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Abstract

Deep learning nowadays offers expert-level and sometimes even super-expert-level performance, 

but achieving such performance demands massive annotated data for training (e.g., Google’s 

proprietary CXR Foundation Model (CXR-FM) was trained on 821,544 labeled and mostly 

private chest X-rays (CXRs)). Numerous datasets are publicly available in medical imaging 

but individually small and heterogeneous in expert labels. We envision a powerful and robust 

foundation model that can be trained by aggregating numerous small public datasets. To realize 

this vision, we have developed Ark, a framework that accrues and reuses knowledge from 

heterogeneous expert annotations in various datasets. As a proof of concept, we have trained 

two Ark models on 335,484 and 704,363 CXRs, respectively, by merging several datasets 

including ChestX-ray14, CheXpert, MIMIC-II, and VinDr-CXR, evaluated them on a wide range 

of imaging tasks covering both classification and segmentation via fine-tuning, linear-probing, 

and gender-bias analysis, and demonstrated our Ark’s superior and robust performance over 

the state-of-the-art (SOTA) fully/self-supervised baselines and Google’s proprietary CXR-FM. 

This enhanced performance is attributed to our simple yet powerful observation that aggregating 

numerous public datasets diversifies patient populations and accrues knowledge from diverse 

experts, yielding unprecedented performance yet saving annotation cost. With all codes and 

pretrained models released at GitHub.com/JLiangLab/Ark, we hope that Ark exerts an important 

impact on open science, as accruing and reusing knowledge from expert annotations in public 

datasets can potentially surpass the performance of proprietary models trained on unusually large 

data, inspiring many more researchers worldwide to share codes and datasets to build open 

foundation models, accelerate open science, and democratize deep learning for medical imaging.
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1 Introduction

Deep learning nowadays offers expert-level and sometimes even super-expert-level 

performance, deepening and widening its applications in medical imaging and resulting 

in numerous public datasets for research, competitions, and challenges. These datasets 

are generally small as annotating medical images is challenging, but achieving superior 

performance by deep learning demands massive annotated data for training. For example, 

Google’s proprietary CXR Foundation Model (CXR-FM) was trained on 821,544 labeled 
and mostly private CXRs [16]. We hypothesize that powerful and robust open foundation 

models can be trained by aggregating numerous small public datasets. To test this 

hypothesis, we have chosen CXRs because they are one of the most frequently used 

modalities, and our research community has accumulated copious CXRs (see Table 1). 

However, annotations associated with these public datasets are inconsistent in disease 

coverage. Even when addressing the same clinical issue, datasets created at different 

institutions tend to be annotated differently. For example, VinDr-CXR [13] is associated 

with global (image-level) and local (boxed-lesions) labels, while MIMIC-CXR [4] has no 

expert labels per se but comes with radiology reports. ChestX-ray14 [19] and CheXpert [4] 

both cover 14 conditions at the image level, and their 14 conditions have overlaps but are 

not exactly the same. Therefore, this paper seeks to address a critical need: How to utilize a 
large number of publicly-available images from different sources and their readily-accessible 
but heterogeneous expert annotations to pretrain generic source (foundation) models that are 
more robust and transferable to application-specific target tasks.

To address this need, we have developed a framework, called Ark for its ability of accruing 

and reusing knowledge embedded in heterogeneous expert annotations with numerous 

datasets, as illustrated in Fig. 1. We refer to the pretrained models with Ark as Foundation 

Ark or simply as Ark for short. To demonstrate Ark’s capability, we have trained two 

models: Ark-5 on Datasets 1–5 and Ark-6 on Datasets 1–6 (Table 1), evaluated them on a 

wide range of 10 tasks via fine-tuning and on 6 tasks via linear probing, and demonstrated 

our Ark models outperform the SOTA fully/self-supervised baselines (Table 2) and Google 

CXR-FM1 (Fig. 2). Ark also exhibits superior robustness over CXR-FM in mitigating 

underdiagnosis and reducing gender-related biases, with lower false-negative rates and 

greater robustness to imbalanced data (Fig. 3).

This performance enhancement is attributed to a simple yet powerful observation that 

aggregating numerous public datasets costs nearly nothing but enlarges data size, diversifies 

patient populations, and accrues expert knowledge from a large number of sources 

worldwide; thereby offering unprecedented performance yet reducing annotation cost. More 

important, Ark is fundamentally different from self-supervised learning (SSL) and federated 

learning (FL) in concept. SSL can naturally handle images from different sources, but their 

associated expert annotations are left out of pretraining [10]. Clearly, every bit of expert 

annotation counts, conveying valuable knowledge. FL can utilize data with annotations 

from different sources, typically involving homogeneous labels, but it mainly concerns data 

privacy [12]. By contrast, Ark focuses on heterogeneous expert annotations with public data 

1GitHub.com/Google-Health/imaging-research/tree/master/cxr-foundation.
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with no concern for data privacy and employs centralized training, which usually offers 

better performance with the same amount of data and annotation than distributed training as 

in FL.

Through this work, we have made the following contributions: (1) An idea that 

aggregates public datasets to enlarge and diversify training data; (2) A student-teacher 

model with multi-task heads via cyclic pretraining that accrues expert knowledge from 

existing heterogeneous annotations to achieve superior and robust performance yet reduce 

annotation cost; (3) Comprehensive experiments that evaluate our Ark via fine-tuning, 

linear-probing, and few-shot learning on a variety of target tasks, demonstrating Ark’s 

better generalizability and transferability in comparison with SOTA methods and Google 

CXR-FM; and (4) Empirical analyses for a critical yet often overlooked aspect of medical 

imaging models—robustness to underdiagnosis and gender imbalance, highlighting Ark 

significantly enhances reliability and safety in clinical decision-making.

2 Accruing and Reusing Knowledge

Our Ark aims to learn superior and robust visual representations from large-scale aggregated 
medical images by accruing and reusing the expert knowledge embedded in all available 

heterogeneous labels. The following details our Ark.

Accruing Knowledge into the Student via Cyclic Pretraining.

A significant challenge with training a single model using numerous datasets created 

for different tasks is label inconsistency (i.e., heterogeneity) (see Table 3 in Appendix). 

Manually consolidating heterogeneous labels from different datasets would be a hassle. To 

circumvent this issue, for each task, we introduce a specific classifier, called task head, to 

learn from its annotation and encode the knowledge into the model. A task head can be 

easily plugged into Ark, making Ark scalable to additional tasks. With multi-task heads, 

Ark can learn from multiple tasks concurrently or cyclically. In concurrent pretraining, a 

mini-batch is formed by randomly sampling an equal number of images from each dataset, 

and the loss for each image is computed based on its associated dataset id and labels. This 

idea is intuitive, but the model hardly converges; we suspect that the loss summation over 

all task heads simultaneously weakens gradients for back-propagation, causing confusion in 

weight updating. We opt for cyclic pretraining by iterating through all datasets sequentially 

in each round to accrue expert knowledge from all available annotations, a strategy that, we 

have found, stabilizes Ark’s pretraining and accelerates its convergence.

Accruing Knowledge into the Teacher via Epoch-Wise EMA.

To further summarize the accrued knowledge and accumulate the learning experiences 

in the historical dimension, we introduce into Ark a teacher model that shares the same 

architecture with the student. The teacher is updated using exponential moving average 

(EMA) [18] based on the student’s one epoch of learning at the end of each task. Eventually, 

the expert knowledge embedded in all labels and all historical learning experiences are 

accrued in the teacher model for further reuse in the cyclic pretraining and for future 

application-specific target tasks.
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Reusing Accrued Knowledge from the Student to Bolster Cyclic Pretraining.

If the model learns from multiple tasks sequentially, it may “forget” the previously learned 

knowledge, and its performance on an old task may degrade catastrophically [7]. This 

problem is addressed naturally in Ark by cyclic pretraining, where the model revisits all the 

tasks in each round and reuses all knowledge accrued from the previous rounds and tasks 

to strengthen its learning from the current and future tasks. That is, by regularly reviewing 

the accrued knowledge through task revisitation, Ark not only prevents forgetting but also 

enables more efficient and effective learning from multiple tasks iteratively.

Reusing Accrued Knowledge from the Teacher to Mitigate Forgetting.

To leverage the accumulated knowledge of the teacher model as an additional self-

supervisory signal, we incorporate a consistency loss between the student and the teacher, 

as shown in Fig. 1. To enhance this supervision, we introduce projectors in Ark that map 

the outputs of the student and teacher encoders to the same feature space. This further 

reinforces the feedback loop between the student and teacher models, facilitating the transfer 

of historical knowledge from the teacher to the student as a reminder to mitigate forgetting.

Ark has the following properties:

• Knowledge-centric. Annotating medical images by radiologists for deep 

learning is a process of transferring their in-depth knowledge and expertise in 

interpreting medical images and identifying abnormalities to a medium that is 

accessible for computers to learn. Ark’s superior and robust performance is 

attributed to the accumulation of expert knowledge conveyed through medical 

imaging annotations from diverse expert sources worldwide. At the core of Ark 

is acquiring and sharing knowledge: “knowledge is power” (Mac Flecknoe) 

and “power comes not from knowledge kept but from knowledge shared” (Bill 

Gates).

• Label-agnostic, task-scalable and annotation-heterogeneous. Ark is label-

agnostic as it does not require prior label “understanding” of public datasets, but 

instead uses their originally-provided labels. It is designed with pluggable multi-

task heads and cyclic pretraining to offer flexibility and scalability for adding 

new tasks without manually consolidating heterogeneous labels or training 

task-specific controllers/adapters [22]. Therefore, Ark intrinsically handles the 

annotation heterogeneity across different datasets.

• Application-versatile. Ark trains versatile foundation models by utilizing a 

large number of publicly-available images from diverse sources and their readily-

accessible diagnostic labels. As shown in Sect.3, Ark models are more robust, 

generalizable, and transferable to a wide range of application-specific target tasks 

across diseases (e.g., pneumothorax, tuberculosis, cardiomegaly) and anatomies 

(e.g., lung, heart, rib), highlighting Ark’s versatility.
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3 Experiments and Results

Our Ark-5 and Ark-6 take the base version of the Swin transformer (Swin-B) [9] as the 

backbone, feature five and six independent heads based on the pretraining tasks and their 

classes, and are pretrained on Datasets 1–5 and 1–6, respectively, with all validation and 

test data excluded to avoid test-image leaks. In the following, both models are evaluated 

via transfer learning (in Sects.3.1 and 3.2) on a wide range of 10 common, yet challenging, 

tasks on 8 publicly available datasets, encompassing various thoracic diseases and diverse 

anatomy. To provide a more comprehensive evaluation, we conduct linear probing (in 

Sect.3.3) and analyze gender biases (in Sect.3.4) on the Ark models in comparison with 

Google CXR-FM. Pretraining and evaluation protocols are detailed in Appendix E.

3.1 Ark Outperforms SOTA Fully/Self-supervised Methods on Various Tasks for Thoracic 
Disease Classification

Experimental Setup: To demonstrate the performance improvements achieved through 

Ark pretraining, we compare the Ark models with SOTA fully-supervised and self-

supervised models [9,21] that were pretrained on ImageNet. We also include a comparison 

with a SOTA domain-adapted model [10] that was first pretrained on ImageNet and then on 

a large-scale domain-specific dataset comprising 926,028 CXRs from 13 different sources. 

All downstream models share the same Swin-B backbone, where the encoder is initialized 

using the pretrained weights and a task-specific classification head is re-initialized based on 

the number of classes for the target task. We fine-tune all layers in the downstream models 

under the same experimental setup. We also report the results of training the downstream 

models from scratch (random initialization) as the performance lower bound. Note that 

Google CXR-FM cannot be included for comparison as it is not publicly released for 

fine-tuning.

Results and Analysis: As shown in Table 2, our Ark models consistently outperform 

the SOTA fully/self-supervised ImageNet pretrained models on all target tasks. These 

results highlight the benefit of leveraging additional domain-relevant data in pretraining 

to reduce the domain gap and further improve the model’s performance on target tasks. 

Furthermore, compared with the self-supervised domain-adapted model that utilizes 926K 

CXRs for pretraining, Ark models yield significantly superior performance on Dataset 1, 

3–5 with only 335K CXRs, and on-par performance on 2.NIHC with 704K CXRs. These 

results demonstrate the superiority of Ark that accrues and reuses the knowledge retained 

in heterogeneous expert annotations from multiple datasets, emphasizing the importance 

of learning from expert labels. Moreover, we observe that Ark-6 consistently outperforms 

Ark-5, indicating the importance of incorporating more data and annotations from diverse 

datasets in pretraining.

3.2 Ark Provides Generalizable Representations for Segmentation Tasks

Experimental Setup: To evaluate the generalizability of Ark’s representations, we 

transfer the Ark models to five segmentation tasks involving lungs, heart, clavicles, and ribs, 

and compare their performance with three SOTA fully/self-supervised models. We build the 

segmentation network upon UperNet [20], which consists of a backbone network, a feature 
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pyramid network, and a decoder network. We implement the backbone network with Swin-B 

and initialize it with the pretrained weights from the Ark and those aforementioned SOTA 

models. The remaining networks are randomly initialized. We then fine-tune all layers in the 

segmentation models under the same experimental setup.

Results and Analysis: As seen in Table 2, Ark models achieve significantly better 

performance than the SOTA models, demonstrating that Ark learned generalizable 

representations for delineating organs and bones in CXR. This superior performance is 

achieved by pretraining using large-scale CXRs and various disease labels from diverse 

datasets. Clinically, certain thoracic abnormalities can be diagnosed by examining the edges 

of the lungs, heart, clavicles, or ribs in CXR. For instance, a pneumothorax can be detected 

by observing a visible “visceral pleural line” along part or all of the length of the lateral 

chest wall [11]. Cardiomegaly can be diagnosed when the heart appears enlarged, with 

maximum diameter of the heart exceeding a pre-defined cardiothoracic ratio [19]. Fractures 

can be identified when the edges of the clavicles or ribs appear abnormally displaced 

or the bone cortex appears offset [3]. Therefore, leveraging diagnostic information from 

disease labels during pretraining enables Ark models to better capture the nuanced and 

varied pathological patterns, strengthening the models’ ability to represent anatomically 

specific features that reflect abnormal conditions in various oragns or bones. By contrast, 

the SimMIM (IN→CXR(926K)) model is pretrained with a self-supervised masked image 

modeling proxy task, which may use many clues to reconstruct the masked patches that 

are not necessarily related to pathological conditions, leading to lower performance despite 

training on more images.

3.3 Ark Offers Embeddings with Superior Quality over Google CXR-FM

Experimental Setup: To highlight the benefits of learning from more detailed diagnostic 

disease labels, we compare our Ark models with Google CXR-FM. CXR-FM was trained 

on a large dataset of 821,544 CXRs from three different sources, but with coarsened labels 

(normal or abnormal). By contrast, our Ark models are trained with less data, but aims 

to fully utilize all labels provided by experts in the original datasets. Furthermore, Ark 

models employ a much smaller backbone (88M parameters) compared with CXR-FM using 

EfficientNet-L2 (480M parameters). Since Google CXR-FM is not released and cannot be 

finetuned, we resorted to its released API to generate the embeddings (information-rich 

numerical vectors) for all images in the target tasks. For the sake of fairness, we also 

generated the embeddings from Ark’s projector, whose dimension is the same as Google’s. 

To evaluate the quality of the learned representations of these models, we conduct linear 

probing by training a simple linear classifier for each target task. The performance of both 

models is evaluated on six target tasks, including an unseen dataset, 10.SIIM, where the 

images have not been previously seen by the Ark models during pretraining. Additionally, 

we perform the same evaluation on 10.SIIM with partial training sets or even few-shot 

samples to further demonstrate the high quality of our Ark models’ embeddings.

Results and Analysis: Figure 2(a) shows that Ark-6 outperforms CXR-FM significantly 

on Dataset 1, 2, 5 and 10, and performs comparably to CXR-FM on 3.RSNA. Similarly, 

Ark-5 performs better than CXR-FM on Dataset 1, 5 and 10, while performing 
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comparably on the remaining tasks. Moreover, Fig. 2(b) shows that both Ark-5 and Ark-6 

consistently outperform CXR-FM in small data regimes, highlighting the superiority of 

Ark’s embeddings, which carry richer information that can be utilized more efficiently. 

These results demonstrate that Ark models learn higher-quality representations with less 

pretraining data while employing a much smaller backbone than CXR-FM, highlighting that 

learning from more granular diagnostic labels, such as Ark, is superior to learning from 

coarsened normal/abnormal labels.

3.4 Ark Shows a Lower False-Negative Rate and Less Gender Bias

Experimental Setup: Underdiagnosis can lead to delayed treatment in health-care 

settings and can have serious consequences. Hence, the false-negative rate (FNR) is a critical 

indicator of the robustness of a computer-aided diagnosis (CAD) system. Furthermore, 

population-imbalanced data can train biased models, adversely affecting diagnostic 

performance in minority populations. Therefore, a robust CAD system should provide a 

low false-negative rate and strong resilience to biased training data. To demonstrate the 

robustness of our Ark models in comparison with Google CXR-FM, we first compute the 

FNRs in terms of gender on 1.CXPT and 2.NIHC. We further investigate gender biases in 

Ark-6 and CXR-FM on 1.CXPT using gender-exclusive training sets. We follow the train/

test splits in [8] to ensure a balanced number of cases per class in 40 male/female-only folds. 

We train linear classifiers on those folds using embeddings from Ark-6 and CXR-FM, and 

then evaluate these classifiers on the corresponding male/female-only test splits. The biased 

model will show significant differences in performance when training and test data are of the 

opposite gender. We detail this setup in Appendix E.

Results and Analysis: Figure 3(a) illustrates that Ark models have lower FNRs than 

CXR-FM for both genders on both tasks, demonstrating that Ark models are less likely to 

underdiagnose disease conditions than CXR-FM. In Fig. 3(b), the biases in the pretrained 

models are measured by performance differences between linear classifiers trained on 

male-only and female-only embeddings. The upper part of Fig. 3(b) depicts the results 

of testing on female-only sets, where the classifiers trained on male-only embeddings 

generally perform poorly compared with those trained on female embeddings, revealing 

gender biases due to data imbalance. Among the 12 diseases, the classifiers trained with 

Google’s embeddings have unbiased performances for only 4 diseases, whereas those using 

Ark-6’s embeddings perform in an unbiased fashion with no significant differences for 

the 8 diseases. The same situation occurs when testing is performed on male patients as 

shown in the lower part of Fig. 3(b). The gender bias analysis demonstrates that Ark 

has greater robustness to the extremely imbalanced data that contributes to gender bias in 

computer-aided diagnosis.

4 Conclusions and Future Work

We have developed Foundation Ark, the first open foundation model, that realizes our 

vision: accruing and reusing knowledge retained in heterogeneous expert annotations with 

numerous datasets offers superior and robust performance. Our experimental results are 

strong on CXRs, and we plan to extend Ark to other modalities. We hope Ark’s performance 
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encourages researchers worldwide to share codes and datasets big or small for creating open 

foundation models, accelerating open science, and democratizing deep learning for medical 

imaging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Our Ark is built on a student-teacher model with multi-task heads and trained via 

cyclic pretraining, aiming to accrue and reuse the expert knowledge embedded in the 

heterogeneous labels with numerous public datasets (see Sect.2 for details).
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Fig. 2. 
Ark-5 and Ark-6 are compared with Google CXR-FM via linear probing (a) with complete 

training set on six target tasks, demonstrating Ark’s superior or comparable performance 

and better embedding quality, and (b) with partial training sets or even few-shot samples, 

showcasing Ark’s outstanding performance in terms of data efficiency.
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Fig. 3. 
Ark models are compared with Google CXR-FM as regards false-negative rate (FNR) and 

gender-related bias. (a) Ark models show lower FNRs, indicating superior underdiagnosis 

mitigation. (b) Ark-6 demonstrates greater resilience to gender-imbalanced data. Gender bias 

is characterized by a significant drop in performance when training and test data are of the 

opposite gender, compared to when they are of the same gender (e.g., the orange whisker 

boxes are lower than the blue boxes in the lower-part (b)). Each green circle indicates a 

lung disease with gender bias by CXR-FM, as it performs differently between training on 

male and female data. But Ark exhibits a more robust performance, showing no significant 

difference on gender-segregated data.
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Ma et al. Page 13

Table 1.

Publicly available datasets are generally small and heterogeneously annotated. Our Ark (Fig. 1) aims to 

aggregate numerous datasets with heterogeneous annotations to diversify patient population, accrue 

knowledge from diverse experts, and meet the demand by deep learning for massive annotated training data, 

offering superior and robust performance (Table 2, Fig. 2 and Fig. 3) yet reducing annotation cost.

Abbrev. Dataset Task Usagea (Pre)train/val/test

1. CXPT CheXpert [4] classify 14 thoracic diagnoses P|F|L|B 223414/-/234

2. NIHC NIH ChestX-ray14 [19] classify 14 thoracic diseases P|F|L|B 75312/11212/25596

3. RSNA RSNA Pneumonia [1] classify lung opacity, abnormality P|F|L 21295/2680/2709

4. VINC VinDr-CXR [13] classify 6 thoracic diagnoses P|F|L 15000/-/3000

5. NIHS NIH Shenzhen CXR [5] classify tuberculosis P|F|L 463/65/134

6. MMIC MIMIC-II [6] classify 14 thoracic diagnosesb P 368879/2992/5159

7. NIHM NIH Montgomery [5] segment lungs F 92/15/31

8. JSRT JSRT [17] segment lungs, heart, clavicles F 173/25/49

9. VINR VinDr-RibCXR [14] segment 20 ribs F 196/-/49

10. SIIM SIIM-ACR PTX [2] classify pneumothoraxc L 10675/-/1372

a
The usage of each dataset in our experiments is denoted with P for pretraining, F for fine-tuning, L for linear probing, and B for bias study.

b
The labels of CXRs in MIMIC-II are derived from their corresponding radiology reports using NegBio [15] and CheXpert [4].

c
SIIM-ACR, originally for pneumothorax segmentation, is converted into a classification task for linear probing, as CXR-FM cannot be evaluated 

for segmentation using its only released API.
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