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I M M U N O L O G Y

RACER-m leverages structural features for sparse T cell 
specificity prediction
Ailun Wang1,2, Xingcheng Lin3,4*, Kevin Ng Chau1,2, José N. Onuchic5,6,  
Herbert Levine1,2,7, Jason T. George6,8*

Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the im-
mense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets 
for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural in-
formation to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-
antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging. 
Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the 
diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially 
reduces the required number of training examples and maintains reliable predictions of TCR-recognition specific-
ity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful 
point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-
mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both 
closely related and structurally diverse TCR-peptide pairs.

INTRODUCTION
T cell immunity is determined by the interaction of a T cell receptor 
(TCR) with antigenic peptide (p) presented on the cell surface via 
major histocompatibility molecules (MHCs) (1). T cell activation oc-
curs when there is a favorable TCR-pMHC interaction and, for the 
case of CD8+ effector cells, ultimately results in T cell killing of the 
pMHC-presenting cell (2). T cell–mediated antigen recognition con-
fers broad immunity against intracellular pathogens as well as tumor-
associated antigenic signatures (3). Thus, a detailed understanding of 
the specificity of individual T cells in a repertoire composed of many 
(∼108) unique T cell clones is required for understanding and accu-
rately predicting many important clinical phenomena, including in-
fection, cancer immunogenicity, and autoimmunity.

Because of the immense combinatorial complexity of antigen 
(∼1013) and T cell (∼1018) sequence space, initial conceptual prog-
ress in the field was made by studying simple forms of amino acid 
interactions, motivated by either protein folding ideas (4, 5) or ran-
dom energy approaches (6, 7). Recent advances in high-throughput 
studies interrogating T cell specificity (8–10) together with the de-
velopment of statistical learning approaches have at last enabled 
data-driven modeling as a tractable approach to this problem. Con-
sequently, a number of approaches have been developed to predict 
TCR-antigen specificity (11–15). A majority of developed approach-
es input only TCR and pMHC primary sequence information. The 
persistent challenge with this lies in limited training data given that 
any reasonable sampling of antigens and T cells—or even an entire 

human T cell repertoire—represents a very small fraction of se-
quence space. One persistent and notorious challenge of virtually all 
current models involves an inability to make reasonable specificity 
predictions on unseen epitopes that are excluded from training. As 
a result, many models underperform on sequences that are moder-
ately dissimilar from their nearest neighbor in the training set, an 
issue that we refer to as “global sparsity.”

While global sparsity complicates inference extension to moder-
ately dissimilar antigens, another distinct challenge exists for reliably 
predicting the behavior of closely related TCR-pMHC pairs that dif-
fer by a single–amino acid substitution, which we refer to as “local 
resolvability.” These “point-mutated” TCR-pMHC pairs require pre-
dictive methods capable of quantifying the effects of single–amino 
acid changes on the entire TCR-peptide interaction, a task often lim-
ited by lack of sufficient training examples required for reliable esti-
mation of the necessary pairwise residues. Instead, a modeling 
framework aiming to discern such subtle differences between point 
mutants may benefit from learning the general rules of amino acid 
interactions at the TCR-peptide interface and their varied contribu-
tions to binding affinity. Resolving this very particular problem, dis-
cerning relevant point mutations in self-peptide and viral antigens, 
promises to deliver enhanced therapeutic utility in targeting cancer 
neoantigens, optimally selecting hematopoietic stem cell transplant 
donors, and predicting the immunological consequences of viral 
variants. Thus, local resolvability represents a distinct learning task 
wherein detailed reliable predictions need to be made on many small 
variations around a very specific TCR-pMHC pair.

Several structure-based approaches have also been used to better 
understand TCR-pMHC specificity. Detailed structural models that 
focus on a comprehensive description of TCR-pMHC interaction, in-
cluding all-atom simulation and structural relaxation, are computa-
tionally limited to describing a few realized structures of interest (16, 
17). Another strategy develops an AlphaFold-based pipeline to gener-
ate accurate three-dimensional (3D) structures from primary sequence 
information to improve the accuracy of TCR-pMHC binding predic-
tions for hundreds of TCR-pMHC pairs (18). A previous hybrid 
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approach (14) used crystal structural data together with known 
binding sequences to train an optimized binding energy model for 
describing TCR-pMHC interactions. This approach offered several 
advantages, including the ability to perform repertoire-level predic-
tions within a reasonable time, along with a reduced demand for exten-
sive training data. However, this model largely focused on a restricted 
set of peptide or TCR pairs using a single MHC class II (MHC-II) struc-
tural template and performed best at explaining mouse I-Ek–restricted 
systems. Thus, its ability to make reliable predictions for a structurally 
diverse collection of TCR and peptide pairs with a conserved human 
leukocyte antigen (HLA) allele restriction remains unknown.

Here, we leverage all available protein crystal structures of the 
most common human MHC-I allele variant, HLA-A*02:01, to de-
velop a combined sequence-structural model of TCR-pMHC speci-
ficity that features biophysical information from a diversity of known 
structural templates. The general strategy of our approach is outlined 
in Fig. 1. We quantify the structural diversity in available crystal struc-
tures of TCR-pMHC complexes (19–21) and demonstrate that incor-
porating a small subset of available structural information is sufficient 
to enable reliable predictions of favorable interactions across a diverse 
set of TCR-antigen pairs. We show that, by using structural templates 
from closely related amino acid sequences, RACER-m generates rea-
sonable predictions for previously unseen epitopes. Our results fur-
ther suggest that the availability of structural information having close 
proximity to the true structure of a TCR-pMHC pair can ameliorate 
both global sparsity and local resolvability in discerning the immuno-
genicity of diverse and point-mutated antigenic variants.

RESULTS
Model development and identification of TCR-peptide pairs 
with structural templates
We build on our previous RACER framework developed primar-
ily on the mouse MHC-II I-Ek system (14). Our approach, termed 
RACER multi-template (RACER-m), represents a comprehensive 
pipeline that leverages published crystal structures of known hu-
man TCR-pMHC pairs.

All 66 HLA-A*02:01–restricted systems with a TCR-pMHC 
published structure [Protein Data Bank (PDB)/Immune Epitope 
Database (IEDB)] available through www.rcsb.org were used as the 
structures of strong binders for training (22–24). Their 66 corre-
sponding peptide and TCR variable CDR3α and CDR3β sequences 
were also used, and this list of TCR-pMHC pairs was further aug-
mented by identification of all reported TCR-pMHC pairs in the 
publications that referenced the above structures, as part of the “ATLAS 
dataset.” In addition, the ATLAS database containing affinity infor-
mation (Kd) for related TCR-peptide pairs (19) was used for cases 
where either a TCR or a epitope had substantial overlap with that of 
the sequences having structures. A threshold of 200 nM was used to 
define strong binders to be included in the ATLAS dataset, based on 
the reported Kd. Last, grouping by template was performed using 
hierarchical clustering based on structural similarity using an ap-
proach previously developed in the protein folding community 
(25, 26) followed by hierarchical clustering. In total, 163 unique 
TCR-peptide pairs and 66 structural templates were identified for 
training and validation (see the Supplementary Materials).

Fig. 1. RACER-m model architecture. Schematic representation of the training (top row) and testing (bottom row) processes in RACER-m. Sixty-six crystal structures of 
known strong binders were used as both training set and template structures for the testing processes, which cover several major clusters of TCR repertoires (MART-1, TAX, 
1E6, NLV, and FLU) and other clusters with smaller size.

http://www.rcsb.org
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We next assessed the structural diversity of training templates by 
pairwise evaluation of structural similarity using a previously developed 
method referred to as mutual Q (25, 26). Mutual Q similarity defines 
a structural metric consisting of a sum of transformed pairwise dis-
tances between each residue in two structures normalized within 
the range of 0 to 1, which was then used to perform hierarchical 
clustering. We found that the identified structural clusters largely 
partition TCR-pMHC pairs according to immunological function 
(for example, TCR-pMHC pairs sharing a conserved antigen) with a 
few exceptions (Fig. 2A). Despite our focus only on a specified 

HLA-restricted repertoire, the analysis, nonetheless, revealed clus-
tering heterogeneity across all included structures: In some cases 
[e.g., Melanoma-associated antigen recognized by T cells-1 (MART-
1) and TAX], substantial heterogeneity was observed and associated 
with enriched pairwise dissimilarity of TCR and peptide sequences. 
This, together with cross-cluster structural diversity, is a consequence 
of global sparsity given limited observed structures. On the other 
hand, we also identified structurally homogeneous clusters com-
posed of TCR-pMHC pairs having near-identical pairwise sequence 
similarity (e.g., 1E6), yet these pairs have substantial differences in 

Fig. 2. Performance on ATLAS dataset. (A) Mutual Q calculation results between all crystal structures in training set of RACER-m, which measures the structural similar-
ity between every pair of structures from the training set. The linkage map shows the hierarchical clustering result based on the pairwise mutual Q values. Color blocks 
next to the linkage map indicates the corresponding cluster of the crystal structure in the row. (B) Predicted binding energies for ATLAS dataset (open circles and closed 
dots) in comparison with the binding energies for corresponding weak binders (box plots). Each open circle represents the predicted binding energy for a structure in the 
training set, while each closed dot represents the predicted binding energy for a testing case from ATLAS dataset. Each training or testing case is associated with 1000 
decoy weak binders generated by randomizing the peptide sequence and pairing with the TCR in the corresponding training/testing structure. Box plots represent the 
distribution of the predicted energies of the decoy weak binders with the box representing the lower (Q1) to upper (Q3) quartiles and a horizontal line representing the 
median. The whiskers extended from the box by 1.5 IQR, where IQR indicates the interquartile range.
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binding affinity, consistent with earlier predictions (6, 7). This si-
multaneous manifestation of global sparsity and local resolvability 
among TCR-peptide pairs with identical HLA restriction represents 
a dual challenge for the development of robust predictive models of 
TCR-peptide specificity.

Given the inter-cluster structural diversity for TCR-pMHC com-
plexes as well as the intra-cluster variability, it is necessary to suit-
ably select a list of structures with sufficient coverage of the identified 
structural clusters as training data for the model and structural tem-
plates for test cases. In particular, we hypothesized that our hybrid 
structural and sequence-based methodology could benefit from the 
inclusion of multiple template structures, and the modeling ap-
proach presented here was developed with this motivation in mind.

The flow chart in Fig. 1 illustrates the training (top row) and testing 
(bottom row) algorithm in RACER-m. For training, contact interac-
tions between peptide and TCR were calculated for each of the strong 
binding pairs with available TCR-pMHC crystal structures. Here, con-
tact interactions were defined by a switching function based on the 
distance between structural residues and a characteristic interaction 
length (see Methods). For each strong binder, 1000 decoy (weak bind-
er) sequences were generated by pairing the original TCR with a ran-
domized version of the peptide. Contact interactions derived from the 
topology of known TCR-pMHC structures, together with a pairwise 
20-by-20 symmetric amino acid energy matrix, determine total bind-
ing energy. Each value of the energy matrix corresponds to a particular 
contribution by an amino acid combination, with negative numbers 
corresponding to attractive contacts. The training objective aims to se-
lect the energy matrix that maximizes separability between the bind-
ing energy distributions of strong and weak binders.

In the testing phase, a sequence threading methods is used to 
construct 3D structures for testing cases that lack a solved crystal 
structure. Here, constructed structures are based on using a chosen 
known template with shortest (CDR3α/β and peptide) sequence dis-
tance to the specific testing case. Using the constructed 3D struc-
ture, a contact interface can be similarly calculated for each testing 
case, and 1000 decoy weak binders can be generated by randomizing 
the peptide sequence. The optimal energy model is then applied to 
assign energies to the testing TCR-pMHC pair and decoy binders, 
and the testing pair is identified as a strong binder if its predicted 
binding energy is substantially lower than the decoy energy distri-
butions based on a standardized z score. Here, z score calculation 
was adopted from the statistical z test applied to the predicted bind-
ing energy of test TCR-pMHC pairs and decoy weak binders, the 
latter of which were used as a null distribution to compare against a 
given test binder. The z score of binding energies is defined as 
z = (Edecoy − Etest)∕σdecoy , where Edecoy is the average predicted 
binding energy of decoy weak binders, Etest is the predicted binding 
energy of the testing TCR-pMHC pair, and σdecoy is the standard 
deviation (SD) of the binding energies of decoy weak binders. While 
model output is composed of continuous values of energy (or 
normalized z score), we consider test TCR-pMHC pairs with z 
scores exceeding 1 to be strong binding for categorization purposes.

Structural information enhances recognition specificity of 
pMHC-TCR complexes
RACER-m was developed to explicitly leverage the available struc-
tural information obtained from experimentally determined TCR-
pMHC complexes for test predictions. While a prior modeling effort 

(14) relied on a single structural template for both training and test-
ing and achieved reasonable results given reduced training data, 
structural differences became prominent as the testing data expand-
ed to include additional TCR and peptide diversity, which resulted 
in reduced predictive utility. Structural variation has been previ-
ously observed and quantified in high molecular detail (22, 27) us-
ing docking angles (28) and interface parameters.

For HLA-A*02:01 TCR-pMHC systems, the docking angles (be-
tween the peptide binding groove on the MHC and the vector be-
tween the TCR domains, which corresponds to the twist of the TCR 
over the pMHC) ranged from 29° to 73.1°, while the incident angle 
varied from 0.3° to 39.5° (22, 27, 29). The observed structural differ-
ences among different TCR-pMHC complexes suggest that a single 
TCR-pMHC complex structure may not accurately represent the 
contact interfaces of other TCR-pMHC complexes, particularly 
those with substantially different docking orientations. These dis-
tinct docking orientations lead to large variations in the contact in-
terfaces between peptide and CDR3α/β loops, which can be 
observed from the diversity in contact maps as shown in fig.  S1. 
RACER-m overcomes this limitation by the inclusion of 66 TCR-
pMHC crystal structures, which are distributed over distinct struc-
tural groups, including MART-1, 1E6, TAX, native Cytomegalovirus 
(NLV), and influenza (FLU) and serve as both the training dataset 
and reference template structures fortesting cases.

In testing TCR-peptide pairs, all corresponding crystal struc-
tures were omitted from predictions. Thus, selecting an appropriate 
template from available structures became crucial for accurately re-
constructing the TCR-pMHC interface and estimating the binding 
energy. To accomplish this, RACER-m assumed that high sequence 
similarity corresponds to high similarities in the structure space, 
which is supported by the correlation between mutual Q score and 
sequence similarity measured from the 66 solved crystal structures 
of TCR-pMHC complexes (fig. S2). This assumption was imple-
mented by calculating sequence similarity scores of the testing pep-
tide and TCR CDR3α/β sequences with those of all 66 reference 
templates. In each case, a position-wise uniform hamming distance 
on amino acid sequences was calculated to quantify the similarity. 
The sum of CDR3α and CDR3β similarities generated the TCR sim-
ilarity score, and a composite score was created by taking the prod-
uct of peptide and TCR scores (see Methods). The template structure 
having the highest sequence similarity was then selected as the tem-
plate for threading the sequences of the testing TCR-peptide pair.

To evaluate the extent to which the RACER-m approach can ad-
dress global sparsity by accurately recapitulating observed specifici-
ty in the setting of limited training data, we trained a model using 
42.3% of the total experimentally confirmed strong binders [in ad-
dition to the 66 HLA-A*02:01 TCR-pMHC crystal structures plus 
structures with PDB ID 3GSR, 3GSU, and 3GSV for NLV peptide 
strong binders (30)] which sparsely cover all the structural groups 
involved in the mutual Q analysis shown in Fig. 2A. The remaining 
57.7% of TCR-peptide sequences that lack solved structures were 
used as testing cases to validate the sensitivity of the trained energy 
model. RACER-m effectively recognizes strong binding peptide-
TCR pairs and correctly predicts 98.9% of the testing TCR-pMHC 
pairs using the criteria that z score is greater than 1. Among the 94 
testing pairs, only one TCR-peptide pair in the TAX structural 
group was mis-predicted as a weak binders with a binding energy 
deviating from the average binding energies of decoy weak binders 
by 0.64σ, where σ is the SD of the decoy energies. These initial results 
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(Fig. 2) confirm that the model is effectively able to learn the speci-
ficity rules from TCR-pMHC pairs exhibiting distinct structural 
representations. Moreover, RACER-m computes a continuous value 
capable of illustrating differences in the relative binding affinities 
within functional TCR-peptide clusters (fig. S3).

While the reliable identification of strong-binding TCR-pMHC 
pairs is clinically useful and one important measure of model per-
formance, simultaneous evaluation of model specificity is equally 
crucial for generating useful predictions on the level of a TCR rep-
ertoire. To evaluate the specificity of a global sparsity task, we next 
tested RACER-m’s ability to discern experimentally confirmed 
weak-binding TCR-pMHC pairs. We selected peptides or TCRs 
from the most abundant structural groups (MART-1 and TAX) in 
the training set to create “scrambled” TCR-pMHC pairs by cross-
cluster mismatching of either TCRs or peptides (see Methods for 
full details). Proceeding in this manner enables a specificity test on 
biologically realized sequences instead of randomly generated ones. 
Specifically, every peptide selected from a given structural group 
(e.g., peptide EAAGIGILTV in the MART-1 group) was mismatched 
with a list of TCRs specific for peptides belonging to other groups 
(e.g., TAX, 1E6, and FLU) to form a set of scrambled weak binders.

Following our aforementioned testing protocols, we next calcu-
lated z scores for these mismatched interactions, which were then 
compared to correctly matched TCR-pMHC pairs with the same 
peptide sequence (e.g., EAAGIGILTV). We also conducted the 
complementary test on TCRs using scrambled peptides. The pri-
mary advantages of this approach include (i) the ability to match 
amino acid empirical distributions in binding and nonbinding pairs 
and (ii) utilization of realized TCR sequences for specificity assess-
ment instead of random sequences that have minimal, if any, over-
lap with physiological sequences.

A representative example of these tests using the MART-1 
epitope and MART-1–specific TCRs is given in Fig. 3. First, seven 
sets of weak binders were constructed by mismatching 36 
MART-1–specific TCRs each with seven non–MART-1 peptides sam-
pled from distinct clusters. We applied RACER-m on each weak 
binder to predict its binding energy and then compared this value to 
the distribution of decoy binding energies to obtain a binding Z 
score. Z scores of mismatched weak binders, together with those of 

correctly matched MART-1–TCR strong binders, were used to de-
rive the receiver operating characteristic (ROC) curve (Fig. 3A and 
fig. S4). The area under the curve (AUC) was greater than or equal 
to 0.98 for five of the seven test sets, while the others had AUCs of 
0.80 and 0.75, illustrating RACER-m’s ability to successfully distin-
guish strong binding peptides from mismatched ones in the avail-
able MART-1–specific TCR cases.

An analogous test was performed on the five available peptide 
variants from the MART-1 structural group by mismatching them 
with 35 TCR sequences contained in the NLV, FLU, 1E6, or TAX 
clusters. Relative to the binding energies of correctly matched 
MART-1–specific TCRs, RACER-m performs well in discerning 
matched versus mismatched TCRs for four of the five tested MART-
1 peptides (Fig. 3B and fig. S5), the one initial exception being pep-
tide ELAGIGILTV. Further inspection of the TCRs in this group 
revealed that the TAX-specific TCR A6 (triangle sign in Fig.  3C) 
together with several closely associated point mutants had a z score 
distribution resembling that of the RD1-MART1High TCR and its as-
sociated point mutants (fig. S5E). This could be explained by the fact 
that the RD1-MART1High TCR was engineered from the A6 TCR to 
achieve MART-1 specificity (31), wherein A6 was selected because 
of its similarity with MART-1–specific TCRs in the Vα region and 
similar docking mode (16, 31). However, the engineered (RD1-
MART1High) TCR is no longer specific to the TAX peptide (LLF-
GYPVYV), which is consistent with the z scores predicted from 
RACER-m. When the A6-specific TAX peptide is paired with RD1-
MART1High TCR, a relatively lower z score (cross sign in Fig. 3C) 
is predicted in comparison with the z scores from strong binders 
(violin shape in Fig. 3C) of the same peptide.

Evaluation on extended datasets highlights the added value 
of structural information
Given RACER-m’s performance on the ATLAS data, we then ap-
plied the model to additional datasets to further validate its ability in 
the setting of global sparsity. The 10x Genomics (32) dataset details 
many TCR-peptide binders collected from five healthy donors. 
HLA-A*02:01–restricted samples in this dataset include 23 unique 
peptides, and the number of TCRs specific for each peptide varied 
from 8365 (e.g., GILGFVFTL) to 1 (e.g., ILKEPVHGV). We remark 

A B C

Fig. 3. Prediction performance on weak binders generated by mismatching peptides with TCRs. (A) Receiver operating characteristic (ROC) curves for RACER-m 
classification performance on differentiating weak binders generated by mismatching peptides from NLV, TAX, FLU, and 1E6 clusters with MART-1 TCRs from MART-1 
strong binders with the same set of TCRs. (B) ROC curves for RACER-m classification performance on distinguishing MART-1 strong binders from mismatched weak binders 
generated by pairing MART-1–specific peptides with TCRs from NLV, TAX, FLU, and 1E6 clusters. (C) When TAX A6 TCR is paired with MART-1 peptide ELAGIGILTV, the z score 
of the mismatched TCR-pMHC pair (triangle) resembles the values from the strong binders (violin shape) formed by the same peptide and TCR RD1-MART1High and its 
point mutants, which was engineered from A6. In the reverse scenario, TCR RD1-MART1High shows lower z score (cross) than TAX strong binders (violin shape) when paired 
with TAX specific peptide LLFVYPVYV.
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that the diversity of HLA-A*02:01 samples was substantially re-
duced to 1741 TCR-pMHC pairs having unique CDR3α/β and pep-
tide sequences after removing redundancies. We selected this large 
dataset as a reasonable test because 89.26% of the 1741 testing pairs 
did not share either the same CDR3α or CDR3β sequence in com-
mon with the list of available TCR-pMHC pairs used in the training 
set, and 99.89% of the testing TCR-pMHC pairs did not have the 
same CDR3α-CDR3β combination with the training set, although 7 
of the 23 peptides were shared with the training set.

Given this relative lack of overlap with our training data, we ap-
plied RACER-m to all unique HLA-A*02:01 pairs. In a majority 
(88.9%) of these cases across a large immunological diversity of pep-
tides, RACER-m successfully identifies enriched z scores in the dis-
tribution of binding TCRs (Fig. 4A). The distinction of TCRs 
belonging to testing versus training sets, together with the notable 
difference in the size of training and testing TCR-pMHC pairs, sug-
gests that shared structural features were able to augment RACER-m’s 
predictive power on distinct tests. Thus, the inclusion of structural 
information in model training enhances RACER-m’s predictive ability 
across distinct TCR-pMHC tests.

There were several cases where RACER-m’s predicted distribu-
tions overlapped substantially with low z scores, indicating a failed 

prediction; in these cases, we investigated whether this could be ex-
plained by the lack of an appropriate structural template. A positive 
correlation was observed between a testing case’s optimal structural 
template similarity and the RACER-m–predicted z scores, consistent 
with a decline in model applicability whenever the closest available 
template is inadequate for representing the TCR-pMHC pair in ques-
tion (fig. S6). Despite this, the RACER-m approach, trained on 69 
cases, was able to predict roughly 90% of strong binders contained in 
over 1700 distinct testing cases in the 10x Genomics dataset. A simi-
lar trend was also seen when applying RACER-m to the “global true” 
test set curated from the VDJdb (33) that were not included in train-
ing. RACER-m again exhibited optimal predictive performance 
when a reasonable structural template was available (figs. S7 and S8). 
Overall, RACER-m was able to successfully predict 56.7% of the 
strong binders in this set. For groups with high sequence similarities 
with our template structures, such as the cases of peptide “GILG-
FVFTL,” RACER-m yields a higher success rate of strong binder 
prediction (91.1% for cases with peptide “GILGFVFTL”).

We then compared RACER-m’s performance to NetTCR-2.0 
(11), a well-established convolutional neural network model for pre-
dictions of TCR-peptide binding that is trained on over 16,000 
combinations of peptide/CDR3α/β sequences. This comparison was 

Fig. 4. Validate the predictive power of RACER-m with external datasets. (A) Prediction results of RACER-m on the HLA-A*02:01–restricted systems from 10x Genom-
ics dataset collected from five healthy donors. A total of 1741 unique pairs of TCR-peptide sequences were tested, and the prediction results of z score were grouped by 
the immunological profile of the test TCR-pMHC pairs and depicted as box plots. (B) Comparison of classification performance between RACER-m and NetTCR-2.0 (11) on 
a curated list of public TCR-pMHC repertoires (12, 42) composed of both strong binders and mismatched weak binder. Because of the restriction of NetTCR-2.0 on the 
peptide length (9-mer), there are no data from NetTCR-2.0 for the two 10-mer peptides (KLVALGINAV and ELAGIGILTV). (C) The classification performance of RACER-m on 
another set of TCR-pMHC test TCR-pMHC pairs (34). AUROC, area under the ROC curve.
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performed on a publicly available list of TCR-pMHC repertoires 
curated by Zhang et al. (12), which were mutually independent of 
RACER-m or NetTCR-2.0 training data, wherein we included 
known strong binders and mismatched weak binders for eight unique 
peptides of HLA-A*02:01. Because NetTCR-2.0 has a restricted length 
for antigen peptide (no longer than 9-mer), it cannot be applied on 
testing TCR-pMHC pairs with 10-mer peptides such as KLVALGINAV 
and ELAGIGILTV, which are absent from the NetTCR-2.0 eval
uation in Fig. 4B. The area under the ROC curve was used as a 
standard measure of classification success. In the majority of cases, 
RACER-m outperformed NetTCR-2.0 in diagnostic accuracy with 
higher ROC values (Fig. 4B). Last, RACER-m was further evaluated 
using an unrelated set of TCR-pMHC data composed of 400 sam-
ples made up of the strong binders and mismatched weak binders 
with four peptides and 100 TCRs (34), which also gives us good dis-
tributional performance (Fig.4C). In one of the four peptides includ-
ed in this dataset, RACER-m seems to have difficulty providing correct 
classification about strong and weak binders for peptide CVNGSCFTV, 
which could again be explained by the lack of appropriate structure 
templates for this pMHC and related strong binding TCRs (fig. S9).

RACER-m specificity of point-mutated variants and 
preservation of local resolvability
Encouraged by model handling of global sparsity in tests of dispa-
rate binding TCR-pMHC pairs having high sequence diversity, we 
next evaluated RACER-m’s ability in maintaining local resolvability 
of point-mutated peptides with near-identical sequence similarity to 
a known strong binder, which represents a distinct and usually more 
difficult computational problem. Understanding in detail which 
available point mutants enhance or break immunogenicity is direct-
ly relevant for assessing the efficacy of tumor neoantigens and T cell 
responses to viral evolution. In addition, the performance of struc-
tural models in accomplishing this task are a direct readout on their 
utility over sequence-based methods because the latter case will 
struggle to accurately cluster and, therefore, resolve TCR-pMHC 
pairs having single–amino acid differences. To evaluate RACER-m’s 
ability to recognize point mutants, we performed an additional test 
on an independent comprehensive dataset of TCR 1E6 containing a 
point mutagenic screening of the peptide displayed on MHC. This 
testing set includes 20 strong binders and 73 weak binders (21), 
wherein strong binding to the 1E6 TCR was confirmed by tumor 
necrosis factor–α activity. RACER-m demonstrates enrichment of 

the distribution of binding energies for strong binders versus con-
firmed weak cases (Fig. 5A). ROC analysis of the RACER-m’s ability 
to resolve these groups gives an AUC of 0.78. Note that only two 
strong binders of this group were included in the training of RACER-m’s 
energy model.

Inspired by these initial results on the 1E6 mutagenic screen, we 
extended this analysis to all point-mutated weak binding TCR-
pMHC pairs in the ATLAS dataset, specifically those with Kd values 
greater than 200 μM. Our results, presented template-wise for each 
structure in the point-mutant data, demonstrate that RACER-m im-
proves in this recognition task when compared to NetTCR-2.0 
(Fig. 5C). Last, to explicitly explore the value of structural modeling 
for predicting the impact of immunologically important single–
amino acid differences, we quantified the predicted z scores for both 
strong and weak binders based on a measure of total sequence simi-
larity (fig. S10). This measure was obtained by taking the maximum 
product of CDR3α, CDR3β, and peptide Hamming similarity be-
tween a test TCR-peptide pair and each of the training TCR-peptide 
pairs with an available structure. The results demonstrate that the 
inclusion of information from correctly identified structural tem-
plates enhances RACER-m’s predictive power. Collectively, our re-
sults suggest that RACER-m offers a unique computational advantage 
over traditional, sequence-only methods of prediction by leveraging 
substantially fewer training sequences with key structural informa-
tion to efficiently identify the contribution of each amino acid change.

DISCUSSION
Reliable and efficient estimation of TCR-pMHC interactions is of 
central importance in understanding and thus optimizing the adap-
tive immune response. The field has experienced considerable re-
cent research activity in the development of inference-based 
computational methods to predict TCR-pMHC specificity (35). De-
coding the predictive rules of TCR-pMHC specificity is a formida-
ble challenge, largely owing to the extreme sparsity of available 
training data relative to the diversity of sequences that need to be 
interrogated in meaningful investigation. A majority of approaches 
(11, 36, 37) take a complementary approach to RACER-m by train-
ing on TCR and/or peptide primary sequence data alone. One re-
cent method achieves training by relaxing a common requirement 
of having paired CDR3α/β sequences (36). We developed RACER-m 
to augment the predictive power of a relatively small number of 

A B C

Fig. 5. RACER-m’s performance on differentiating strong binders from point-mutant weak binders. (A) Distribution of z scores from strong binders of 1E6 TCR and 
weak binders from point mutagenic screen. (B) ROC curve for RACER-m classification performance using the strong and point-mutant weak binders for 1E6 TCR. (C) Com-
parison of RACER-m and NetTCR-2.0 in classification of strong and point-mutant weak binders from ATLAS dataset. Here, RACER-m predictions used the known crystal 
structure selected by the sequence similarity calculation results as a representative template for threading each test case.
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TCR and epitope sequences by leveraging the structural informa-
tion contained in solved TCR-pMHC crystal structures. Our analy-
sis focused on the most common human MHC allele variant, due to 
the abundance of sequence and structural data. Despite this restric-
tion, we observed structural heterogeneity underpinning the speci-
ficity of various TCR-pMHC pairs in distinct immunological contexts. 
Enhancement in predictive accuracy was largely driven by the avail-
ability of a small list of structural templates, which included 66 crys-
tal structures of TCR-pMHC complexes from the PDB.

Using our minimal list, together with mutually independent test-
ing TCR-pMHC pairs for RACER-m and NetTCR-2.0, we find that 
our model is able to outperform NetTCR-2.0 on both detection of 
strong binders as well as avoidance of weak binders, both represent-
ing distinct but equally important tasks. We advocate for the inclu-
sion of such mixed performative tests for rigorous validation as a 
necessary and standardized component in model evaluation, in ad-
dition to model comparisons using testing data that are equally dis-
similar from the training data included in competing models.

Intriguingly, incorporation of structural information into the 
training approach enables the development of a model that main-
tains predictive accuracy while dealing with both global sparsity and 
local resolvability, all while requiring substantially reduced training 
sequence data. Because of RACER-m’s ability to deal with both glob-
al sparsity and local resolvability, we anticipate that this approach 
may be applicable to future applications that require reliable predic-
tions on TCR responses against disparate and closely related collec-
tions of antigens. Such an approach may provide a useful theoretical 
tool to design, for example, tumor antigen vaccines. Our results sug-
gest that a wealth of information is contained in the structural tem-
plates pertaining to key contributors of a favorable TCR-peptide 
interaction, wherein conserved features across distinct TCR-pMHC 
pairs can be learned to mitigate global sparsity. Conversely, struc-
tural encoding of information pertinent to residues whose amino 
acid substitutions either preserve or break immunogenicity also as-
sists RACER-m trained on only a small subset of all possible point 
mutations by identifying key contributing positions and residues, 
thereby preserving local resolvability.

Our current approach has been successfully applied to resolve un-
known strong and weak binding TCR-pMHC pairs given those iden-
tified as such in the previously published test datasets under 
consideration. We note that perfect resolvability in the setting of 
repertoire-level studies that assess large numbers of randomly sam-
pled TCR and peptide pairs would require larger z scores for distin-
guishing strong binders. In several test cases, our model does assign 
strong binders a larger score (z =  4; Fig. 4A; FLU and MART-1), 
especially when sufficient positive training data exist. We also note 
that some tasks (for example, picking out single–amino acid mu-
tants that retain strong binding) do not require competing against a 
large number of possible choices, and so the needed z score should 
be much lower.

Moreover, model accuracy correlated directly with the availabil-
ity of a template having sufficient proximity to the sequences of test-
ing TCR-pMHC pairs. As a result, we anticipate that RACER-m will 
improve as more structures become readily available for inclusion. 
Existing computational methods for identifying structural models 
from primary sequence data (18) may provide an efficient method 
of adding highly informative structures into the candidate pool for 
testing. This task, together with identifying the minimal sufficient 
number of distinct structural classes within a given MHC allele 

restriction, remains for subsequent investigation. Our current re-
sults suggest that this is doable given the small number of structures 
available for explaining the diverse TCR-pMHC pairs studied here-
in. Notably, the inclusion of only 66 template structure augmented 
RACER-m’s ability to accurately differentiate strong and weak bind-
ers when evaluated with hundreds and even thousands of testing 
TCR-pMHC pairs. This structural advantage was enhanced both by 
the approach of hybridizing sequence and structural information into 
the training and testing protocols and the availability of templates 
that shared sufficient sequence-based similarity to testing cases so 
that an adequate threading template was available.

METHODS
RACER-m model
To predict the binding affinity between a given TCR-peptide pair, 
we used a pairwise energy model to assess the TCR-peptide binding 
energy (14). The CDR3α and CDR3β regions were used to differen-
tiate between different TCRs because CDR3 loops primarily interact 
with the antigen peptides, while CDR1 and CDR2 interact with 
MHC (38). However, the binding energy was evaluated on the basis 
of the entire binding interface between TCR and peptide. As illus-
trated in Fig.  1, we included 66 experimentally determined TCR-
pMHC complex structures and three additional TCR-pMHC complex 
structures composed of experimentally determined pMHC com-
plexes with corresponding TCR structures as strong binders for 
training an energy model (details in Supporting Methods), which 
was subsequently used to evaluate binding energies of other TCR-
peptide pairs based on their CDR3 and peptide sequences. In addi-
tion, for each strong binder, we generated 1000 decoy binders by 
randomizing the peptide sequence. These 69,000 decoys constitute 
an ensemble of weak binders within our training set.

To parameterize this energy model, we optimized the parameters by 
maximizing the gap of binding energies between the strong and weak 
TCR-peptide binders, represented by δE in Fig. 1. The resulting opti-
mized energy model will be used for predicting the binding specificity of 
a peptide toward a given TCR based on their sequences. Further details 
regarding the calculation of binding energy are provided below.

Detailed calculation of TCR-peptide binding energies
To evaluate the binding affinity between a TCR and a peptide, 
RACER-m used the framework of the AWSEM force field (39), which is 
a residue-resolution protein force field widely used for studying pro-
tein folding and binding (39, 40). To adapt the AWSEM force field 
for predicting TCR-peptide binding energy, we used its direct protein-
protein interaction component to calculate the inter-residue contacting 
interactions at the TCR-peptide interface. Specifically, we used the Cβ 
atoms (except for glycine, where Cα atom was used instead) of each resi-
due to calculate the contacting energy using the following expression

In Eq. 1, Θi,j represents a switching function that defines the ef-
fective range of interactions between each amino acid from the pep-
tide and the TCR

Vdirect =
∑

i∈TCR,j∈peptide

γi,j(ai, aj)Θ
I
i,j (1)

ΘI
i,j
=

1

4

{
1 + tanh[5.0 × (ri,j − rI

min
)]
}{

1 + tanh[5.0 × (rI
max

− ri,j)]
}

(2)
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where rI
min

= 6.5Å and rI
max

= 8.5Å . The coefficients γi,j(ai, aj) define 
the strength of interactions based on the types of amino acids (ai, aj). 
The γi,j(ai, aj) coefficients are also the parameters that are trained in 
the optimization protocols described as follows.

Optimization of energy model for predicting the 
TCR-peptide binding specificity
To predict the binding specificity between a given TCR and peptide, 
the energy model is trained using interactions gathered from the 
known strong binders and their corresponding randomly generated 
decoy binders.

Following the protocol specified in our previous paper (14), the 
energy model of RACER-m was trained to maximize the gap be-
tween the binding energies of strong and weak binders. In addition, 
a larger training set was used to achieve a more comprehensive cov-
erage of the structural and sequence space. Specifically, the binding 
energies were calculated from individual strong binders (Estrong) and 
their corresponding decoy weak binders (Edecoy) as described in 
Eq. 1. We then calculated the average binding energy of the strong 
(〈Estrong〉), the average binding energy of the decoy weak binders 
(〈Edecoy〉), and the SD of the energies of the decoy weak binders (ΔE).

To train the model, the parameters γi,j(ai, ai) were optimized to 
maximize δE/ΔE, where δE = 〈Edecoy〉 − 〈Estrong〉, resulting in the 
maximal separation between strong and weak binders. Mathemati-
cally, δE can be represented as A⊤γ, where

Furthermore, the SD of the decoy binding energies ΔE can be 
calculated as ΔE2 = γ⊤Bγ, where

here, ϕ takes the functional form of Vdirect and summarizes interac-
tions between different types of amino acids. Therefore, the vector A 
specifies the difference in interaction strengths for each pair of ami-
no acid types between the strong and decoy binders, with a dimen-
sion of (1, 210), while the matrix B is a covariance matrix with a 
dimension of (210, 210).

With the definition above, maximizing the objective function of 
δE/ΔE can be reformulated as maximization of A⊤γ∕

√
γ⊤Bγ . This 

maximization can be effectively achieved through maximizing the 
functional objective R(γ) = A⊤γ − λ1

√
γ⊤Bγ . By setting ∂R(γ)/∂γ⊤ 

to 0, the optimization process leads to γ ∝ B−1A, where γ is a (210, 
1) vector encoding the trained strength of each type of amino acid-
amino acid interactions. For visualization purposes, the vector γ is 
reshaped into a symmetric 20-by-20 matrix, as shown in Fig. 1. In 
addition, a filter is applied to reduce the noise caused by the finite 
sampling of decoy binders. In this filter, the first 50 eigenvalues of 
the B matrix are retained, and the remaining eigenvalues are re-
placed with the 50th eigenvalue.

Construction of target TCR-pMHC complex structures 
from sequences
Because RACER-m calculates the binding energy based on the in-
teraction contacts between a given peptide and a TCR, it relies on 
the 3D structure of the TCR-pMHC complex for contact calcula-
tion. Although the training data include a 3D structure for each of 
the TCR-peptide strong binders, we usually lack 3D structures for 

most of the testing cases. To address this limitation, we used the 
software MODELLER (41) to construct a structure based on the tar-
get peptide/CDR3 sequences in the test TCR-pMHC pair and a tem-
plate crystal structure selected from the training set.

Specifically, for each testing TCR-pMHC pair, a position-wise 
uniform Hamming distance was computed between the target se-
quence and each of the sequences from the 66 training strong bind-
ers with complete TCR-pMHC complex structures, separately for 
peptide, CDR3α, and CDR3β regions. Then, sequence similarity scores 
were assigned to peptide, CDR3α, and CDR3β, respectively, with the 
number of amino acids that remain the same between target and 
template sequences. To calculate a composite similarity score for the 
target TCR-peptide complex, we summed the similarity scores of 
the CDR3α and CDR3β regions and multiplied this sum by the pep-
tide similarity score. The template structure with the highest simi-
larity score was selected as the template for the subsequent sequence 
replacement using MODELLER (Fig. 1, bottom).

To perform the sequence replacement, the peptide, CDR3α, and 
CDR3β sequences in the template structure were replaced with the 
corresponding target sequences in the testing TCR-peptide pair. The 
location of the target sequence in the template structure was deter-
mined by aligning the first amino acid of the target sequence with 
the original template sequence. If the two sequences had different 
lengths, then the remaining locations were patched with gaps. This 
sequence alignment and the selected template structure were then 
used as input for MODELLER to generate a new structure. The con-
structed structure was then used for the estimation of the binding 
energy of the testing TCR-pMHC pair.

Generation of weak binders by mismatching sequences of 
known TCR-peptide pairs
To test the performance of RACER-m in distinguishing strongly 
bound TCR-peptide pairs from weak binders, we generated a set of 
weak binders by introducing sequence mismatches between the pep-
tides and TCRs from the known strongly bound TCR-peptide pairs. 
As shown in Fig. 2, the strong binders were grouped on the basis of 
their immunological systems, such as MART-1 and TAX. Note 
that pairs within the same group also share similar TCR-peptide 
structural interfaces.

To generate the weak binders, we mismatched the sequences of 
peptides and the CDR3α/β pairs from different groups. For exam-
ple, 36 pairs of MART-1–specific CDR3α/β sequences were mis-
matched with seven non–MART-1 peptides to form weak binders 
for Fig. 3A, while five MART-1–specific peptides were mismatched 
with 35 pairs of non–MART-1 CDR3α/β sequences to form weak 
binders in Fig. 3B. The newly generated combinations of sequences 
were then used to create 3D structures of the TCR-pMHC complex-
es, following the protocol specified in the “Construction of target 
TCR-pMHC complex structures from sequences” section.

Mutual Q calculation
To quantify the structural distances between the 66 crystal struc-
tures of TCR-pMHC complexes, a pairwise mutual Q score was used 
to calculate the structural similarity between every pair of the 66 
structures. Because our focus is on the contact interface between the 
peptide and the CDR3α/CDR3β loops of the TCR, the mutual Q 
score was computed between these regions. We adopted a similar 
protocol used in (25) and calculated the mutual Q score between 
structures A and B with the following expression

A = ⟨ϕdecoy ⟩ − ⟨ϕstrong ⟩ (3)

B = ⟨ϕdecoyϕ
⊤

decoy
⟩ − ⟨ϕdecoy ⟩⟨ϕdecoy⟩⊤ (4)
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where i and j are indices of atoms from the peptide and CDR3 loops, 
respectively. rijA and rijB denote the contact distances between atom i 
and j in structure A and B, respectively. For simplicity, σ was set as 1 
Å instead of using the sequence distance between i and j as done in 
(25). The coefficient c normalizes the value of Q to fall within the 
range of 0 and 1. This definition ensures that a larger value of Q in-
dicates a greater structural similarity between the two TCR-pMHC pairs.

Prediction protocols with NetTCR-2.0
To test the predictive performance of RACER-m, we compared the 
prediction accuracy of RACER-m with NetTCR-2.0, another widely 
used computational tool trained with a convolutional neural network 
model, as described by Montemurro et al. (11). To ensure a fair com-
parison, we retrained the NetTCR-2.0 model with the dataset with 
paired α/β TCR CDR3 regions and a 95% partitioning threshold (file 
train_ab_95_alphabeta.csv, provided in https://github.com/mnielLab/
NetTCR-2.0). The trained model was then used to classify the strong 
and weak binders, as shown in Fig. 5C. Because of the peptide length 
restriction in the application of NetTCR-2.0, we excluded peptides 
longer than nine residues from our testing prediction.

Supplementary Materials
This PDF file includes:
Supporting Methods
Figs. S1 to S10
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