass spectrometry. Using a knowledge-based ma-
chine learning approach, five consistently important variables were used to build predictive models. Sleep depri-
vation (24 to 38 hours awake) was predicted accurately in classification models [versus well-rested (0 to 16 hours)] 
(accuracy = 94.7%/AUC 99.2%, 79.3%/AUC 89.1%) and to a lesser extent in regression (R2 = 86.1 and 47.8%) mod-
els for within- and between-participant models, respectively. Metabolites were identified for replicability/future 
deployment. This approach for detecting acute sleep deprivation offers potential to reduce accidents through 
“fitness for duty” or “post-accident analysis” assessments.

INTRODUCTION
Acute sleep deprivation is common in modern society, often due to 
competing demands for work, study, career, and recreational com-
mitments. Globally, sleep deprivation is a substantial cause of motor 
vehicle crashes and occupational accidents and injuries (1, 2), and 
the detrimental impact to human performance is widespread. For 
instance, sleep deprivation reduces the capacity to sustain attention 
and respond in a timely manner (3), ignore irrelevant stimuli to 
avoid distractors (4, 5), and execute higher-order cognitions, includ-
ing aspects of memory (6, 7) and decision-making (8, 9) and increas-
es the likelihood of unintentional sleep episodes (e.g., microsleep) 
(10, 11). Failure in any of these alertness and cognitive capabilities 
has severe consequences in safety-critical environments, such as 
transportation, health care, and high-consequence surveillance in-
cluding air traffic control and automated operations. Despite these 
consequences, advances in managing the detrimental effects of sleep 
deprivation have been impeded by a lack of objective tools for de-
tecting the sleep-deprived state (12).

Numerous tools have been developed to detect sleep loss and as-
sociated performance failure. These typically rely on well-established 
physiologic metrics such as pupillary stability, slow eye closures, or 
microsleep [e.g., (10, 13, 14)]. These metrics can be confounded by 
other factors that are associated with accidents, such as light (15) 
and adrenaline (16), and are rendered useless in the post-accident 
examination of an individual who has sustained a serious injury. Es-
tablishing a biological metric (“biomarker”) that accurately detects 

changing levels of sleep deprivation would offer considerable advan-
tage in this respect.

A biological marker or biomarker of acute sleep deprivation 
needs to be responsive to extended wake (sensitive) while being un-
responsive to other environmental factors (specific) and robust to 
interindividual variability (high predictive validity). Early research 
into the biological detection of sleep deprivation in humans identi-
fied salivary amylase as a potential candidate, where levels of mRNA 
representing amylase increased as a function of extended wake (17). 
Subsequent findings have been discrepant, however, potentially due 
to the confounds of stress and/or diurnal changes in amylase levels 
(18). More recently, transcriptomic studies demonstrate robust 
changes in gene expression as a function of sleep deprivation [e.g., 
(19–22)], providing several targets for sleep biomarker develop-
ment. In a sophisticated multivariate search and validation ap-
proach, Laing et al. (22) demonstrated high accuracy (92%) for the 
classification of sleep deprivation when using a between-participant 
approach, and when detecting 7 to 8  hours awake versus 31 to 
32 hours awake. Although still relatively high, accuracy reduced to 
80% when comparing all hours above and below a 24-hour thresh-
old, which may be more realistic in the real world. For their within-
participant approach (a baseline adjusted sample), accuracy was 
slightly lower (74%) when comparing 10 to 11 hours awake versus 
34 to 35 hours awake, and no comparative report was made in 
above/below 24-hour accuracy (22).

Changes in metabolite levels in serum and other biofluids pro-
vide a sensitive measure of the physiological state of an individual 
and their response to sleep deprivation (23–26), with several me-
tabolites being identified as potential candidates for detecting sleep 
restriction and/or total deprivation (27, 28). Recently, Depner et al. 
(27) demonstrated the capacity to detect chronic stable sleep restric-
tion (5 hours of sleep for five consecutive days) with 74% accuracy
using a combination of 65 metabolites, of which many were un-
identified. While these data suggest that a suite of metabolite mark-
ers representing different biological mechanisms could achieve the
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accuracy and robustness required for a biomarker of sleep depriva-
tion (12), several gaps remain, including the need for improved ac-
curacy, and the identification and quantification of metabolites to 
aid replicability and translation to real-world environments.

In this study, we describe the development and validation of a 
metabolomic biomarker that accurately predicts how long an individual 
has been awake [time since wake (TSW)] and the presence of (>24-hour) 
sleep deprivation in young healthy adults with high accuracy. Polar 
plasma metabolites were detected using untargeted liquid chromatog-
raphy–mass spectrometry (LC-MS) at different time points across 
40 hours of continued wakefulness under controlled [constant routine 
(CR)] conditions. Machine learning identified a suite of metabolites 
that predicted sleep deprivation at the group and individual level and 
were validated in an unseen dataset. To promote the deployment 
potential for this biomarker, models were developed for a minimum 
number of (five) metabolites (to aid biosensor development), and 
biomarker candidates were identified (where possible) to enable 
future replication and validation under real-world conditions.

RESULTS
Plasma samples were analyzed by Hydrophilic Interaction Liquid 
Chromotography (HILIC) LC-MS, which allowed detection of 1035 
mass features (representing individual metabolites), of which 929 
(characterized by <20% zero values) were included for biomarker 
discovery. Changes in plasma metabolite levels were characterized 
across 40 hours of sleep deprivation to show comparability across 
experiment 1 [n =  12 participants, 218 samples (10 samples were 
not collected due to cannulation or protocol issues)] and experiment 

2 [n = 11 participants, 198 samples (11 samples were not collected)] 
(see the next section). Variable reduction was conducted on experi-
ment 1 (training set) before random forest models were built (see 
the “Development: Selecting metabolite candidates for a bio-
marker of sleep deprivation” section) and then tested on experiment 
2 (test set) using holdout analyses (see the “Validation: Predicting 
sleep deprivation using five final biomarker candidates (in an inde-
pendent test set)” section). Further validation of biomarker response 
to sleep was assessed in a comparable well-rested (WR) protocol, 
with an 8-hour sleep opportunity overnight (matched control: 5 
participants, n  =  30). See fig.  S1 for graphical representation of 
analysis plan.

Characterization: Metabolomic changes at the group and 
individual level
Sleep deprivation experiment 1
At the group level, and across 40 hours of sleep deprivation under 
CR conditions, 225 (24.2%) mass features displayed significant lin-
ear trends and 320 (34.4%) displayed significant cycling (amplitude 
of cosinor fit) trends, after adjusting for multiple comparisons [false 
discovery rate (FDR)]. Of the 320 cycling features, 44 (4.7%) in-
creased and 65 (7%) decreased with TSW (Fig. 1, A to C ).

At the individual level, 30 (3.2%) mass features were significantly 
linear (with consistent increasing/decreasing trend across participants) 
and 10 (1%) were significantly cycling in more than 50% of participants. 
No mass features were both cycling and linear in more than 50% of 
participants. Volcano plots presenting the magnitude and significance 
of (individual and group) linear and cycling trends from both experi-
ments, relative to all other mass features, are displayed in fig. S2.

Fig. 1. Features isolated by HILIC LC-MS and showing linear and/or cyclical trends across each sleep deprivation experiment. Heatmaps display significant (FDR-
adjusted P value of <0.05) group-level trends during sleep deprivation for linear (A) and cycling (B) trends for experiment 1 (n = 12) and linear (D) and cycling (E) trends 
for experiment 2 (n = 11). For all heatmaps, purple corresponds to the highest and green corresponds to the lowest values for z-scored median-normalized peak area. 
Venn diagrams display the number and overlap of cycling, increasing or decreasing features for experiment 1 (C) and experiment 2 (F). The Venn ring sizes correspond to 
the number of features, and percentages are relative to the total number of features analyzed (929).
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Sleep deprivation experiment 2
Group-level linear and cycling trends were different between ex-
periments, with experiment 1 presenting more cycling features and 
experiment 2 presenting more decreasing linear mass features 
(χ2 = 63.2, P < 0.001). Experiment 2 presented 312 (33.6%) mass 
features with significant linear trends and 236 (25.4%) that displayed 
significant cycling trends. Of the 236 cycling features, 66 (7.1%) in-
creased and 60 (6.5%) decreased with increasing TSW (Fig. 1, D to F ).

At the individual level, the experiments were comparable (χ2 = 1.05, 
P = 0.590), with experiment 2 presenting 37 (4%) mass features that 
were significantly linear (with consistent increasing/trend across 
participants), and 16 (1.7%) that displayed significantly cycling 
trends in more than 50% of participants.

Development: Selecting metabolite candidates for a 
biomarker of sleep deprivation
Feature selection
Mass features were selected for predictive modeling of sleep depri-
vation using a knowledge-based a priori approach followed by vari-
able selection using random forest (VSURF). This approach allowed 
variable reduction (e.g., fewer metabolites entered into the model) 
while retaining all mass feature information so that appropriate can-
didates could be identified and assessed individually. Variable selec-
tion was conducted on data from experiment 1. Mass features that 
were linear in >50% of participants in the training experiment were 
selected (see Materials and Methods). Any mass features that pre-
sented a 24-hour rhythm (i.e., were cyclical) in more than 25% of 
participants were excluded from modeling to remove possible time 
of day confounds from the final sleep deprivation biomarker. Of the 
929 features, 20 mass features (1.9%) passed this knowledge-based 
a priori feature selection and were therefore used in random forest 
modeling to create the biomarker of sleep deprivation.
Identification of filtered features (metabolites)
The 20 features included in predictive modeling were identified 
(where possible) on the basis of mass/charge ratio (m/z), retention 
time (RT), fragmentation patterns, and chemical standards (table S1). 
Six features (plus one isotope) were identified to level 1 using chemical 
standards. Four features were putatively identified to a single metabolite 
using online databases and fragmentation patterns (level 2). A further 
eight features (plus one isotope) were putatively identified to class 
(level 3), including monosaccharides and several lipid groups (table S1).
Final metabolite candidates selected for a biomarker of sleep 
deprivation
Our metabolomic biomarker of sleep deprivation was developed to 
address different future applications (e.g., repeated testing in the 

same individual and single time-point testing). We therefore took a 
within- and between-participant approach to predictive modeling 
and built classification and regression models for each. Classifica-
tion random forest models were initially built to classify WR versus 
clock time–matched sleep deprivation (SD) conditions [i.e., 0 to 
16 hours compared to 24 to 38 hours awake (WR-SD)]. Regression 
random forest models were used to predict TSW. A reduced num-
ber of variables capable of explaining observed variance in TSW 
were selected from the 20 filtered features using VSURF. Minimizing 
the number of variables is preferential for biomarker implementa-
tion, where the development of standards and/or biosensors is time 
consuming and expensive. VSURF analyses selected between 6 and 
14 variables as important for predicting sleep deprivation across the 
four analytical approaches (classification, regression, and within 
and between participant) in experiment 1 (table S2). Across the ma-
jority of VSURF models, five variables (features) were consistently 
selected as important at the interpretation level and thus formed the 
candidates for our biomarker of sleep deprivation (of note, these fi-
nal five biomarker models performed equivalently to models using 
the VSURF selected and initial 20 filtered features; see table S2). The 
five final biomarker candidates were identified as vanillin 4-sulfate 
(level 1), indole-3-propionate (level 1), monosaccharide 1 (level 3), 
the phosphatidylinositol molecular species, PI(16:0/18:1) (level 1), 
and the lysophosphatidylcholine molecular species, LPC(18:3) (lev-
el 1) (Table 1). Individual trends observed for the five final biomark-
er candidates during the two sleep deprivation experiments are 
summarized in Fig. 2. Raw individual trends are shown in figs. S3 to 
S6, and the magnitude of group-level changes is shown in fig. S7. 
Linear trends were significant in almost all participants (>90%) for 
all five final biomarker candidates in both sleep deprivation experi-
ments (Fig. 2, A and B ).

Validation: Predicting sleep deprivation using five final 
biomarker candidates (in an independent test set)
Following the development of the sleep deprivation biomarker 
above, we then validated the biomarker in an independent test set 
using unseen data.
Predicting sleep deprivation (24 hours awake) relative to WR 
conditions using five final biomarker candidates (within 
participant)
Median-transformed z-scored data (metabolite intensities were 
median-transformed within sample and autoscaled within participant) 
were used to assess within-participant changes. These analyses are 
applicable to situations where multiple samples can be taken from 
the same individual over time (e.g., continuous monitoring). The 

Table 1. Metabolite identification of the five candidates consistently selected by VSURF, including metabolite ID, m/z, RT, calculated formulas, ppm 
difference between formula and candidate m/z, and level of identification reached as described by the metabolite standards initiative. Metabolites in 
bold were confirmed to level 1 identification using standards.

Metabolite ID m/z RT (min) Formula ppm Level

Vanillin 4-sulfate 230.9955 4.0 C8H8SO6 −5.9 1

Indole 3-propionate 188.0722 7.3 C11H11NO2 2.5 1

Monosaccharide 1 179.0561 13.3 C6H12O6 −0.3 3

PI(16:0/18:1) 835.5352 3.3 C43H81O13P 1.2 1

LPC(18:3) + CH2O3 578.3101 4.1 C27H50NO10P 0.3 1
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presence of sleep deprivation >24 hours (WR-SD) was predicted us-
ing classification random forest models. This approach is applicable 
in situations where detecting a threshold of time awake (i.e., 24 hours 
or more) is required, such as detection of prohibited or unsafe levels 
of prior sleep deprivation.

The relative importance of the five final biomarker candidates for 
a classification model predicting WR-SD conditions is displayed in 
Fig. 3A. This model presented an overall training accuracy [lower to 
upper 95% confidence interval (CI)] of 97.8% (94.5 to 99.4) and a 
testing accuracy of 94.7% (90.1 to 97.5), correctly predicting 79 of 85 
WR samples and 81 of 84 SD samples in test data. A negative predic-
tion accuracy (NPV) of 92.9%, positive prediction accuracy (PPV) 
of 96.4%, specificity (SP) of 96.3%, and sensitivity (SN) of 93.1% 
were calculated from this model (Table 2). The receiver operator 
characteristic (ROC) curve of this model presented an area under 
the curve (AUC) of 99.2% (98.3 to 100) (Fig. 3B).

To examine performance at the individual level, models were 
further tested on each participant from the testing data (n = 19 time 
points per participant). As seen in Table 2, overall accuracy for the 
detection of SD was ≥92.3% in all but one participant (participant P: 
81.2%). NPV was ≥85.7% in all but one participant (participant P: 
62.5%), PPV and SP were ≥87.5% in all participants, and SN was 
≥80% in all but one participant (participant P: 72.7%). While AUC 

for all individuals was ≥95.3%, this should be regarded with caution 
as the test datasets are small and AUC can be optimistic. Sanity 
checks presented similar results (table S3).

Reducing the distinction between WR and sleep deprivation condi-
tions. After demonstrating the capacity to detect SD when classified 
as being awake for >24 hours (relative to a time-matched WR control 
of time awake < 16 hours), we then examined how model accuracy 
changed when using different thresholds of SD and WR. Classifica-
tion models were rebuilt with stepwise inclusion of 18- to 22-hour 
TSW assessments in the WR (0 to 16 hours) or SD (24 to 38 hours) 
classifications. For within-participant analyses, these stepwise inclu-
sions lowered model accuracy in a predictable way (Table 3), with 
test model accuracy dropping to a minimum of 90.4% (85.4 to 94.1) 
when comparing WR (0 to 22 hours) to SD (24 to 38 hours) TSW. 
Sanity check data are shown in table S4.

Considering a lower level of sleep loss. As we tested biomarker 
performance against extensive sleep deprivation above (e.g., up to 
38 hours within the classification bin), we then assessed the accu-
racy of predicting a lower level of sleep loss. We compared WR (0 
to 16 hours) condition versus hours only in the biological night (18 
to 24 hours) as the SD condition as this is more typical of the real 
world. Here, within-participant analyses resulted in a minimum test 
model accuracy of 84.6% (76.9 to 90.4) [NPV: 88.2%, PPV: 76.3%, 
SP: 89.3%, SN: 74.4%, and AUC: 95.1% (91.8 to 98.4)]. Widening 
the distinction to 20- to 24-, 22- to 24-, or 24-hours SD improved 
classification accuracy in a predictable way (table S5). As expected, 
the PPV decreased when comparing SD condition with low n (e.g., 
24 hours only) relative to WR (versus 0 to 16 hours) as the models 
were unbalanced.
Predicting sleep deprivation (24 hours awake) relative to WR 
conditions using five final biomarker candidates for single-test 
samples (between participant)
Between-participant analyses using median-transformed data were 
used to assess trends across participants without removing between-
participant variation. These analyses are applicable to situations re-
quiring a single time-point sample (e.g., roadside or post-accident 
testing of time awake). For between-participant data, the relative 
importance of the five final biomarker candidates in a classification 
random forest model to predict the difference between WR-SD 
conditions is presented in Fig. 3C. This model presented an overall 
training accuracy of 92.9% (88.1 to 96.1) and a testing accuracy of 
79.3% (72.4 to 85.1), correctly predicting 73 of 85 WR samples and 
61 of 84 SD samples in the unseen test data. The model presented a 
testing NPV of 85.9%, PPV of 72.6%, SP of 76.0%, and SN of 83.6% 
(Table 2). The testing ROC curve produced from this model pre-
sented an AUC of 89.1% (84.4 to 93.8)Fig.  3D). This model dis-
played equivalent performance to models including the initial 14 
VSURF selected variables [AUC = 90.1% (85.6 to 94.6)] and all 20 
filtered features [AUC = 88.4% (83.5 to 93.4); table S2]. At the in-
dividual level, between-participant classification models predicted 
with lower accuracy than within-participant data, presenting an 
overall accuracy of ≥75% in 7 of 11 participants with a minimum of 
50% in 2 participants (participants P and S) (Table 2). In both these 
participants, all samples were predicted to be WR (false negative, 
PPV: 0% and NPV: 100%). Sanity checks displayed similar results, 
although participant E was predicted to be SD when they were WR 
(false positive, PPV: 100% and NPV: 0%) (table S3).

Closing the distinction between WR and sleep deprivation con-
ditions. Closing the distinction between WR and SD by stepwise 

Fig. 2. Significant linear changes at the individual level for each of the five final 
biomarker candidates across both sleep deprivation experiments. (A) Horizon-
tal bar charts summarize the percent of participants displaying an increasing or de-
creasing trend in z-scored median-normalized peak area for each metabolite for 
sleep deprivation training set (experiment 1) and testing set (experiment 2). (B) Heat-
maps display significant linear trends observed for each participant with increasing 
TSW for both experiment 1 (participants A to L) and experiment 2 (participants M to 
W). Linear trends are displayed as percent change per hour TSW, with decreasing 
trends in green and increasing trends in purple. Non-significant metabolite/partici-
pants are displayed in dark gray. Metabolites that were also significantly rhythmic 
are indicated with a white “R.”
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inclusion of 18- to 22-hour TSW measurements in each condition 
for between-participant analyses resulted in a minimum test model 
accuracy of 70.2% (63.3 to 76.5) (NPV: 67.1%, PPV: 72.6%, SP: 64.8%, 
SN: 74.5%, and AUC: 84.7%), when comparing 0 to 16 hours as WR 
versus 18 to 38 hours awake as SD (Table 3). When comparing below/
above the 24-hour threshold, the testing accuracy was 76.8% (63.3 
to 76.5) (NPV: 80.7%, PPV: 71.4%, SP: 79.3%, SN: 73.2%, and AUC: 
87.4%).

Considering a lower level of sleep loss. Comparing WR (0 to 
16 hours) with hours only in the biological night (18 to 24 hours) as 
the SD condition, between-participant analyses resulted in a mini-
mum test model accuracy of 69.1% (60.1 to 77.1) (NPV: 71.8%, PPV: 
63.2%, SP: 81.3%, SN: 50.0%, and AUC: 76.9%), when comparing 0 
to 16 hours as WR versus 18 to 24 hours awake as SD. Widening the 
distinction to 20 to 24 hours, 22 to 24 hours, or 24 hours SD improved 
classification accuracy in a predictable way (table S5).
Predicting TSW using the five final biomarker candidates
Increasing TSW was predicted using regression random forest models. 
This approach may be applicable in fitness-for-duty test scenarios 
where a number of hours awake at the start of the shift could result 
in excessive time awake during the course of a shift (e.g., long-haul 
drivers and pilots) and where variability in test timing precludes a 

single cutoff (classification). Linear trends for the five final biomarker 
candidates are displayed in the Supplementary Materials for within-
participant analyses (figs. S3 and S4) and between-participant analyses 
(figs. S5 and S6).

Within-participant assessment for repeated testing/monitoring. The 
relative importance of the five final biomarker candidates for a re-
gression random forest predicting within-participant changes with 
increasing TSW is displayed in Fig. 4A. This model presented a train-
ing R2 of 98.1% [root mean square error (RMSE) of 1.51 hours] and a 
testing R2 of 86.4% (RMSE of 4.14 hours) (Fig. 4A and Table 2). The 
model predicted 50% of data ± 2.1 hours of the actual value (Fig. 4B). 
To examine model performance at the individual level, these models 
were further tested on each individual (n = 19 time points per par-
ticipant). This presented R2 > 80% and RMSE < 4.6 hours in 10 of 
12 participants, with median R2 = 90.3% and RMSE = 3.41 hours. 
The maximum R2 was 93.8% (RMSE 2.78 hours) in participant W, 
and the minimum R2 was 56.2% (RMSE 7.25 hours) in participant 
P (Table 2). Sanity checks presented comparable results (table S3).

Between-participant assessment for single-test sample detection. 
The relative importance of the five final biomarker candidates for 
regression random forest predicting between-participant changes 
with increasing TSW is displayed in Fig. 4C. This model presented 

Fig. 3. Classification random forest model results for within- and between-participant analyses. Top: Relative importance of the five final biomarker candidates for 
training models using within-participant (A) and between-participant (C) data. Testing model accuracies (lower to upper 95% CI) are displayed in each panel. Bottom: 
Receiver operating characteristic curves for within-participant (B) and for between-participant data (D). Training models are displayed in light green, and test models are 
in dark green. Acc, accuracy; AUC, area under the curve; MDA%, mean decreased accuracy on variable removal; V4S, vanillin 4-sulfate; I3PA, indole-3-propionate; Sac, 
monosaccharide 1; PI, PI(16:0/18:1); LPC, LPC(18:3).
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a between-participant training R2 of 94.1% (RMSE of 2.64 hours) 
and a testing R2 of 47.8% (RMSE of 8.03 hours) (Table 2). The model 
predicted 50% of data ± 5.1 hours of the actual value (Fig. 4D). At 
the individual level in the testing data, between-participant regression 
models explained above 80% (R2) variation in only 1 of 11 participants, 
>50% R2 was achieved in 8 of 11 participants, and in two participants 
R2 was <0% (Table 2). Median R2 and RMSE were 63.0% and 6.64 
hours, respectively.
Translational utility—Predicting sleep deprivation with  
fewer metabolites
As we were unable to identify one of the five final biomarker candi-
dates (monosaccharide 1), replicability of this biomarker is affected. 
For biosensor/device development, having fewer candidates is 
preferable if prediction accuracy remains unchanged. We therefore 
modeled all possible combinations of two or more of the five final 
biomarker candidates (26 combinations) for our initial comparison 
of WR (0 to 16  hours) with time-matched SD (24 to 38  hours). 
Although the monosaccharide was of medium importance, its 

removal reduced accuracy only slightly for the classification (2.4 
and 3.6% reduction) and regression (3.6 and 7.4% reduction) 
models for within- and between-participant analyses, respectively. 
Outputs from all models are summarized in table S6.
Biomarker recovery with sleep
The final step in validation for our sleep deprivation biomarker was 
to examine the recovery of these biomarkers following a sleep in-
terval. This was investigated using a matched control experiment, 
where participants completed a protocol comparable to the sleep 
deprivation experiment [e.g., constant posture (CP) and dim light 
conditions, although without regular hourly meals] but where an 
8-hour sleep opportunity was provided at their habitual sleep time, 
resulting in a typical 16-hour:8-hour wake/sleep schedule. At the 
group level, the five final biomarker candidates displayed opposite (or 
nonsignificant trends) before and after the sleep interval compared 
with those observed between the same clock times in the sleep-
deprived groups. This effect was consistent when comparing before 
and after sleep using clock time–matched groups (e.g., 24  hours 

Table 2. Group- and individual-level results of classification [predicting clock time–matched >24 hours awake (0 to 16 hours to 24 to 38 hours awake)] 
and regression (predicting TSW) random forest models for within-participant and between-participant analyses. Showing models trained on experiment 
1 (tested experiment 2 group and participants) using the five final biomarker candidates. For classification models, model accuracy (lower–upper 95% CI), area 
under the receiver operating curve (AUC %, lower–upper 95% CI), negative and positive prediction accuracy (NPV and PPV%), specificity (SP%), and sensitivity 
(SN%) are displayed (tree depth was 35 and 53, for within-participant and between-participant classification training models, respectively). Note that if PPV is 0, 
SN cannot be calculated. For regression models, variance explained (as R2) and RMSE are displayed (tree depth was 159 and 171, for within-participant and 
between-participant regression training models, respectively).

Comparison Model Participant
Accuracy (%) 

(lower–upper)
AUC (%)  

(lower–upper) SP (%) SN (%) NPV (%) PPV (%) R2 (%) RMSE

Within 
participant

Training Group 97.8 (94.5–99.4) 99.7 (99.3–100) 98.9 96.7 96.8 98.9 98.0 1.52

Testing Group 94.7 (90.1–97.5) 99.2 (98.3–100) 96.3 93.1 92.9 96.4 86.7 4.06

M 100 (79.4–100) 100 (100–100) 100 100 100 100 90.1 3.45

N 93.8 (69.8–99.8) 100 (100–100) 88.9 100 100 87.5 89.4 3.57

O 93.8 (69.8–99.8) 95.3 (85.1–100) 88.9 100 100 87.5 86.1 4.09

P 81.2 (54.4–96) 95.3 (86.2–100) 100 72.7 62.5 100 57.7 7.13

Q 93.8 (69.8–99.8) 100 (100–100) 88.9 100 100 87.5 93.4 2.90

R 100 (79.4–100) 100 (100–100) 100 100 100 100 93.6 2.77

S 100 (79.4–100) 100 (100–100) 100 100 100 100 84.6 4.30

T 100 (79.4–100) 100 (100–100) 100 100 100 100 85.3 4.20

U 92.9 (66.1–99.8) 100 (100–100) 100 87.5 85.7 100 87.4 4.49

V 92.9 (66.1–99.8) 100 (100–100) 100 87.5 85.7 100 90.5 3.33

W 92.3 (64–99.8) 100 (100–100) 100 85.7 85.7 100 93.5 2.84

Between 
participant

Train-
ing

Group 92.9 (88.1–96.1) 97.7 (95.8–99.6) 94.4 91.3 91.4 94.4 94.0 2.66

Testing Group 79.3 (72.4–85.1) 89.1 (84.4–93.8) 76.0 83.6 85.9 72.6 48.2 8.00

M 75 (47.6–92.7) 100 (100–100) 66.7 100 100 50.0 51.9 7.60

N 100 (79.4–100) 100 (100–100) 100 100 100 100 74.6 5.52

O 68.8 (41.3–89) 90.6 (75.6–100) 100 61.5 37.5 100 28.6 9.25

P 50 (24.7–75.3) 96.9 (89.6–100) 50.0 100 0.0 −28.4 12.41

Q 87.5 (61.7–98.4) 100 (100–100) 100 80.0 75.0 100 65.0 6.65

R 100 (79.4–100) 100 (100–100) 100 100 100 100 88.9 3.64

S 50 (24.7–75.3) 94.5 (84–100) 50.0 100 0.0 −9.3 11.45

T 81.2 (54.4–96) 100 (100–100) 72.7 100 100 62.5 56.5 7.23

U 100 (76.8–100) 100 (100–100) 100 100 100 100 66.0 7.37

V 85.7 (57.2–98.2) 90.8 (73.7–100) 100 77.8 71.4 100 69.1 6.00

W 84.6 (54.6–98.1) 95.2 (84.2–100) 100 75.0 71.4 100 65.3 6.59
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apart) of 2 to 6 hours versus 26 to 30 hours TSW in the sleep depriva-
tion experiment with 2 to 6 hours TSW each day for the matched 
control (Fig. 5A) and the evening/morning before/after sleep times 
(e.g., 12 to 16 hours versus 26 to 30 hours TSW in the sleep depriva-
tion experiment and 12 to 16 hours day 1 versus 2 to 6 hours day 2 
for matched control) (Table 4 and Fig. 5B). At the individual level, 
opposite or nonsignificant trends relative to that observed during 
sleep deprivation were observed in most matched control partici-
pants (fig. S6 and table S7). A single exception was participant 4, 
who displayed a clock time–matched decrease in vanillin 4-sulfate, 
although their evening/morning comparison was not significant 
(FDR-adjusted) (fig. S8 and table S7).

To investigate the influence of meal timing on biomarker candi-
date levels, trends of data z-scored across WR days from the matched 
control (CP, with three large meals and three snacks) and sleep de-
privation (CR, with hourly snacks) protocols (day 3) were compared. 
A mixed linear model with TSW and study protocol (meal schedule) 
as fixed factors and participant as a random factor indicated that all 
metabolites altered with increasing TSW, but these trends were not 
significantly different between protocols/diet (Fig. 5C; P > 0.97).

DISCUSSION
This study developed and validated a metabolomic biomarker that 
predicted >24 hours time awake and therefore the presence of acute 
sleep deprivation due to extended wake in young healthy adults. The 
metabolomic biomarker was tested for accuracy, replicability, and 
deployment potential. First, in an unseen test set, this biomarker was 
accurate in predicting the presence of sleep deprivation (>24 hours, 
94.7% accuracy/AUC = 99.2%) and time awake (R2 = 86.1%) when 
compared to a WR sample. While accuracy remained very good to 
excellent for a single time-point detection of sleep deprivation 
(79.3% accuracy/AUC = 89.1%), it was lower when detecting in-
creasing time awake (R2 = 45.6%). Second, replicability is supported by 
robust identification of individual metabolites, which comprised 

indole 3-propionate, vanillin 4-sulphate, PI(16:0/18:1), and LPC(18:3). 
Inclusion of a monosaccharide (currently unidentified) further in-
creased accuracy. Third, we achieved this biomarker of sleep depri-
vation with only five metabolites, thus facilitating the development 
of standards, functionalized biosensors, and detection devices to 
promote future deployment to accurately and rapidly detect sleep 
deprivation in a point-of-care setting.

A biomarker of acute sleep deprivation must be able to identify 
sleep loss at the individual level, demonstrating high SN (correctly 
identifying those with insufficient sleep) and/or high SP (correctly 
identifying those with sufficient sleep). In an unseen test dataset, 
this biomarker predicted 24 hours or more of sleep deprivation with 
an accuracy of 94.7% (AUC = 99.2%), correctly identifying 81 of 84 
sleep-deprived samples (SN  =  93.1%) and 79 of 85 WR samples 
(SP = 96.3%). When moving toward a real-world application where 
the distinction between WR/sleep deprivation may be closer (i.e., 
samples <24  hours versus those >24  hours), accuracy remained 
high (90.4%, AUC = 96.5%). When detecting a lower level of sleep 
loss that may be typical in real-world environments (i.e., 0 to 16 
versus 18 to 24  hours), accuracy dropped only slightly (84.6%, 
AUC = 95.1%). To our knowledge, this is the most accurate me-
tabolomic biomarker of sleep loss described to date, although we 
respectfully acknowledge the difference in sleep loss schedules com-
pared to prior studies. For example, the metabolomic prediction 
model of chronic sleep restriction previously described an accuracy 
of 74% (27). We also observe comparatively higher levels of accura-
cy (94.7% versus 74%) for predicting clock time–matched within-
participant acute sleep deprivation, relative to previous studies using 
a transcriptomic approach (22). However, because of the difference 
in data processing used in our study and others (within-participant 
correction and machine learning approach), it is unclear whether 
the improvement is biological, methodological, or analytical in na-
ture. Notwithstanding, this metabolomic biomarker has potential 
for future implementation in operational environments, where the 
cost of a sleep-related error is high (e.g., transportation or space 

Table 3. Testing model results from classification random forests for within- and between-participant analyses for varying levels of sleep deprivation 
and WR classifications. Model accuracy (lower to upper 95% CI), area under the receiver operating curve (AUC, lower to upper 95% CI), negative and positive 
prediction accuracy (NPV and PPV%), specificity (SP%), and sensitivity (SN%) are displayed.

X Time grouping 
(hours)

Accuracy (%) 
(lower–upper)

AUC (%) (lower–
upper) SP (%) SN (%) NPV (%) PPV (%)

Within participant 0–16 vs. 18–38 92.4 (87.8–95.7) 98 (96.6–99.4) 91.7 93.0 90.6 93.8

0–16 vs. 20–38 93.6 (89.1–96.7) 98.9 (98.1–99.8) 92.9 94.2 92.9 94.2

0–16 vs. 22–38 93.8 (89.2–96.9) 98.8 (97.9–99.8) 93.0 94.6 94.1 93.5

0–18 vs. 24–38 96.6 (92.8–98.8) 99.1 (98.1–100) 98.9 94.3 94.7 98.8

0–20 vs. 24–38 92.1 (87.2–95.5) 97.9 (96.3–99.5) 95.0 88.8 90.5 94.0

0–23 vs. 24–38 90.4 (85.4–94.1) 96.5 (94.2–98.7) 90.6 90.1 93.0 86.9

Between 
participants

0–16 vs. 18–38 70.2 (63.3–76.5) 84.7 (79.4–90) 64.8 74.5 67.1 72.6

0–16 vs. 20–38 72.3 (65.4–78.6) 85.8 (80.6–91) 67.7 76.8 74.1 70.9

0–16 vs. 22–38 75.3 (68.3–81.4) 87.6 (82.7–92.5) 71.1 80.2 81.2 69.9

0–18 vs. 24–38 78.2 (71.4–84) 88.4 (83.7–93.1) 76.9 80.0 84.2 71.4

0–20 vs. 24–38 77.2 (70.6–83) 88.1 (83.5–92.7) 78.7 75.3 81.0 72.6

0–23 vs. 24–38 76.8 (70.3–82.5) 87.4 (82.8–92.1) 79.3 73.2 80.7 71.4

Note: For training models tested above, tree depth ranged from 27 to 73 nodes



Jeppe et al., Sci. Adv. 10, eadj6834 (2024)     8 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

8 of 17

exploration) and where WR samples can be obtained as either a pre-
screen or follow-up.

The prediction of between-participant sleep deprivation resulted 
in a lower accuracy (79%, AUC  =  89.1%), relative to the within-
participant approach, although we note still considered very good to 
excellent. This small reduction in accuracy is likely due to previ-
ously described interindividual variation in metabolomic profiles 
(25, 26), whether biological or technical in nature. Despite this, and 
similar to the within-participant analyses, there remained only a 
marginal reduction in detection accuracy when the distinction be-
tween sleep deprivation and WR was reduced (e.g., <24 hours ver-
sus >24 hours; accuracy = 76.8%, AUC = 87.4%). Our biomarker 
performed similarly to a previous biomarker developed from whole-
blood transcriptomics, which predicted <24 hours versus >24 hours 
in between-participant data with 80% accuracy (22) [although we 
note that in the transcriptomic study, a wider distinction between 
WR and SD (7 to 8 hours versus 31 to 32 hours TSW) achieved a 
92% accuracy]. These biomarkers have important implications for 
translational pathways requiring a single test sample, such as road-
side testing or post-accident analysis of suspected fall asleep crashes. 
Here, the potential improvements in road safety are considerable 
both directly, such as detecting drivers who may represent a 

substantial risk to themselves and others on the road, and indirectly 
through unmasking the true cost of sleep deprivation in road trau-
ma (29). For safety-critical environments or medical diagnosis, SN 
is considered paramount, where detecting individuals who are im-
paired is preferred over the cost of a false positive. This is in contrast 
to the use of a biomarker as forensic evidence, where SP is consid-
ered more critical. In this latter example, a high proportion of false 
positives would jeopardize evidence credibility such that opera-
tional parameters are estimated to be at least 85% SP (true negative 
detection) (30). As this threshold exceeds that reported for our 
between-participant (single time point) biomarker (SP =  73.3%), 
several adjustments would need to be made, including (i) a second 
sample being obtained under WR conditions for any driver/worker 
suspected as “sleep-deprived,” (ii) optimization of the biomarker 
through a multisystems approach (e.g., with related biological mea-
sures, such as mRNA, proteins, or enzymes), or (iii) adjustment of 
the threshold to optimize SP at the cost of reduced SN. In this latter 
respect, adjusting our biomarker parameters to meet this require-
ment (SP = 85%) resulted in an SN of 65.5% when comparing above 
and below 24 hours awake (i.e., a closed distinction between pass/
fail). This result suggests that the developed biomarker and adjusted 
threshold for minimizing false positives (to less than 15%) has the 

Fig. 4. Random forest model regression results for within- and between-participant analyses. Top: Relative importance of the five final biomarker candidates for 
training models using within-participant (A) and between-participant data (C). Testing R2 is shown in each panel. Bottom: Model predicted TSW versus actual TSW in test 
data for within-participant (B) and between-participant models (D). Line types indicate percentiles with corresponding prediction error shown in hours (e.g., 50% of indi-
vidual points are predicted within 2.1 or 5.1 hours of the actual time awake for within- and between-participant, respectively). Two outlier participants (P = □; S = ▽) are 
highlighted (adjusted R2 for between-participant is 63.8% with their removal). MSE%, increase in mean square error on variable removal; TSW, time since wake.
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potential to detect 65.5% of drivers or operators who have been 
awake for 24 hours or longer and represent a serious danger to road 
safety (i.e., performance at this level is considered more detrimental 
than any legal limit of alcohol worldwide). Subject to validation in 
the wider population, and under less well-controlled environments, 
these data have important implications for jurisdictions where driv-
ing while knowingly fatigued/drowsy (e.g., being without sleep for a 
period in excess of 24 consecutive hours—Maggies Law, New Jer-
sey) is a prosecutable offense.

Regression models of within-participant time awake predicted 
50% of samples within 2.1  hours of actual TSW (R2 =  86.4%), 
although the between-participant models were weaker (R2 = 45.6%). 
While these correlations were stronger than those observed by 
Laing et al. (22) (R2 ~ 30% for within and between participants) pos-
sibly due to the nonlinear and nonparametric nature of random for-
est models, the percentage of variance explained for time awake for 

a single sample remains low. Several important observations can be 
made in this respect. First, our predicted TSW was generally lower 
than actual TSW [e.g., 38 hours TSW was predicted as 28 to 36 hours 
for within and 20 to 28  hours TSW (with outliers of 12  hours)], 
which may be due to a floor effect of the metabolite due to rapid 
depletion or reaching detection limits before excessive (>20 hours) 
sleep loss. This can be seen in Fig. 4 where the prediction model 
plateaus after 12 to 20 hours awake (and particularly evident for 
participants P and S). Second, these data should not be interpreted 
as the metabolites themselves being irrelevant for the detection of 
time awake (as confirmed with classification), but rather that the 
regression model may not be the most fruitful approach for future 
biomarker development due to these trends. For future studies 
where actual TSW is required, using targeted assays (where metabo-
lites are known) in combination with new systems (e.g., high SN 
mass analyzers) or approaches (e.g., enrichment) may enhance 

Fig. 5. Group-level trends of the five final biomarker candidates in sleep deprivation and matched control experiments. (A and B) Mean candidate metabolite 
levels (z-score) from a 4-hour block pre- and post-habitual sleep interval were compared between sleep deprivation and matched control protocols. Pre- and post-
habitual sleep were compared using both clock time–matched (A) (sleep deprivation—pre: 2 to 6 hours TSW/post: 26 to 30 hours TSW; matched control pre: 2 to 6 TSW 
day 1/post: 2 to 6 TSW day 2) and (B) evening/morning (sleep deprivation—pre: 12 to 16 hours TSW/post: 26 to 30 hours TSW; matched control pre: 12 to 16 hours TSW 
day 1/post: 2 to 6 hours TSW day 2). (C) A comparison of a WR day 3 from sleep deprivation (CR) and matched control (CP) protocols. Dashed lines indicate main meals 
(dark gray) and snacks (light gray) in the matched control protocol. Snacks were provided hourly in the sleep deprivation protocols. Series colors indicate the protocol 
[sleep deprivation (experiment 1): light green, sleep deprivation (experiment 2): dark green, and matched control: charcoal].
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Table 4. Mixed linear models comparing candidates pre- and post-habitual sleep compared to time points from the sleep deprivation experiments. 
Candidate z-scores during a 4-hour block pre- and post-habitual sleep interval for clock time–matched (2 to 6 hours versus 26 to 30 hours) and evening/
morning (12 to 16 hours versus 26 to 30 hours) in two sleep deprivation and the matched control experiments. Results are displayed as estimate, degrees of 
freedom (df ), t ratio, P value, and the trend observed between pre- and post-means.

Time comparison Metabolite Protocol Estimate df t ratio
P value (FDR-

adjusted) Trend

Clock 
time–matched

Vanillin 4-sulfate Sleep deprivation 
(experiment 1)

−2.2 134.7 −14.3 <0.001 Decreasing

Sleep deprivation 
(experiment 2)

−2.2 134.1 −13.7 <0.001 Decreasing

Matched control −0.4 134.1 −1.6 0.143 Not significant

Indole 3-propionate Sleep deprivation 
(experiment 1)

−1.8 134.3 −11.4 <0.001 Decreasing

Sleep deprivation 
(experiment 2)

−1.7 134.0 −10.6 <0.001 Decreasing

Matched control −0.1 134.0 −0.4 0.721 Not significant

Monosaccharide 1 Sleep deprivation 
(experiment 1)

1.9 134.7 13.3 <0.001 Increasing

Sleep deprivation 
(experiment 2)

2.1 134.1 13.7 <0.001 Increasing

Matched control 0.0 134.1 0.2 0.824 Not significant

PI(16:0/18:1) Sleep deprivation 
(experiment 1)

1.9 134.7 12.5 <0.001 Increasing

Sleep deprivation 
(experiment 2)

1.7 134.1 10.8 <0.001 Increasing

Matched control −0.2 134.1 −0.8 0.49 Not significant

LPC(18:3) + CH2O3 Sleep deprivation 
(experiment 1)

1.8 134.7 10.9 <0.001 Increasing

Sleep deprivation 
(experiment 2)

1.9 134.1 11.1 <0.001 Increasing

Matched control −0.7 134.1 −2.8 0.008 Decreasing

Evening/morning Vanillin 4-sulfate Sleep deprivation 
(experiment 1)

−0.9 128.7 −6.5 <0.001 Decreasing

Sleep deprivation 
(experiment 2)

−1.1 130.1 −7.8 <0.001 Decreasing

Matched control 0.6 128.1 2.9 0.007 Increasing

Indole 3-propionate Sleep deprivation 
(experiment 1)

−1.2 128.6 −8.4 <0.001 Decreasing

Sleep deprivation 
(experiment 2)

−0.8 129.8 −5.4 <0.001 Decreasing

Matched control 0.1 128.1 0.6 0.564 Not significant

Monosaccharide 1 Sleep deprivation 
(experiment 1)

0.6 128.6 3.5 0.002 Increasing

Sleep deprivation 
(experiment 2)

0.8 129.7 4.5 <0.001 Increasing

Matched control −0.5 128.1 −1.9 0.076 Not significant

PI(16:0/18:1) Sleep deprivation 
(experiment 1)

0.7 128.7 4.6 <0.001 Increasing

Sleep deprivation 
(experiment 2)

0.5 130.1 3.3 0.002 Increasing

Matched control −1.1 128.1 −4.5 <0.001 Decreasing

LPC(18:3) + CH2O3 Sleep deprivation 
(experiment 1)

0.4 128.7 2.3 0.029 Increasing

Sleep deprivation 
(experiment 2)

0.2 130.1 1.4 0.203 Not significant

Matched control −1.4 128.1 −5.3 <0.001 Decreasing
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detection of low abundant metabolites and improve performance of 
the regression approach. Notwithstanding, this sleep biomarker 
may have utility in TSW detection where repeat samples are avail-
able and no required time threshold exists. Furthermore, as several 
of these biomarkers have been implemented in health (see below) 
and our regression models are applicable to ongoing health moni-
toring, our work may be applicable to future sleep health wearables 
with continued monitoring of sleep health. With further research on 
the health implications of these metabolites, and the influence of 
sleep deprivation on their function, the health effects of insufficient 
sleep could be better understood and monitored. In addition, for 
individual differences such as those who present as WR during sleep 
deprivation (as observed in participants P and S), this type of moni-
toring may offer insight into individual resilience or vulnerability to 
the health impacts of sleep deprivation.

Beyond total sleep deprivation, partial or chronic sleep restric-
tion is frequently experienced by those working night shifts (31), 
extended duration work shifts (32), those with sleep disorders (e.g., 
insomnia and sleep apnea), or for many who remain awake overnight 
for social and recreational or caregiving reasons (33). The extent to 
which our biomarker may detect those experiencing insufficient 
sleep due to sleep restriction/curtailment (e.g., 3-hour sleep) is un-
known. Moreover, research suggests that metabolites representing 
sleep loss may differ to those representing sleep duration. For in-
stance, to our knowledge, none of the five metabolites included in 
our biomarker of sleep deprivation were identified among the 65 
metabolites suggested by Depner et al. (27) as important for the de-
tection of insufficient sleep. Furthermore, this discrepancy between 
biomarkers reflecting sleep or lack thereof was also reported by 
Laing et al. (22) and further work exploring this is required. It also 
remains unknown how the biomarker developed here would re-
spond to short sleep bouts or “naps,” which has implications for its 
potential future use, for example, in situations where individuals are 
encouraged to take a 20-min “power nap” to restore their alertness 
and ability to undertake safety-critical tasks (34). Although we dem-
onstrate the recovery of all five metabolites following a night of sleep, 
future work should examine recovery over shorter time scales (e.g., 
30 min, 1 hour, etc.) and/or develop complementary metabolites rep-
resenting sleep duration and showing rapid recovery following sleep. 
Last, the behavioral response to sleep loss shows large interindividu-
al variability such that, while one person may respond poorly to sleep 
loss (“vulnerable”), others may remain relatively intact (“resilient”) 
(35). As this biomarker was developed to detect a physiological re-
sponse to sleep loss, future work is required to understand whether 
this biomarker predicts the behavioral vulnerability to sleep loss.

To aid replicability of this biomarker, we provide high-confidence 
identifications for four (of five) of these metabolites. Beyond provid-
ing a biomarker of sleep deprivation, these metabolites represent 
biological processes that are altered by sleep deprivation and thus 
provide information regarding the link between sleep deprivation 
and health. Vanillin 4-sulphate is a phase 2 enzyme-conjugated me-
tabolite of the phenolic compound vanillin, predominantly formed 
in the kidneys or liver from the dietary precursor vanillin or in the 
gut from ferulic acid (36, 37). A decrease in vanillin 4-sulphate may 
indicate reduced liver function or increased antioxidant/anti-
inflammatory action of its precursors. This could be a potential 
mechanism associating poor sleep and liver disease (38). Indole-3-
propionate is a gut bacteria–derived tryptophan metabolite, and one 
of the few antioxidants not to produce a pro-oxidant intermediate 

when scavenging hydroxyl radicals (similar to melatonin) (39, 40). 
Indole-3-propionate is considered protective in several conditions 
for which oxidative damage is a concern (e.g., Alzheimer’s disease) 
(41, 42) and metabolic disorders [e.g., type 2 diabetes; (43–45)]. 
These conditions are closely associated with sleep disturbance, with 
risk factors inversely related to sleep quality/quantity (46–48). Here, 
the decrease in indole-3-propionate could present a mechanism as-
sociating sleep deprivation and metabolic or age-related diseases. 
Last, the two remaining identified biomarker candidates were lipids, 
supporting findings that lipid metabolism is important in sleep and 
sleep deprivation (24, 25, 28, 49–51). More specifically, PI(16:0/18:1) 
is a membrane phospholipid involved in membrane transport and 
cell signaling (52) whereby increased levels of PI(16:0/18:1) as seen 
here could be due to membrane breakdown due to oxidative dam-
age. LPCs such as LPC 18:3 can act via G protein–coupled receptor 
signaling and can enhance inflammatory responses disrupting 
mitochondrial integrity or inducing apoptosis. While the optimal 
level of LPCs in plasma has not yet been established, altered levels of 
LPCs have been associated with risk factors for several diseases, in-
cluding cardiovascular, diabetes, and Alzheimer’s disease (53).

There were a number of limitations to this study. First, the study 
cohort of healthy young adults comprised more men than women 
(18:5), and therefore, our results may not generalize to the wider 
population, including those who are older or have a clinical diagno-
sis (particularly those relating to sleep or the metabolites them-
selves) (54, 55). Although we did not observe any sex differences in 
our data, female participants were studied during their follicular 
phase to minimize differences due to menstrual phase in their be-
havioral response to sleep deprivation (56). Second, we present data 
from a small number of individuals (model trained on n = 11 and 
tested on n = 12) with repeated samples. This approach of highly 
controlled protocols with deeply phenotyped participants is typical 
of early biomarker development studies (22, 57) and a strength of 
the current study. Future work should expand to larger populations 
under less controlled conditions (12, 54, 57). Third, hourly iso-
caloric meals in the CR may alter metabolism incrementally each 
hour (comparable to the linear trends attributed to increasing wake-
fulness), although our examination of the WR day 3 control proto-
col indicated that the final five biomarker candidates were not 
significantly altered by meal timings. However, introducing varia-
tion in light, exercise, temperature, and feed fast cycles will be an-
other important validation step for this biomarker, particularly for 
those biomarker metabolites related to metabolism and energy pro-
duction (27). Furthermore, how these metabolites and their re-
sponse to time awake is affected by population differences, such as 
ethnicity, age, medical conditions, and diet, needs to be investigated 
further. Using a combination of metabolites (these and others) in 
future work, we can likely account for this variation, however, as a 
combination of markers will be more robust to individual differ-
ences than a single marker (17, 27, 28).

To summarize, through a rigorous, laboratory-based study, we 
developed a biomarker comprising five metabolites, which together 
predict >24 hours awake with high accuracy. Using multiple sam-
ples in a fitness-for-duty design (within participant), this biomarker 
predicted sleep deprivation with more than 90% accuracy. In a single-
sample (between-participant) design applicable in random testing 
such as in post-accident analysis, >75% accuracy was achieved. 
Notwithstanding real-world confounds, using this single time-
point biomarker with an adjusted threshold acceptable in forensic 
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settings (<15% false positives), 65.5% of sleep-deprived individuals 
(>24 hours awake) would be detected. By minimizing the number 
of candidates, and confirming their identity, we increased the trans-
lational capacity of this biomarker for device development in the 
long-term and forensic examination where blood samples may be 
obtained in the short term (e.g., suspected fall asleep crash or criti-
cal event). A biomarker based on this research has the potential 
therefore to be transformative for community safety both directly in 
detecting sleep-deprived individuals and indirectly through deter-
rence from undertaking safety-critical tasks while sleep-deprived. 
We therefore present a major step forward in next-generation detec-
tion of sleep loss with potential to reduce road and workplace inju-
ries and fatalities.

MATERIALS AND METHODS
Experimental design
A between- and within-participant design examining changes in me-
tabolite profiles across three experiments comprised of 2 × 40-hour 
extended wakefulness under CR conditions (train and test datasets) 
and 1 × 40 hours under comparable conditions but including an 8-
hour interval of sleep during habitual sleep timing.

Participants
Young healthy participants with regular sleep schedules were re-
cruited from the general public as described previously (26, 58). 
Participants either followed the protocol of a sleep deprivation ex-
periment [experiment 1: n = 12 (25.6 ± 3.9 years old, one female), 
experiment 2: n = 11 (25.2 ± 7.4 years old, four females)], or the 
matched control [n = 5 (24 ± 2.5 years old, all male)], and LC-MS 
processing was conducted as three separate experiments.

For all experiments, participants were healthy, with no medical, 
psychiatric, or sleep disorders and no drug, supplement, nicotine, 
caffeine, or alcohol use reported for 3 weeks before, and until com-
pletion of, the in-laboratory study. Participants were also nonshift 
working adults and had not crossed time zones in the 3 months pre-
ceding the study. Women were admitted to the in-laboratory study 
during the follicular phase of their menstrual cycles to minimize 
differences due to menstrual phase. Urine screening (for drugs and 
pregnancy) was conducted before laboratory admission. Further de-
tail on recruitment criteria has been published elsewhere (26, 58). 
The study was approved by the Monash University Human Research 
Ethics Committee (CF14/2790-2014001546).

Sleep deprivation study protocol
Sleep deprivation is defined here as a night of extended wake 
(acute sleep loss as opposed to restriction acute or chronic). For experi-
ments 1 and 2, participants maintained a self-selected 8-hour:16-hour 
sleep/wake schedule for 2 weeks before the in-laboratory study 
[confirmed by sleep diaries and wrist actigraphy (Actiwatch Spectrum, 
MiniMitter Inc., Bend, OR)]. The sleep deprivation protocol is dis-
played in Fig. 6A. Participants were admitted to the laboratory and 
continuously monitored for 6 days in an environment free of time 
cues. The first two nights of the study were baseline sleep/wake, 
scheduled to each participant’s prelaboratory self-selected sleep 
schedule. Full polysomnography was recorded on the first night to 
confirm no presence of sleep disorders. During baseline days, par-
ticipants were fed three main meals and three snacks per day, and 
lighting was 100 lux during wake and 0 lux during sleep (see the 

“Lighting conditions” section for more detail). On day 3, partici-
pants woke to start the 40-hour CR. Here, they remained awake 
under constant supervision in dim light conditions (<3 lux), in a 
semi-recumbent posture (head of bed at 45°). They consumed iden-
tical hourly snacks (quarter sandwich, 60 ml of water, and 40 ml of 
apple juice) with a calorie and macronutrient content (~20% pro-
tein, ~33% fat, and ~46% carbohydrate) in line with the Australian 
Dietary Guidelines (59).

Matched control study protocol
For the matched control, each participant maintained a self-selected 
8:16 sleep-wake schedule for 1 week before the in-laboratory stay. 
The matched control in-laboratory protocol was two nights (3 days) 
of 8-hour:16-hour sleep/wake schedule, scheduled to each partici-
pant’s prelaboratory self-selected sleep schedule (Fig.  6B). During 
wake intervals on days 2 and 3, participants underwent a constant 
posture (CP), where electroencephalography (EEG) measurements, 
lighting, posture, and biological sampling were matched to the CR 
protocol in experiments 1 and 2. Participants were fed three main 
meals and three snacks that were calorie-matched each day during 
the matched control, as it is impractical to feed hourly CR meals 
during a protocol with a sleep interval.

Lighting conditions
During baseline and recovery days, maximum ambient light during 
wake episodes was ~102 ± 37 lux (horizontal plane) and ~45 ± 21 
lux (vertical plane). Lights were dimmed to ~3 ± 1 lux (horizontal) 
and ~1 ± 3 lux (vertical) for the last 5 hours of wake on baseline 
night 2 for 6-day study (experiments 1 and 2), and during the CR 
(experiments 1 & 2) , and CP wake episodes (days 2 and 3) of the 
matched control study (Fig.  6). During scheduled sleep episodes, 
ambient lighting was turned off. Illuminance was measured daily by 
a lux meter (Tektronix J17 Luma Color, Oregon, USA) in four loca-
tions positioned directly under light panels at 1.8 m from the floor. 
The room lighting was generated from ceiling-mounted 4100 K flu-
orescent lamps (Master TL5 HE 28 W/840 cool lights, Philips Light-
ing, Amsterdam, The Netherlands) covered with neutral density 
filters (three-stop LEE Filters, Lightmoves, Noble Park, Australia).

Blood sample collection and processing
Blood was collected during the CR/CP wake intervals via an in-
dwelling intravenous cannula, inserted into the forearm or antecu-
bital vein approximately 1  hour after wake. Blood was collected 
every 2 hours, starting 2 hours after wake (Fig. 6). Whole blood was 
collected in a syringe and aliquoted into a blood tube spray coated 
with dipotassium ethylenediaminetetraacetic acid (K2EDTA). Sam-
ples were immediately centrifuged at 4°C or stored in a fridge at 4°C 
for no more than 30 min before processing. Once spun, plasma su-
pernatant was aliquoted, snap-frozen in dry ice, and stored at −80°C 
for metabolomic analysis.

Metabolomics analysis
For metabolomic extraction, plasma samples were thawed on ice in 
20-μl aliquots and extracted using 180 μl of acetonitrile/methanol 
(1:1, v/v) solution containing 2 μM 13C-sorbitol, 2 μM 13C15N-AMP 
(adenosine monophosphate), and 2 μM 13C15N-UMP (uridine 
monophosphate) as internal standards. Samples were vortexed for 
30 s, sonicated for 5 min at 4°C, and then incubated for 10 min at 4°C 
(in an Eppendorf Thermomixer). Samples were then centrifuged 
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(4500g, 10 min at 4°C), and 100 μl of the supernatant was trans-
ferred into a glass vial. The pooled biological controls (PBQCs) con-
tained a 10-μl aliquot of each sample extract. Sample extracts (7 μl) 
were resolved on a ZIC-pHILIC column (5-μm particle size, 150 mm 
by 4.6 mm, Merck SeQuant) connected to an Agilent 1290 (Santa 
Clara, CA, USA) high-performance liquid chromatography system 
running a 33-min gradient with mobile phases 20 mM ammoni-
um carbonate (pH 9.0; Sigma-Aldrich; solvent A) and 100% aceto-
nitrile (solvent B) at a constant flow rate of 300 μl/min. Metabolites 
were detected by electrospray ionization using an Agilent 6545 Q-
TOF MS system (Santa Clara, CA, USA) in negative all-ion frag-
mentor mode, which included three collision energies (0, 10, and 
20 V). For each experiment, LC-MS processing was conducted in 
one analytical batch, with samples randomized by participant and 
time, with a PBQC run every eighth sample to monitor instrument 
performance during the run. Solvent blanks were analyzed every 
12 hours to monitor instrument performance. The instrument was 
cleaned and calibrated weekly to ensure a mass accuracy of ±0.2 
parts per million (ppm). Detailed quadrupole–time-of-flight 
(Q-TOF) MS parameters are available (60).

Data analysis
Data analysis for this study was designed to develop a biomarker 
that could be deployed in operational/point-of-care settings. The 
two sleep deprivation experiments used an identical laboratory 
protocol but were run as independent LC-MS experiments. These 
independent datasets were allocated to model training or testing, 
providing biologically and technically independent datasets for mod-
el hold-out analysis (experiment 1 training/experiment 2 testing for 
main analysis, experiment 2 training/experiment 1 testing for san-
ity check).

LC-MS data cleaning, feature filtering and identification
LCMS data cleanup
Relative abundances based on area under the feature peak were ob-
tained using MassHunter Quantitative Analysis B 0.8.00 for TOF 
(Agilent). An integrated matrix of 1035 true peaks was then gener-
ated by XCMS centWave algorithm (61) to detect features. Features 
with >20% zero values were removed, resulting in 929 features to 
be included in subsequent analyses. These data were imputed for 
left-censored missing value using QRLIC and were then median-
normalized within sample. This is a standard approach to account 
for variation across the LC-MS run. These data were not further 
transformed for between-participant analyses. For within-participant 
analyses, a z-score for each feature was generated for each participant 
across time points to reduce between-participant variation.
Filtering of LCMS features
Data filtering and analyses were performed using R version 4.1.2 
(https://r-project.org). Data were initially filtered by testing for fit to 
a general linear model (lm[stat]) and cosinor model with 24-hour 
period (cosinor.lm[cosinor]) in each individual and at the group 
level (lmFit[limma], LimoRhyde[limma]). To pass this filter and be 
included in modeling for biomarker candidates, features were re-
quired to have a significant and monotonic linear model in more 
than 50% of participants and at the group level (P <  0.05) in the 
training experiment (experiment 1 for main analysis, experiment 2 
for sanity check) but not display a significant cosinor amplitude in 
more than 25% of participants (P < 0.05). Filtering in this way was 
important as significant responses at the group level are not always 

reflected in individual trends (26) such that biomarker development 
on erroneous group-level trends can be misleading. Features dis-
playing a 24-hour cycle in more than a quarter of participants were 
also excluded as they are likely under circadian control. For future 
implementation of a biomarker, it is difficult to control for an indi-
vidual’s circadian timing as samples may be collected across multi-
ple circadian phases, even if collected at the same clock time (62). 
Hence, a sleep deprivation biomarker should ideally be under con-
trol of the sleep homeostat (linear change) and not under circadian 
control (cyclical).

Filtered feature peaks were confirmed in MassHunter using the 
“compounds at a glance” function. The MassHunter metabolite area 
data for filtered features were also visualized to ensure any batch ef-
fects, XCMS processing, and normalization of the data had not in-
troduced unwanted variation in the filtered features.
Identification of filtered features
Identification was attempted for all features that passed data filtering 
using accurate mass, RT, and MS/MS fragmentation patterns for 
each feature. The identification and evaluation of metabolomics data 
from LC-MS (IDEOM) workflow was used to calculate database RTs 
based on included standards from the experiments to support mass-
based identification (63). In addition to the IDEOM workflow, on-
line databases were accessed to search masses to assign formulae 
and identify features (https:lipidmaps.org/; http://hmdb.ca/; https://
biocyc.org/; http://chemspider.com/; https://mzcloud.org/). Stan-
dards were run where available to discriminate between compounds 
and isomers to achieve level 1 identification as per the Metabolo-
mics Standards Initiative (64). Where isomers could not be discrim-
inated or standards could not be run, fragmentation patterns, m/z, 
and RT matches resolved putative identification to a higher level of 
classification.

Modeling of biomarker candidates
Random forest models are nonlinear multivariate techniques based 
on decision trees, which estimate the relative importance of each 
predictor variable (LC-MS features) on the response variable (TSW 
or WR-SD). This machine learning approach was selected because it 
is useful for biomarker discovery, as it is nonparametric and allows 
for nonlinear relationships between variables in complex biological 
data [e.g., (65–68)].

Random forest models were trained on experiment 1 data (12 
participants) and tested on experiment 2 (11 participants) in a hold-
out analysis (randomForest[randomForest]) (69). Seed was set at 
123 for all analyses, with model parameters mtry = 3, ntree = 500 for 
all models; minimum size of terminal nodes was 1 for classification 
models and 5 for regression models. Sanity check models were also 
built (trained on experiment 2 data and tested on experiment 1). 
Candidates were selected in the training experiment from the fil-
tered features using the VSURF algorithm (parameters: ntree.
thres = 300, nfor.thres = 40, ntree.interp = 100, nfor.interp = 30, 
ntree.pred  =  100, nfor.pred  =  10), which progressively removed 
variables and estimated the reduction in cross-validated perfor-
mance of random forest models (70). The final biomarker candi-
dates were VSURF variables that were selected across most models 
[model type (classification/regression) and data type (within/be-
tween participant)].

For predicting WR-SD, a training set of 182 samples from 12 par-
ticipants across two classes (93 samples WR and 89 samples SD) was 
used to build a classification random forest models, which were 

https://r-project.org
https:lipidmaps.org/
http://hmdb.ca/
https://biocyc.org/
https://biocyc.org/
http://chemspider.com/
https://mzcloud.org/
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evaluated using the model accuracy and confusion matrices. Vari-
ables were ranked by relative variable importance based on mean 
decrease accuracy (MDA) on variable removal. Model accuracy with 
lower-upper 95% CI was assessed as 1 − out of bag error for train-
ing models and prediction accuracy for testing models. Confusion 
matrices from the final model were used to define PPVs and NPVs. 
Predicted values from the classification random forests were then 
used to define ROC curves to visualize the predictive accuracy as 
SP and SN and to calculate the AUC (with lower and upper 95% CI) 
of the models (roc[pROC]). To predict TSW, a training set of 218 
samples from 12 participants across 19 time points (10 to 12 sam-
ples per time point) was used to build a regression random forest 
model. Model performance was evaluated using R2, and RMSE to 
interpret variance and relative variable importance was estimated by 
the percent increase in mean squared error (MSE%) on variable 
removal.

Final biomarker models were then tested on experiment 2. For 
predicting WR-SD, a test set of 85 WR samples and 84 SD samples 
was assessed. Furthermore, the same training models were tested on 
each participant in the test data to assess individual-level prediction 
(TSW: 19 samples per participant, except participants U: 14, V: 17, 
and W: 16 samples; WR-SD: 8 samples per participant per group, 
except participants U and V: 7 per group and W: 7 WR and 6 SD). 

To predict TSW, this provided 198 samples from 11 participants 
across 19 time points (9 to 11 samples per time point).

The accuracy of models to predict sleep deprivation (>24 hours 
TSW) and extended wake (increasing TSW) using fewer variables 
were assessed by building classification and regression models with 
all possible combinations of two or more of the five consistently se-
lected features (26 combinations). These analyses allowed for a more 
detailed examination of model resilience and flexibility. Multiple 
comparisons (Bonferroni adjustment) were used to assess the sig-
nificance of these models.

To investigate changes in model accuracy when assessing classi-
fications including samples from outside the clock time–matched 
intervals (e.g., 18 to 22 hours), classification models were also built 
closing the distinction between WR (0 to 16 hours) and SD (24 to 
38 hours) conditions, by including 18-, 20-, and 22-hour measure-
ments in each condition (WR or SD) in a stepwise manner, culmi-
nating in the closest distinction of WR (<24 hours) compared with 
SD (>24 hours). Furthermore, to investigate a lower level of sleep 
loss, classification models were also built comparing WR condition 
with only samples from within the biological night [e.g., WR (0 to 
16 hours TSW) compared with SD (18 to 24 hours TSW)].

Last, the inclusion of the matched control in this study helped to 
separate the impact of increasing time awake from inactivity, light, 

Fig. 6. Raster plots depicting the in-laboratory protocols used in sleep deprivation experiments 1 and 2 and the matched control study. (A) The 6-day protocol 
used in sleep deprivation experiments. Days 1 and 2 were baseline days with 8-hour:16-hour sleep/wake cycle based on average habitual sleep before admission (AD). On 
day 3, the 40-hour CR commenced ending at the end of day 4. Days 5 and 6 were recovery days with up to 12-hour sleep opportunities before discharge (DC) on day 6. 
(B) The 3-day in-laboratory protocol used in the matched control study. Day 1 was the baseline day, and each day followed a self-selected 8-hour:16-hour sleep/wake 
cycle. Black diamonds represent blood samples taken for metabolomics analysis. White bars represent wake intervals in 100 lux, black bars represent sleep intervals in 
0 lux, and gray bars represent wake intervals in <3 lux ambient light. The protocol is shown in relative clock time with a relative bedtime of midnight. Study events were 
scheduled relative to each individual’s pre-study self-selected wake time.
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meal timings, and environment, which may also change systemati-
cally/incrementally across the CR protocol. As the matched control 
had comparable inactivity/environmental settings, the opposite/
lack of change observed (during sleep deprivation) in biomarker 
candidates following a sleep interval would provide further evidence 
that the biomarker is indicative of sleep deprivation. To assess this, 
the matched control samples (5 participants, 15 samples per condi-
tion) were compared with time-matched sleep deprivation samples 
from experiment 1 (12 participants, 33 to 36 samples per condition) 
and experiment 2 (11 participants, 21 to 22 samples per condition). 
These data were assessed in either a clock time-matched (2 to 
6 hours TSW day 2 versus 2 to 6 hours day 3 for matched control 
and 2 to 6 hours versus 26 to 30 hours for sleep deprivation) or eve-
ning/morning design (12 to 16 hours TSW day 2 versus 2 to 6 hours 
day 3 for matched control and 12 to 16 hours versus 26 to 30 hours 
for sleep deprivation) using linear mixed model with participant as 
a random factor (lmer[lme4]) (71). Furthermore, the influence of 
meal timing on each biomarker candidate’s levels was assessed com-
paring WR samples from the matched control (CP, with three 
large meals and three snacks) and sleep deprivation (CR, with 
hourly snacks). Mixed linear models including TSW and study 
protocol (meal timing) as fixed factors and participant as a ran-
dom factor were used to compare trends in z-scored candidate 
data across a WR day (day 3 of matched control versus WR CR 
from sleep deprivation).
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