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G E N E T I C S

egr3 is a mechanosensitive transcription factor gene 
required for cardiac valve morphogenesis
Agatha Ribeiro da Silva1,2,3, Felix Gunawan1,2,3†, Giulia L. M. Boezio1,2,3‡, Emilie Faure4,  
Alexis Théron4,5, Jean-François Avierinos4,6, SoEun Lim1, Shivam Govind Jha1, Radhan Ramadass1, 
Stefan Guenther2,3,7, Mario Looso2,3,8, Stéphane Zaffran4, Thomas Juan1,2,3*, Didier Y. R. Stainier1,2,3*

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, 
such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate 
the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a 
conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish 
display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-
specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously 
in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical 
forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial 
cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to 
transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for patho-
logical aortic valve remodeling in humans.

INTRODUCTION
Tissue morphogenesis is intrinsically linked to the mechanical forc-
es that are required for the cellular and molecular processes defining 
cell fate (1–4). In this context, endothelial cells, which line the blood 
vessels throughout the body, are specialized according to the func-
tion and mechanical properties of the tissues they reside in as well as 
blood flow patterns (5–8). During heart development, the special-
ized endothelial cells lining the cardiac wall, known as endocardial 
cells (EdCs), invade the adjacent extracellular matrix (ECM) in the 
atrioventricular (AV) canal and outflow tract (OFT) in response to 
oscillatory shear stress (9–11). These migrating EdCs acquire 
mesenchymal characteristics, differentiate into valve interstitial cells 
(VICs), and proliferate to give rise to the valve leaflets (11–21), 
which are essential for cardiac function as they guarantee unidirec-
tional blood flow.

Extensive work in vertebrates has shown that perturbation of me-
chanical forces in the heart severely affects valve formation (10, 22–
25). In particular, the zebrafish model allows for the observation and 
manipulation of intracardiac mechanical forces while imaging valve 
morphogenesis at single-cell resolution. For example, stopping car-
diac contraction, and consequently blood flow, results in a valveless 
phenotype (26). Molecularly, the expression of several genes has 
been shown to be flow sensitive (11, 27), and the classical endothelial 
flow-responsive transcription factor Klf2 has been described as 

the main mechanosensitive transcription factor required for cardiac 
valve formation (9, 10, 12, 16, 18, 28–31). However, zebrafish klf2a/b 
double mutants only display a partially penetrant valveless pheno-
type (12, 29, 32), indicating that other transcription factors play 
critical roles in transducing the mechanical signals that promote val-
vulogenesis.

Here, we show that the transcription factor Early growth re-
sponse 3 (Egr3) is a critical transducer of mechanical signaling dur-
ing cardiac valve morphogenesis in zebrafish. We first show that loss 
of egr3 causes a complete and highly penetrant lack of cardiac valves. 
Data from loss- and gain-of-function experiments indicate that me-
chanical forces activate the expression of egr3 in a subset of EdCs, 
thereby inducing their migration toward the adjacent ECM. Using 
transcriptomic analyses followed by functional investigation, we 
also show that the nuclear receptor Nr4a2b is a target and effector of 
Egr3 during cardiac valve formation. Furthermore, we show that 
mechanical forces up-regulate EGR3 expression in porcine valvular 
endothelial cells (VECs) and that EGR3 and its target/effector 
NR4A2 may be involved in human cardiac valve remodeling upon 
ectopic biomechanical overload.

RESULTS
Egr3 is a critical regulator of cardiac valve formation
Seeking to identify additional transcription factors required for 
cardiac valve formation in zebrafish, we first determined and ex-
plored the transcriptional landscape of EdCs at the time when key 
morphogenetic events underlying valve development take place. 
Thus, we isolated wild-type zebrafish hearts at 50 hours postfertil-
ization (hpf) when valve identity has just been established, and at 
80 hpf when forming valves are first observed (Fig. 1A) (12–14, 33). 
We carried out single-cell RNA sequencing (scRNA-seq) of whole 
hearts and obtained 1310 and 2194 EdCs at 50 and 80 hpf, respec-
tively (Fig. 1B). The valve population was clearly identified at both 
time points by the expression of valve endocardium specific genes 
such as has2 (34) and alcama (33) (fig. S1A). Differential expression 
analysis between valve and nonvalve EdCs revealed early growth 
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Fig. 1. Egr3 is required for cardiac valve formation. (A) Schematic of hearts isolated for scRNA-seq; valve EdCs (magenta), nonvalve EdCs (blue). (B) scRNA-seq 
of EdCs from 50 and 80 hpf dissected zebrafish hearts. (C) Dot plot of 30 most differentially expressed genes in valve compared with nonvalve EdCs. (D) Schematic 
of generation of egr3 full locus deletion (bns522) and Δ11 (bns577) alleles. (E and F) Brightfield images of egr3+/+ and egr3−/− sibling larvae at 80 hpf; red arrow-
heads point to pericardial edema. (G) Confocal images of representative hearts from 72 and 96 hpf egr3+/+ and egr3−/− sibling larvae. (H) Percentage of egr3+/+ and 
egr3−/− sibling larvae with a superior valve leaflet and without a superior valve leaflet (i.e., endocardial monolayer) at 72 and 96 hpf; seven and four independent 
experiments, respectively. (I) AV retrograde blood flow shown as a fraction of three cardiac cycles; n = 6, 11, and 3; one experiment; mean ± SEM, one-way ANOVA 
followed by Tukey’s post hoc test. (J) Peripheral circulation in the caudal vein plexus at 80 hpf, one experiment. (K) Confocal images of representative OFT valves 
from 96 hpf egr3+/+ and egr3−/− sibling larvae. (L) Percentage of egr3+/+ and egr3−/− sibling larvae with and without forming OFT leaflets at 96 hpf; four indepen-
dent experiments. (G and K) EdCs are marked by Tg(kdrl:eGFP) expression (cyan), and myocardial cells by Tg(myl7:BFP-CAAX) expression (magenta). # indicates illustra-
tive vectorized cartoons of the valves. (H), (J), and (L) Fisher’s exact test. AV,  atrioventricular; V,  ventricle; A,  atrium; OFT,  OFT; DBD,  DNA binding domain; 
EdC, EdC. Scale bars, 400 μm [(E) and (F)] and 20 μm [(G) and (K)].
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response 3 (egr3) in the top 30 most enriched genes in the valve clus-
ter and the only one encoding a DNA binding protein with tran-
scription factor activity (Fig. 1C). Notably, egr3 expression appears 
more enriched in the valve EdCs when compared with other estab-
lished valve transcription factor genes (16, 18, 23, 35), including 
klf2a/b (29) and nfatc1 (14) (fig. S1, B and C). We further analyzed 
egr3 expression by in  situ hybridization and observed a similarly 
restricted mRNA localization in the AV canal (fig. S1D). Two other 
Egr family members have been implicated in cardiac valve develop-
ment. In mouse, loss of Egr2 (Krox20) results in aortic valve defects 
and regurgitation (36, 37), while in zebrafish and humans, egr1/EGR1 
has been shown to be expressed in cardiac valves (38, 39) and this 
expression requires mechanical forces (38, 40). We observed egr1 
expression mostly at 80 hpf and in most EdCs (fig. S1, B and C), and 
neither egr2a/b nor egr4 was detectable in our dataset (fig. S1, B and 
C). Although the expression pattern and potential role of Egr3 in 
heart development have not been investigated yet, analyses of human 
and mouse heart scRNA-seq datasets (41, 42) reveal that EGR3/Egr3 
is expressed in cardiac valve endocardium and AV mesenchyme 
(fig. S2, A and B). Sequence alignment shows that the Egr1 to Egr4 
DNA binding domains are highly conserved (fig. S2, C and D), indi-
cating the potential existence of common targets.

Given the strong and early enrichment of egr3 in the valve endo-
cardium, we investigated its role in valvulogenesis by generating two 
mutant alleles using the CRISPR-Cas9 system, a 5.8-kb full locus 
deletion (bns522) (i.e., a null allele), and an 11–base pair (bp) dele-
tion (Δ11) (bns577), resulting in a premature termination codon 
that is predicted to disrupt the DNA binding domain (Fig. 1D and 
fig. S1, E and F). During early development, the valveless embryonic 
heart achieves unidirectional blood flow in part because of localized 
contraction waves and a simple vascular network (43) whose capac-
itance provides pressure storage and diminishes cardiac efforts (44). 
By 72 hpf, the AV EdCs have folded into a functional prevalvular 
structure capable of reducing retrograde blood flow and therefore 
supporting cardiac output (10, 14, 15). egr3 mutants, of both alleles, 
are indistinguishable from their wild-type siblings until 72 hpf when 
they start to exhibit noticeable pericardial edema (Fig. 1, E and F). 
In contrast to their wild-type siblings, egr3 mutants fail to form AV 
valve leaflets as their EdCs remain as a monolayer in a fully pene-
trant fashion in the null allele (19/19) and a nearly fully penetrant 
fashion in the Δ11 allele (19/21) (Fig. 1, G and H, and fig. S1, G and 
H). This complete lack of AV valves results in severe retrograde 
blood flow (Fig. 1I and movies S1 and S2) and leads to heart failure 
and impaired peripheral circulation (Fig. 1J and movies S3 and S4); 
egr3 mutants no longer display cardiac output by 96 hpf (movies S1 
to S4). Despite this impaired circulation, cardiac contraction and 
heart rate are not obviously affected in egr3 mutants (movies S1 
and S2). In 96 hpf wild-type larvae, the AV valves are more mature 
and elongated and the forming OFT valve leaflets are also present 
(14, 16, 45). At this stage, the AV EdCs in egr3 mutants still remain 
as a monolayer (Fig. 1, G and H, and fig. S1, G and H) and, similarly, 
the forming OFT valves also fail to develop (Fig. 1, K and L, and 
fig. S1I). Together, these data show that Egr3 is essential for cardiac 
valve formation in zebrafish.

Endothelial cell–specific deletion of egr3 results in a lack 
of AV valves
To more precisely assess egr3 expression in the developing heart, 
we generated a Gal4 knock-in reporter line [Pt(egr3:Gal4-VP16)], 

hereafter referred to as egr3:Gal4 (bns576), by targeting exon 2 using 
the CRISPR-Cas9 system, thereby disrupting the zinc-finger DNA 
binding domain (Fig.  2A). Consequently, the egr3:Gal4 line has 
endogenous egr3 reporter activity and is also an egr3 mutant allele 
(fig. S3B). egr3 reporter+ embryos display a strong expression in the 
olfactory bulb as well as in specific structures of the central and 
peripheral nervous systems (fig.  S3A). egr3 reporter expression is 
also evident in the presumptive AV canal starting at 34 hpf (fig. S3A), 
mostly in the AV endocardium, but also in the AV myocardium 
(Fig. 2B). Moreover, egr3 reporter expression is observed in the OFT 
endocardium starting at 72 hpf (Fig. 2B), coinciding with the onset 
of OFT valve morphogenesis (16). Notably, most egr3 reporter–
expressing EdCs were observed in, or near, the AV canal or OFT.

Considering that both endocardial and myocardial cells in the 
AV canal express egr3 based on the egr3:Gal4 reporter expression, 
we sought to determine whether egr3 deletion in one of these cell 
types was sufficient to recapitulate the egr3 mutant phenotype. Thus, 
we used the CRISPR-Cas9 system to generate a sequential loxP site 
knock-in in the egr3 locus, specifically 440 bp upstream of the tran-
scription start site and 1.9 kb downstream of the stop codon (Fig. 2C). 
Injection of Cre mRNA into embryos from egr3 flox/+ zebrafish 
crossed with egr3+/− zebrafish resulted in 72 hpf larvae displaying 
pericardial edema and no valve leaflets, correlating with the recom-
bination of the egr3 floxed allele (fig. S3, D to F). No phenotype was 
observed in the uninjected larvae, indicating that the egr3 floxed 
allele is functional. When crossing egr3 flox/+ zebrafish with egr3+/− 
zebrafish carrying an endothelial Cre driver (kdrl:Cre), we observed 
that deleting egr3 in endothelial cells was sufficient to recapitulate 
the global egr3 mutant phenotype, thereby resulting in the complete 
lack of AV valve leaflets (fig. S3G and Fig. 2, D and E). Moreover, 
when crossing egr3 flox/+ zebrafish with egr3+/− zebrafish carrying a 
myocardial Cre driver (myl7:Cre), we observed that deleting egr3 in 
myocardial cells led to no noticeable differences with their control 
siblings including in their valve leaflets (fig. S3H and Fig. 2, D to F). 
Collectively, these data show that egr3 functions in the endothelium 
to drive AV valve formation.

egr3 directs AV canal EdC migration through its 
target Nr4a2b
To gain more insight into the cellular and molecular causes leading 
to the absence of the AV valve in egr3 mutants, we analyzed egr3+/? 
and egr3−/− sibling embryos at 48 hpf, a time when they cannot be 
visually distinguished from each other. At this stage, the AV canal 
is already morphologically and molecularly distinct from the atrial 
and ventricular chambers (33). Tissue convergence and a decrease 
in AV canal EdC size are important morphogenetic steps that pre-
cede AV valve formation (46, 47). Thus, to evaluate possible morpho-
logical differences in the endocardium leading to the egr3 mutant 
phenotype, we analyzed EdC volume in each cardiac region (fig. S4, 
A and B). Consistent with published data (47), AV canal EdCs had a 
smaller volume when compared with ventricular and atrial EdCs 
(fig. S4C). Notably, there were no differences in EdC cell number or 
volume in any cardiac region between egr3 mutants and their egr3+/? 
siblings (fig. S4, C and D) such that egr3 mutant EdCs were observed 
in expected numbers and underwent the cell shape changes typi-
cally observed during early AV valve morphogenesis.

To identify the molecular causes of the egr3 mutant pheno-
type, we performed bulk RNA-seq analysis of 48 hpf egr3+/+ and 
egr3−/− dissected hearts (Fig. 3A). One hundred fifty-four genes 
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Fig. 2. Endothelial-specific deletion of egr3 recapitulates the global mutant phenotype. (A) Schematic of the knock-in reporter [Pt(egr3:Gal4-VP16)] generated by 
inserting Gal4-VP16 in exon 2 of egr3. (B) Pt(egr3:Gal4-VP16); Tg(UAS:eGFP) expression (gray) at 72 hpf; EdCs are marked by Tg(kdrl:Hsa.HRAS-mCherry) expression (cyan) 
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Pt(egr3:Gal4-VP16); Tg(UAS:eGFP) expression with image segmentation of egr3 reporter+ AV canal EdCs (cyan), egr3 reporter+ AV canal myocardial cells (magenta), and 
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were differentially expressed between egr3 wild-type and mutant 
sibling embryos. Notably, important valve regulators such as klf2a/b, 
notch1b, dll4, nfatc1, or wnt9a/b did not appear to be differentially 
expressed in egr3 mutants (fig. S5A). Using in situ hybridization 
for egr1, has2, hey2, klf2a, klf4, piezo2a, and immunostaining for 
Alcama, we observed that the patterning of the AV canal was ob-
viously not affected in egr3 mutants (fig. S5, B and C), altogether 
suggesting that lack of egr3 leads to the absence of the AV valve 
despite apparently unaffected expression of established cardiac valve 
markers and regulators. We further screened our dataset for dif-
ferentially expressed genes with cardiac valve expression and found 
that nr4a2b, spp1, and nrg1 were significantly down-regulated in 
egr3 mutants (Fig. 3A). Nr4a2/Nurr1 is a nuclear receptor with tran-
scription factor activity (48), and nr4a2b exhibits cardiac valve 
expression according to our scRNA-seq data (Fig.  3B), while 
spp1/osteopontin and nrg1 are expressed by valve EdCs (Fig. 3, B 
and C) (49, 50). Our observations that nr4a2b and spp1 are down-
regulated in egr3 mutants agree with published reports in mammals 
showing that EGR3 is upstream of Nr4a2 (51) and that NR4A2 
activates SPP1 expression by binding to its promoter (52). More-
over, EGR3 (53, 54), NR4A2 (55), and SPP1 (56, 57) promote endo-
thelial cell migration downstream of vascular endothelial growth 

factor (VEGF), supporting the model that Egr3 is necessary for EdC 
migration during valvulogenesis.

To test whether deficient cellular migration could be the cause of 
the egr3 mutant phenotype, we evaluated EdC migration in the ini-
tial steps of AV valve morphogenesis. From 48 hpf onward, the AV 
canal EdCs start to extend protrusions into the adjacent ECM and, 
within a few hours, two to four AV canal EdCs collectively migrate 
in a ventricle to atrium direction (Fig. 3D) (13, 14). egr3 mutants 
exhibit a twofold reduction in the number of AV canal EdC protru-
sions toward the ECM (Fig. 3E), although this reduction was not 
significant. Strikingly, the subsequent collective EdC migration is 
severely affected, as only 6% (n = 1/17) of the mutant embryos en-
gaged in EdC migration compared with 72% (n = 13/18) of their 
heterozygous siblings at 55 hpf (Fig. 3, F and G). Between two to 
four migrating EdCs were observed in these heterozygous hearts, 
while zero to two migrating EdC was generally observed in these 
egr3 mutant hearts (Fig. 3H).

To investigate whether Egr3 is sufficient to induce EdC migration 
into the ECM, we generated a stable egr3 overexpression line, 
Tg(5XUAS:egr3-p2a-dTomato), hereafter referred to as “egr3 OE.” 
To induce ectopic egr3 overexpression in the endothelium, we 
crossed egr3 OE zebrafish with the endothelial fli1a:Gal4 driver, 
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Tg(fli1a:Gal4FF). egr3-overexpressing cells were clearly distinguished 
by dTomato fluorescence (Fig.  4A). In control hearts, VICs were 
present in the ECM of the AV canal, but not in the ECM of the 
ventricle or atrium (Fig. 4, B and C). However, in egr3 OE hearts, 
not only was there more than a 2.5-fold increase in VIC number in 
the ECM of the AV canal (Fig. 4, B and C), but dTomato+ EdCs were 
also present in the ventricular and atrial ECM, adjacent to the endo-
cardial monolayer (Fig.  4, A to C). To better characterize the in-
creased ECM invasion by EdCs in egr3 OE hearts, we assessed the 
expression of the endocardial valve marker Alcama (33). Notably, 
egr3 overexpression in the endothelium was sufficient to induce ec-
topic Alcama expression in ventricular and atrial EdCs (Fig. 4, D 
and E), as well as a significant increase of Alcama-expressing EdCs 
in the AV canal (Fig. 4E). Next, we tested whether overexpressing 
the Egr3 target, Nr4a2b, would be sufficient to rescue AV canal EdC 
migration in egr3 mutants. Thus, we generated a stable UAS-driven 
nr4a2b overexpression line, Tg(5XUAS:nr4a2b-p2a-dTomato), here-
after referred to as “nr4a2b OE,” and used it in the background of 
the egr3 bns577 mutant allele and egr3:Gal4+/−. The resulting tran-
sheterozygous progeny fail to produce a functional Egr3 protein and 
overexpress nr4a2b in egr3:Gal4+ cells. Transheterozygous larvae 

displayed the expected egr3 mutant phenotype at 72 hpf (Fig. 4F and 
fig.  S3B). egr3 transheterozygous larvae overexpressing nr4a2b in 
their AV canal endocardium displayed a significant increase in the 
number of VICs in the AV canal ECM, indicating a partial rescue of 
EdC migration (Fig. 4, F and G). Not all VICs in nr4a2b OE hearts 
were dTomato+, indicating that Nr4a2b may also act in a cell nonau-
tonomous fashion in this process. As previously reported for klf2a 
overexpression in the AV canal, using an nfatc:Gal4 line (15), we 
found that nr4a2b has an inhibitory effect on valve formation in 
egr3+/− larvae (fig. S5, D and E), suggesting that nr4a2b expression 
needs to be tightly regulated during valvulogenesis. Collectively, 
these data indicate that the absence of cardiac valves in egr3 mutants 
is a result of failed EdC migration into the adjacent ECM and that 
Egr3 is sufficient to induce endocardial Alcama expression and 
migration; they also suggest that Egr3 promotes AV canal EdC 
migration through its target Nr4a2b.

egr3 is a mechanosensitive transcription factor gene in 
cardiac valve development and disease
Considering that EGR3 is involved in mediating VEGF-induced en-
dothelial migration (53) and that it is a VEGF target via extracellular 
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signal–regulated kinase (ERK) activation (58), we decided to test 
whether egr3 AV canal expression was dependent on VEGF signaling. 
We found that egr3 AV canal expression appeared to be unaltered af-
ter treatment with VEGF receptor inhibitors or a mitogen-activated 
protein kinase kinase (MEK) inhibitor (fig. S6A), suggesting that it is 
independent of VEGF/ERK signaling. Given the fundamental role of 
mechanical signaling in cardiac valve formation (10, 23, 26), we then 
decided to test whether egr3 expression was downstream of mechani-
cal forces. We simulated a no-flow/no-contraction condition in vivo 
by taking advantage of the zebrafish embryo’s ability to withstand se-
vere cardiac dysfunction (59). We used silent heart zebrafish mutants, 
which lack the sarcomeric protein Tnnt2a and, therefore, do not dis-
play cardiac contraction (59). Notably, egr3 AV canal expression was 
completely abrogated in tnnt2a mutant hearts (Fig. 5A), and we also 
observed the loss of egr3 expression when treating zebrafish embryos 
with the myosin inhibitor BDM (fig. S6A). To test whether egr3 ex-
pression responds to ectopic mechanical stimulation, we performed 
microsurgical insertion of a bead inside the embryonic heart through 
the inflow tract (22, 60) at 48 hpf (Fig. 5B). The bead remained inside 
the heart for 24 hours and moved rhythmically across the ventricular 
chamber following the heartbeats and without stopping the blood 
flow. Upon this ectopic mechanical stimulation, egr3 expression was 
expanded in the hearts of the bead-inserted larvae when compared 
with sham controls, as shown by the expression of the egr3:Gal4 re-
porter (Fig. 5, C and D). We did not find ectopic EdCs in the ECM or 
an increased number of VICs in the bead inserted hearts when com-
pared with sham controls (fig. S6B). As mechanical forces are required 
for valve formation, we next tested whether overexpressing egr3 in 
endothelial cells in no-flow conditions could rescue some of the early 
steps of valve development. We injected tnnt2a morpholinos (MOs) 
into one-cell stage embryos of egr3 OE zebrafish crossed with the en-
dothelial fli1a:Gal4 driver (Fig. 5E). Valvular cell identity is absent in 
no-flow condition hearts as the endocardium remains as a monolayer 
and the expression of valve markers is absent (Fig. 5E) (26, 61). Nota-
bly, some egr3-overexpressing endothelial cells in no-flow condition 
hearts expressed Alcama, displayed a partly cuboidal valvular cell 
shape, and were often found in the ECM (Fig. 5E). These Alcama+ 
egr3-overexpressing cells were present in the endocardium of both the 
ventricle and atrium as well as in the AV canal of no-flow condition 
hearts (Fig. 5F and fig. S6C), suggesting a lack of spatial specification 
of valve identity in no-flow hearts and/or the ability of Egr3 to drive 
this specification on its own.

To investigate whether EGR3 is activated in mammalian VECs in 
response to shear stress, we used a unique fluid activation device 
specifically designed to expose cells to physiologically relevant pul-
satile wall shear stress (WSS) conditions (62). We observed an 
up-regulation of EGR3 expression in porcine VECs exposed to pul-
satile WSS compared with static conditions (fig.  S6D), indicating 
that EGR3 responds to pulsatile shear stress in VECs. In addition to 
playing an important role in valvulogenesis, mechanical forces are 
also pivotal during pathological valve remodeling. For instance, the 
use of a left ventricular assist device (LVAD) has become an estab-
lished treatment option as well as a bridge for end-stage heart failure 
patients awaiting a heart transplant (63). Despite improving survival 
and heart function, LVAD use is correlated with aortic insufficiency, 
and 15 to 52% of patients may present worsening of previous aortic 
valve pathology or develop de novo aortic valve insufficiency (64). 
The LVAD increases cardiac output by diverting the blood from the 
left ventricle straight into the aorta, thereby decreasing the strain in 

the mitral valve and causing biomechanical overload in the aortic 
root and valves (65). This increased biomechanical overload in the 
aortic valves induces valve remodeling (i.e., aortic valve fusion) (66, 
67). However, how the aortic valves transduce the biomechanical 
overload into a molecular response remains elusive. As zebrafish egr3 
expression responds to lack of, as well as increase in, mechanical 
forces during valve development (Fig. 5, A to D) and EGR3 responds 
to pulsatile WSS in VECs (fig. S6D), we sought to investigate wheth-
er EGR3 expression was altered during human aortic valve remodel-
ing following LVAD placement. We collected samples of aortic valves 
from control donors and LVAD patients and performed quantita-
tive reverse transcription polymerase chain reaction (RT-qPCR) 
(Fig. 5H). EGR3 expression was increased by almost sixfold in LVAD 
patient valves compared with donor control valves (Fig. 5I). Expres-
sion of the classical mechanosensitive transcription factor gene KLF2 
was increased by nearly fourfold (Fig. 5I). We also tested EGR3 tar-
gets and observed that in LVAD patient valves, NR4A2 expression 
was increased by more than 13-fold and SPP1 expression by more 
than 20-fold, although the latter was not significant (Fig. 5I).

DISCUSSION
Here, we identify the transcription factor Egr3 as a master trans-
ducer of the mechanical forces that guide valvulogenesis in zebrafish, 
and show that Egr3 is required for EdC migration into the adjacent 
ECM by activating the expression of the migration regulator nr4a2b 
(55). Klf2 has long been considered to be the main mechanosensi-
tive transcription factor gene in cardiac valve formation. However, 
the broad endocardial expression of klf2a/b compared with the re-
stricted expression of egr3 in valve EdCs suggests that Egr3 has a 
more specific role in transducing mechanical forces during valvulo-
genesis. klf2 mutations in zebrafish result in a 47 to 56% penetrance 
of the cardiac valveless phenotype observed in no-flow conditions 
(29, 32). Moreover, klf2 mutants also display cardiomyocyte extru-
sion (32) and it is not clear how this phenotype affects cardiac valve 
formation. In contrast, the egr3 mutant phenotype is highly pene-
trant and it is specific to the valves, with no obvious defects in other 
cardiac regions.

EGR3 is expressed in AV canal EdCs and fibroblasts in mamma-
lian hearts (41, 68), and it responds to pulsatile WSS in VECs, con-
sistent with a conserved function in valvulogenesis. Egr3 mutant 
mice display an increased frequency of perinatal mortality (69), and 
it would be worth investigating them for any underlying cardiac 
defects. In humans, EGR3 single-nucleotide variants resulting in 
loss-of-function alleles are highly underrepresented with a loss-of-
function observed/expected upper bound fraction of 0.396 (gnomAD 
v4.0.0), possibly suggesting that EGR3 is haploinsufficient. Haploin-
sufficiency is also typically observed in genes associated with bicus-
pic aortic valve disease, such as GATA6 (70) and NOTCH (71, 72). 
Of note, case reports have shown that chromosomal duplications of 
the region where EGR3 is located (8p21.3) are associated with con-
genital heart disease (i.e., valve and septal defects) (73, 74), while a 
case-control study has reported an association between an EGR3 
locus polymorphism and coronary artery disease (CAD) (75), 
though with no mention of possible valve defects.

In parallel to egr3 up-regulation following mechanical stimula-
tion in the developing zebrafish heart, EGR3 is up-regulated in por-
cine VECs and in LVAD aortic valves upon biomechanical overload. 
In addition, EGR3 expression does not seem to respond to fluid 
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shear stress in human umbilical vein endothelial cells (HUVECs) 
(76), suggesting a cell- and/or flow-specific response. In addition, 
EGR3 is necessary and sufficient to partially mediate the transform-
ing growth factor–β (TGF-β) fibrotic response in fibroblasts (77). 
Thus, we speculate that the biomechanical stimuli that promote 
EGR3 expression during cardiac development also promote it in 
LVAD aortic valves, thereby contributing to pathological aortic 
valve remodeling and insufficiency (65–67). It will be important to 

investigate the role of EGR3, KLF2, and other mechanosensitive 
transcription factor genes in LVAD aortic valve pathogenesis.

Transduction of mechanical forces, which is mediated in part by 
VEGF signaling (78), also plays a role in lymphatic endothelial cell 
(LEC) development and physiology. VEGF is a known regulator 
of EGR3 and NR4A2 expression in endothelial cells (53, 58, 79). 
Human LECs up-regulate EGR3 and NR4A2 expression following 
VEGF stimulation (80, 81), and a recent report on the transcriptional 

A B C D

GFE

H I

Fig. 5. egr3 expression in the heart is regulated by biomechanical forces. (A) In situ hybridization for egr3 expression in 48 hpf tnnt2a+/+ and tnnt2a−/− sibling 
embryos. (B) Illustration of bead insertion into a 48 hpf heart. (C) Pt(egr3:Gal4-VP16); Tg(UAS:eGFP) expression (gray) at 72 hpf in bead-inserted larva versus sham; myocar-
dial cells are marked by Tg(myl7:BFP-CAAX) expression (magenta) and EdCs by Tg(kdrl:Hsa.HRAS-mCherry) expression (cyan). Red dotted circle highlights inserted bead; 
yellow arrowhead points to egr3+ cells near the bead. (D) Quantification of total volume of egr3 reporter+ cells in bead-inserted larvae and sham; n = 3 sham and 
5 experimental larvae; one experiment. (E) Confocal images of representative hearts from control [Tg(fli1a:Gal4);Tg(UAS:Kaede)] and endothelial-specific egr3-
overexpressing [Tg(fli1a:Gal4);Tg(UAS:Kaede);Tg(UAS:egr3-p2a-dTomato)] tnnt2a MO–injected embryos immunostained for Alcama at 54 hpf; magnified regions show the 
AV canal of tnnt2a MO–injected embryos with rescued Alcama expression in the Tg(UAS:egr3-p2a-dTomato) embryo. (F) Quantification of Alcama+ EdCs per cardiac region 
of tnnt2a MO–injected embryos at 54 hpf; n = 6 control and 6 egr3 OE embryos, n = 0.00 and 8.00 EdCs (ventricle), n = 0.00 and 13.00 EdCs (AV canal), n = 0.00 and 
4.83 EdCs (Atrium); two independent experiments. (G) Oscillatory shear stress induces the expression of the mechanosensitive transcription factor gene egr3 in valve 
EdCs, where it orchestrates valvulogenesis by promoting Alcama expression and their migration via Nr4a2b. (H) Schematic of aortic valve collection from LVAD patients 
and control donors. (I) Relative mRNA levels of EGR3, KLF2, NR4A2, and SPP1 from aortic valves of LVAD patients and control donors; n = 4 and 4 to 6; one experiment. 
Ct values can be found in data S1. (D), (F), and (I) Student’s t test, mean ± SEM. (B) and (H) Illustrations were generated with Biorender.com. Scale bars, 20 μm.
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coactivator Zmiz1 suggests that Egr3 is also involved in lymphatic 
valve formation (82).

In summary, our study reveals a previously unknown signaling 
axis in which EGR3 is necessary to transduce the mechanical signals 
required for cardiac valve formation and potentially also for LVAD 
valve remodeling. We anticipate that perturbations in the function 
or expression of EGR3, or its targets, also lead to cardiac valve 
defects in humans.

MATERIALS AND METHODS
Zebrafish handling and lines
All zebrafish husbandry was performed under standard conditions 
in accordance with institutional (Max Planck Gesellschaft) and 
national (German) ethical and animal welfare regulations. All pro-
cedures performed on animals conform to the guidelines from 
Directive 2010/63/EU of the European Parliament on the protection 
of animals used for scientific purposes and were approved by the 
Animal Protection Committee (Tierschutzkommission) of the 
Regierungspräsidium Darmstadt (reference: B2/1218). The follow-
ing mutant, knock-in reporter, and transgenic lines were generated 
for this study: egr3bns522, egr3bns577, Pt(egr3:Gal4-VP16)bns576 abbreviated as 
egr3:Gal4, Pt(egr3:loxP-egr3-loxP)bns661, Tg(5xUAS:egr3-​p2a-dTomato)bns607 
abbreviated as egr3:OE, and Tg(5xUAS:nr4a2b-​p2a-dTomato)bns719 abbreviated 
as nr4a2b:OE. The following transgenic and mutant lines were used 
in this study: tnnt2amn0031Gt or Gt(GBT-R14) (83), Tg(kdrl:EGFP)s843 
(33), Tg(kdrl:Hsa.HRAS-mCherry)s896 (84), Tg(kdrl:NLS-mCherry)is4 (85), 
Tg(fli1a:Gal4FF)ubs4 (86), Tg(myl7:BFP-CAAX)bns193 (87), Tg(myl7:mCherry-
CAAX)bns7 (88), Tg(myl7:EGFP)twu26 (89), Tg(5xUAS:EGFP)nkuasgfp1a 
(90), Tg(UAS:Kaede)rk8 (91), Tg(myl7:Cre)sd55 (92), Tg(kdrl:Cre)s898 
(93), and Tg(Mmu.Hhex-E1B:GFP)bns321 (14).

Generation of zebrafish lines
For CRISPR-Cas9 mutagenesis, in  vitro synthesis of Cas9 mRNA 
and design of guide RNAs (gRNAs) were performed as previously 
described (94, 95). gRNA efficiency was evaluated in single AB wild-
type injected embryos by high-resolution melting analysis (HRMA) 
or T7 endonuclease assay. Generation of egr3 full locus deletion 
(bns522) was achieved by using one gRNA in the immediate 5′ 
intergenic region and another in the 3′ UTR, and F1 adults were 
screened by PCR followed by sequencing of PCR products. The egr3 
Δ11 allele (bns577) was generated with commercially available egr3 
gRNA [Integrated DNA Technologies (IDT)], and F1 adults were 
screened by HRMA followed by sequencing of PCR products. The 
egr3:Gal4 reporter line (bns576) was generated according to the Ge-
neWeld method (96) with 48-bp homology arms flanking the p2a-
Gal4-VP16-beta-actin sequence, and using the egr3 gRNA (IDT) as 
for the egr3 Δ11 allele (bns577). We used the previously published 
sequential loxP knock-in method (97) to generate the egr3 floxed 
allele (bns661) with single-stranded donor oligonucleotides con-
taining loxp sites flanked by asymmetric 21- and 49-bp homology 
arms. For the 5′ loxP knock-in, we used the same 5′ gRNA as for the 
full locus deletion allele (bns522). Adult F1 zebrafish were screened 
for the 5′ loxP integration using a loxP-specific PCR primer and se-
quenced after performing a loxP-flanking PCR. The 5′ loxP founder 
zebrafish was then crossed with AB wild type, and the resulting one-
cell stage embryos were injected with a 3′ gRNA designed to cut the 
neighboring intergenic region. Adult F1 egr3 floxed allele zebrafish 
were screened by loxP-specific and flanking PCRs followed by 

sequencing of PCR products. Despite observing a complete and ad-
equate integration of the 5′ loxP site, we have not been able to se-
quence the full extent of the 3′ loxP site. Genetic polymorphisms 
and/or integration of multiple copies after mutagenesis of the 3′ re-
gion in the zebrafish used for 3′ loxP knock-in might explain why we 
could not sequence the loxP integration. However, the floxed egr3 
allele was confirmed by the loxP-specific and flanking PCRs, as well 
as by functional analysis after Cre mRNA injection, in which a 
recombined band of 400 bp was identified by PCR and the egr3 phe-
notype was observed at the expected Mendelian ratios. Conditional 
knockouts were obtained by crossing egr3flox/+ zebrafish with egr3bns577/+ 
zebrafish carrying Tg(kdrl:Cre) or Tg(myl7:Cre), for endothelial or 
myocardial cell–specific knockout, respectively. The low number of 
myocardial cell–specific knockout larvae (3 of 46) (Fig. 2, D and F) 
is under the expected ratio of 1:8 for a cross of egr3bns577/+, egr3flox/+, 
and myl7:Cre+/− zebrafish and without selecting the progeny for a 
phenotype. We used tol2 transgenesis to generate the egr3 (bns607) 
and nr4a2b (bns719) overexpression lines, respectively egr3:OE 
and nr4a2b:OE. Adult egr3:OE and nr4a2b:OE F1 zebrafish were 
screened by crossing with Tg(fli1a:Gal4FF) zebrafish and using the 
dTomato+ expression in the progeny as a proxy. dTomato+ embryos 
were used to confirm transgenesis by PCR amplification and se-
quencing of the PCR products. Of note, the data presented in this 
work were generated using progeny from F1 to F3 animals (obtained 
from sequential outcrosses to different transgenic lines or nontrans-
genic AB zebrafish); while doing the revisions, we observed a reduc-
tion in the penetrance of the cardiac valve phenotype in the progeny 
of F4 animals. Genotyping PCRs were performed with KAPA2G 
Fast Ready Mix (Sigma-Aldrich 2GFRMKB) and HRMAs with 
Maxima SYBR Green/Fluorescein qPCR Master Mix (2X) (Thermo 
Fisher Scientific K0241). The sequences of all genotyping primers, 
CRISPR sites, and donor oligonucleotides are available in data S3.

Plasmid construction
The open reading frames (ORFs) for egr3, nr4a2b, spp1, nrg1, hey2, 
and has2 were amplified from cDNA generated from a pool of 78 
hpf larvae, and cloned into a pCS2+ vector. To generate the egr3:Gal4 
line, the pGTag-Gal4-VP16-beta-actin plasmid was a gift from J. Essner 
(Addgene # 117817) and homology arms were added by vector liga-
tion (98). To generate the egr3:OE line (bns607) and nr4a2b:OE line 
(bns719), egr3 and nr4a2b were amplified from pCS2+ and cloned 
into a 5XUAS:p2a-dTomato vector. Vector ligation was performed 
by PCR amplification followed by in vivo cloning (99). All primers 
are listed in data S3.

Microscopy
Live imaging of stopped zebrafish hearts was performed by mount-
ing N-Phenylthiourea (PTU)-treated embryos and larvae in 1% agarose 
containing 0.2% tricaine. We used the following confocal micro-
scopes: LSM700 Axio Imager 2 and LSM880 Axio Examiner with a 
W Plan-Apochromat 40×/1.0 dipping lens for image acquisition. We 
used Fiji (ImageJ 2.1.0/1.53o) to adjust the brightness and contrast 
of representative images. For three-dimensional (3D) rendering and 
analysis of confocal images, we used Imaris x64 (Bitplane, 10.0.1). 
We used the Imaris cell identification function to automatically segment 
EdCs based on their nucleus, marked by Tg(kdrl:NLS-mCherry) ex-
pression, and their cytoplasm, marked by Tg(kdrl:EGFP) expression. 
The EdCs were further segregated into ventricular, AV, and atrial with 
the help of the x/y position object filtering followed by manual curation. 
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Illustrative cartoons were created using Inkscape vector graphics 
editor unless otherwise indicated in the figure legends.

In situ hybridization and immunostaining
Whole-mount RNA in situ hybridization was performed as previ-
ously described (100). In situ probes for egr3, spp1, nrg1, hey2, and 
has2 were synthesized from previously cloned ORFs in pCS2+ vectors 
using PCR products with an incorporated T7 promoter. An in situ 
probe for egr1 was provided by J. Vermot in a pBSK vector. In situ 
probes for klf2a (15), klf4, nr4a2b, and piezo2a (15) were synthe-
sized directly from a PCR product of 78 hpf wild-type AB cDNA, 
using primers with an incorporated T7 promoter. To visualize the 
cardiac outline, we used the primary mouse anti-MHC (myosin 
heavy chain) antibody [1:500, MF-20, Developmental Studies Hy-
bridoma Bank (DSHB) AB_2147781], followed by the secondary 
goat anti-mouse immunoglobulin G (IgG) Alexa Fluor 488 antibody 
(1:500, Invitrogen A11029). To assess AV valve identity, we per-
formed immunostaining for Alcama using mouse anti-Alcama anti-
body (1:50, ZN-8, DSHB AB_531904) followed by goat anti-mouse 
Alexa Fluor 647 antibody (1:500, Invitrogen A21236). In situ hybrid-
izations were imaged using an SMZ25 stereomicroscope (Nikon) 
with a 2×/0.3 objective. The sequence of primers used to synthesize 
the in situ probes can be found in data S3.

AV blood flow fraction
Functional analysis of blood regurgitation was performed in 72 hpf 
zebrafish larvae mounted in 1% agarose without tricaine. The ze-
brafish hearts were imaged live using an inverted Cell Observer 
Spinning Disk microscope with a 25×/0.8 water-immersion objec-
tive at 240 frames per second (fps). Quantification of AV blood flow 
fraction was performed using a custom-made ImageJ script as pre-
viously described (15). For each imaged larva, AV retrograde blood 
flow is shown as a fraction of three averaged cardiac cycles.

Microsurgical insertion of a bead
To assess the influence of ectopic mechanical stimulation on egr3 
expression in vivo, a bead was kept inside of the beating zebrafish 
heart for 24 hours (22, 60). For that manipulation, 48 hpf zebrafish 
embryos were mounted ventrally in 1% agarose and a microsurgical 
incision was performed in the yolk sac using thin forceps. A bead 
(Cube Biotech 32201) was inserted with the forceps into the yolk 
cavity and gently pushed into the inflow tract, eventually reaching 
the heart through suction. Embryos were released from the agarose 
and kept in egg water at 28.5°C for 24 hours, when egr3:Gal4; 
UAS:eGFP expression was assessed by confocal microscopy. Only 
larvae that had the bead inside of the ventricle and still displayed 
blood flow were considered for the analysis. Sham embryos under-
went the same procedures of mounting and yolk piercing, but with-
out bead insertion.

Chemical treatments
To evaluate the influence of cardiac contraction on egr3 expression, 
we treated wild-type embryos with 15 mM of the myosin inhibitor 
BDM (Sigma-Aldrich B0753). Possible regulation of AV egr3 expres-
sion by VEGF signaling was tested by treating embryos with 1 and 
2.5 μM SKLB1002 (Selleck Chemicals S7258) (101) and 0.5 μM SU5416 
(Sigma-Aldrich S8442). Possible regulation of AV egr3 expression 
by ERK signaling was tested by treating embryos with 1 μM of the MEK 
inhibitor PD0325901 (Sigma-Aldrich PZ0162) (2). Concentrations 

were adjusted to diminish side effects. Dimethyl sulfoxide (DMSO; 
0.1%) was administered as vehicle, and all treatments were per-
formed from 36 to 48 hpf, when embryos were collected and fixed 
for in situ hybridization.

Porcine aortic valve endothelial cell isolation and culture
We used a fluid activation device that applies physiologically rele-
vant pulsatile WSS on the surface of porcine aortic VECs as previ-
ously described (62). VECs were isolated from porcine aortic valve 
leaflets. Briefly, aortic valve leaflets were isolated and incubated in 
collagenase type II/Dulbecco’s modified Eagle medium (DMEM) 
(Life Technologies) for 3 × 7 min. After incubation, cells were gently 
scraped to isolate VECs from the two sides of the leaflets. After iso-
lation, VECs were seeded and cultured on flask coated with rat col-
lagen type I (50 μl/ml) (10 mg/ml concentration, BD Biosciences). 
VECs were cultured at 37°C and 5% CO2 in Endothelial Cell Growth 
Medium (Promocell) supplemented with manufacturer’s adjuvants 
and 5% fetal bovine serum (FBS). After 1 hour of culture, VECs were 
first removed from the collagen gels and lysed in TRIzol (Thermo 
Fisher Scientific 15596026). RNAs were extracted using RNeasy 
Mini Kit (Qiagen 74104).

Research ethics for donated aortic valve samples
The study population consisted of LVAD (n = 6) patients referred for 
heart transplantation at La Timone Hospital (102). Patients were not 
included if they had connective tissue disease and previous aortic 
valve dysfunction. The patients provided their written informed 
consent to participate in this study (approved by the Marseille ethics 
committee n°13.061). Aortic regurgitation (AR) was graded through 
an integrative approach (103, 104). Mechanism of AR was separated 
into prolapse of the fused leaflet, cusp restriction, or both. Aortic 
valves were recognized by their anatomical landmarks under the 
microscope, and leaflets were isolated with minimal aortic wall con-
tamination. Immediately following surgical removal, a portion of the 
aortic valve leaflet was placed in RNAlater solution (Sigma-Aldrich) 
and stored at −80°C until processing. Control valve samples were 
obtained at autopsy of individuals without cardiac problems who suf-
fered a traumatic death (n = 8). The control group was composed of 
individuals with an average age of 59 ± 4 years, and a male to female 
ratio (M/F) of 85%. The LVAD group was composed of individuals 
with an average age of 54 ± 12 years, and M/F ratio of 71%. This 
study was performed according to the principles of the Declaration 
of Helsinki and in accordance with institutional guidelines.

Quantitative RT-qPCR
Total RNA from human aortic valve samples was purified using TRIzol 
(Life Technologies) and RNeasy Mini Kit. RNA was reverse-transcribed 
using the AffinityScript Multiple Temperature cDNA synthesis kit 
(Agilent). Quantitative PCR was performed using SYBR Green 
(Roche)–based qPCR on a LightCycler 480 (Roche). Graphs show the 
mean ± SD for six to eight biological replicates. Samples were normal-
ized to TBP or GAPDH as endogenous housekeeping genes. Relative 
expression levels were calculated by the comparative cycle threshold 
(ΔΔCt) method. All Ct and ΔCt values are listed in data S1. The 
sequence of primers used for RT-qPCR can be found in data S3.

scRNA-seq sample preparation and data analysis
To obtain a longitudinal transcriptional signature of single EdCs, we 
isolated hearts from Tg(myl7:EGFP) wild-type zebrafish at 50 and 
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80 hpf. Up to 150 hearts were isolated per condition as previously 
described (105). Briefly, zebrafish embryos and larvae were frag-
mented using a needle and syringe in an Eppendorf tube with 1 ml 
of DMEM (Thermo Fisher Scientific 88281) with 10% FBS (Sigma-
Aldrich F2442). The homogenate was filtered through a 100-μm 
mesh filter. An additional wash with DMEM with 10% FBS was per-
formed to remove the remaining hearts in the Eppendorf tube, fol-
lowed by filtering. The isolated hearts were manually collected from 
the flow-through under a fluorescence microscope. The hearts were 
further dissociated using the Pierce Primary Cardiomyocyte Isola-
tion Kit (Thermo Fisher Scientific 88281) and incubated for 25 min 
at 30°C (shaker 300 rpm) with pipetting every 5 to 10 min. Dead 
cells were removed from the final cell isolate by fluorescence-
activated cell sorting in phosphate-buffered saline (PBS) without 
calcium or magnesium (Lonza, 17-516F) and with 0.04% bovine 
serum albumin (BSA). The cell suspensions were counted with a 
Moxi cell counter and diluted according to manufacturer’s protocol 
to obtain 10,000 single-cell data points per sample. Each sample was 
run separately on a lane in a Chromium controller with Chromium 
Next GEM Single Cell 3′ Reagent Kits v3.1 (10x Genomics). scRNA-
seq library preparation was done using a standard protocol, and 
sequencing was done on Nextseq2000. scRNA-seq analysis was per-
formed as previously described (106), and final data visualization 
was done using a CellxGene package (doi:10.5281/zenodo.3235020). 
EdCs were identified by the expression of endothelial markers (e.g., 
cdh5, fli1a, kdrl, and tie1) and represented 3504 from the 6476 
sequenced heart cells. Valve EdCs were identified by the expression 
of valve markers (e.g., alcama and has2) and represented 1343 cells. 
Data analysis was performed using only the EdCs, and the other cell 
types are not displayed for visualization purposes. The classification 
for transcription factor used was based on the Gene Ontology (GO) 
terms containing direct DNA binding domain, such as “DNA-
binding transcription factor activity, RNA polymerase II-specific” 
and “DNA binding.” Thus, crip2 did not appear in our gene enrich-
ment analysis as the encoded protein seems to lack a direct DNA 
binding domain (107).

RNA-seq sample preparation and data analysis
To further investigate the egr3 mutant phenotype, we conducted a 
bulk RNA-seq analysis of dissected zebrafish hearts at 48 hpf. As 
egr3 mutants cannot be distinguished from their siblings at this 
stage, embryos were live genotyped at 36 hpf as previously described 
(108). We dissected 20 hearts for each biological duplicate of 
egr3bns577−/− and egr3bns577+/+ sibling samples in cold DMEM with 
10% FBS. Total RNA was isolated using the miRNeasy Micro Kit 
(Qiagen 217084), followed by on-column deoxyribonuclease (DNase) 
digestion (DNase-Free DNase Set, Qiagen 79254). Final elution was 
performed in 12 μl of ribonuclease (RNase)–free water, and subse-
quent RNA quality control, cDNA preparation, sequencing, and 
analyses were performed as previously described (101). A total of 
154 genes were significantly dysregulated based on Padj < 0.05. 
Heatmaps were obtained using the Webbased Interactive Omics 
visualizatioN—Applications (WIlsON) (109).

Statistical analysis
GraphPad Prism (v.9) was used to perform all statistical analyses. 
We used two-tailed Student’s t test for comparing two samples 
(Figs. 3H, 4, C, E, and G, and 5, D, F, and I, and figs. S4D and S6D), 
and one-way analysis of variance (ANOVA) followed by Tukey’s 

post hoc test for multiple comparisons (Fig. 1I and fig. S4C); data 
are presented as mean ± SEM, and actual P values are shown. Two-
sided Fisher’s exact test was used to compare categorical data be-
tween two groups (Figs. 1, H, J, and L, 2, E and F, and 3, E and G, and 
figs. S3C and S5E), and data were represented as percentages after 
statistical analysis to improve visualization. To allow for statistical 
analysis, the classifications “Superior valve leaflet” and “Superior 
s-shape leaflet” were collapsed into “Superior valve leaflet,” and 
the “Monolayer / one VIC” and “Monolayer” were collapsed into 
“Monolayer” (Fig.  1H); all classifications and proportions are in 
figs. S1 (G to I) and S3I. All genetic experiments with zebrafish were 
performed independently at least twice, using different batches of 
embryos and on different days unless otherwise indicated. Exact 
sample sizes and P values are described in the figures and figure 
legends. P values <0.05 were considered significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S6
Legends for movies S1 to S4
Legends for data S1 to S3

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S4
Data S1 to S3
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