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Abstract

INTRODUCTION: Degradation of fractal patterns in actigraphy independently pre-

dicts dementia risk. Such observations motivated the study to understand the role of

fractal regulation in the context of neuropathologies.

METHODS:Weexamined associations of fractal regulationwith neuropathologies and

longitudinal cognitive changes in 533 older participants who were followed annually

with actigraphy and cognitive assessments until death with brain autopsy performed.

Two measures for fractal patterns were extracted from actigraphy, namely, α1 (repre-
senting the fractal regulation at time scales of <90 min) and α2 (for time scales 2 to

10 h).

RESULTS: We found that larger α1 was associated with lower burdens of Lewy body

disease or cerebrovascular disease pathologies; both α1 and α2 were associated with

cognitive decline. They explained an additional significant portion of the variance in

the rate of cognitive decline above and beyond neuropathologies.

DISCUSSION: Fractal patterns may be used as a biomarker for cognitive resilience

against dementia-related neuropathologies.
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1 BACKGROUND

Many people do not develop symptoms of cognitive impairment

despite significant pathological changes in the brain such as the accu-

mulation of Alzheimer’s disease (AD) pathologies,1,2 implying cognitive

resilience.3,4 Understanding the mechanisms and contributing factors

to cognitive resilience may guide intervenable targets that prevent or

slow cognitive impairment in older adults, especially those with or at

risk for neurodegenerative diseases such as AD.5–7

Using multi-modal and functional imaging technology, studies have

shown that connectivity and segregation of functional networks in

the brain contribute to or underlie cognitive resilience.8,9 This net-

work concept is appealing because cognitive processes involve the

coordination of multiple brain regions, and the spatiotemporal pattern

of neural interactions, instead of activation of isolated brain regions,

is believed to be the key for normal cognitive function.10 In paral-

lel, the network control property has also been proposed as a key

concept in fractal physiology—a rapidly growing interdisciplinary field

that is focused on understanding the dynamics and complexity of

physiological outputs or signals in health and diseases.11–13 A strik-

ing finding in fractal physiology is that a wide range of physiological

outputs such as neural activity, heart rate, and motor activity display

intrinsic fractal fluctuations (ie, similar temporal structures at differ-

ent time scales).14–19 Alterations in fractal patterns are associated

with aging and pathological conditions, and predict adverse health out-

comes including disability and mortality.12,13,20 Fractal physiological

fluctuations are believed to represent the adaptability and integrity of

coupled regulatory networks.19

Our recent studies showed that altered fractal patterns in ambu-

latory actigraphy predicted cognitive decline and future risk of

Alzheimer’s dementia independentofmanyother knownrisk factors.21

Besides, changes in fractal patterns over time sped up with the clin-

ical progression of AD.22,23 Nevertheless, many risk factors for AD

may not be mediated via the pathologies of AD and related demen-

tias. Therefore, in this currentworkweought to further examine (1) the

associations of fractal regulationwith dementia-related neuropatholo-

gies, and (2) whether better maintained fractal regulation provides

cognitive resilience and offsets the negative effects of pathologies on

cognitive decline in older adults. To achieve these goals, we analyzed

longitudinal cognition and actigraphy data aswell as postmortem brain

pathological data collected from deceased participants in the Rush

Memory and Aging Project (MAP).24

2 METHODS

2.1 Participants

The MAP is a community-based epidemiological clinical-pathologic

cohort study conductedby theRushAlzheimer’sDiseaseCenter begin-

ning in 1997.24 In 2005, the project began to monitor participants

using daily actigraphy every 1 to 2 years (see Data collection and

pre-processing).24 The MAP was approved by an Institutional Review

RESEARCH INCONTEXT

1. Systematic review: We searched PubMed using the

search terms “fractal”, “cognitive resilience”, “cogni-

tive reserve”, “cognitive function”, “dementia”, and

“neuropathology” in relevant combinations published

between2010andup toSeptember10, 2023,withno lan-

guage restrictions. Published studies show that degraded

fractal regulation predicts future risk of Alzheimer’s

dementia and faster cognitive decline. Additionally,

studies have discovered several proxies of cognitive

resilience/reserve including functional connectivity and

segregation based on multi-model brain imaging tech-

niques. However, no studies assessed whether fractal

regulation is directly linked to brain neuropathologies or

offset cognitive decline against neuropathologies.

2. Interpretation: New findings show that fractal regulation

explains an additional significant portion of the vari-

ance in global cognitive decline independent of known

brain pathologies. Altogether, fractal regulation may be a

biomarker for cognitive resilience. The actigraphy-based

approach used in the current study is unobtrusive, nonin-

vasive, and has long-termmonitoring capabilities that are

scalable to large populations.

3. Future directions: Future studies are warranted to inves-

tigate whether fractal regulation provides an additional

pillar in cognitive resilience defined previously based on

imagingmodalities.

Board (IRB) of Rush University Medical Center. Written informed and

repository consents, and an Anatomical Gift Act for brain donation

were obtained from all participants. The dataset used here was frozen

on December 2, 2022. This current study included deceased partic-

ipants who had at least one actigraphy assessment, had cognition

assessed, and an autopsy with a completed neuropathologic assess-

ment. The Partners Healthcare Inc. (now the Mass General Brigham)

IRB approved the current study. The study was performed in accor-

dance with the ethical standards as laid down in the 1964 Declaration

of Helsinki and its later amendments or comparable ethical standards.

2.2 Data collection and pre-processing

The Actical device (Philips Respironics, Bend, OR) was used to collect

actigraphy signals. Participants wore it on their non-dominant wrists

for up to 14 days during the annual assessment. The device sensed

three-dimensional acceleration with a sampling rate of 32 Hz. The

acceleration data were integrated into activity counts of every 15-s

epoch. The activity count recordings were subject to quality screen-

ings to identify (1) isolated large spikes with amplitudes more than 10
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standard deviations from the individual global mean levels, and

(2) >240 consecutive epochs (60 min) with zero activity counts during

daytime (eg, potentially occurring when subjects took the device off).

The identified data points or segments were marked as gaps and were

excluded from the fractal analysis.20,21,23

2.3 Fractal analysis of actigraphy (α1 and α2)

To assess fractal regulation, detrended fluctuation analysis (DFA) was

performed to examine the temporal correlations of actigraphy across a

range of timescales. DFA calculates the fluctuation amplitude, F(n), as

a function of timescale n. A power-law relationship between F(n) and

n, that is, F(n)∼nα, indicates a fractal structure. Detailed procedures for

performing the DFA and related quality control have been published

elsewhere20,21,23,25, and a customized program is openly available at

Zenodo.26,27

The exponent α quantifies the temporal correlation. If α= 0.5, there

is no correlation in the signal (ie, similar to white noise); if α > 0.5,

there are positive correlations, where large values are more likely to

be followed by large values (and vice versa); if α < 0.5, there are nega-

tive correlations, where large values are more likely to be followed by

small values (and vice versa). For many physiological signals of healthy

young adults, α values are close to 1.0, indicating the most complex

regulatorymode. In humans, aging and dementia lead to degraded frac-

tal patterns in motor activity fluctuations that can be characterized

by different changes in the temporal correlations over two distinct

timescale regions with the boundary at ≈1.5 to 2 h.22 As reported in

previous studies,20,21,23 two scaling exponents of F(n) were calculated:

α1 at < 90 min, and α2 from 2 h up to 10 h. The transitional region of

timescales between 1.5 and 2 hwas omitted.

2.4 Assessment of cognition

A battery of 21 neuropsychological tests was performed annually to

assess cognitive function; 19 tests were used to assess performance

in five domains of cognition, specifically episodic memory, semantic

memory, working memory, perceptual speed, and visuospatial ability.

Individual tests within each domain were first converted to z scores

using the mean and standard deviation (SD) from the baseline eval-

uation of all MAP participants; they were then averaged to yield a

summarymeasure of overall cognitive function. This processminimizes

floor and ceiling effects andother sourcesof randomvariability.2 For all

z scores including the global cognition score, 0 represented the mean,

and 1 represented 1 SD of the baseline score of all MAP participants.

Larger scores indicate better cognitive performance.

2.5 Postmortem autopsy for brain pathologies

Brain autopsy was performed following a standard protocol at death.

Staff performing autopsy and examinations were blinded to clinical

data. In total, 10 neuropathological indices were obtained, including

amyloid β, hyperphosphorylated tau tangles (paired helical filaments,

or PHFtau tangles), Lewy bodies, limbic-predominant age-related

TDP-43 encephalopathy neuropathological change (LATE-NC), hip-

pocampal sclerosis, chronic gross infarcts, chronicmicroscopic infarcts,

atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy

(CAA). Additional information can be found in priorMAPworks.28,29

Amyloid β and PHFtau tangles represented the estimated burden of

amyloid (%areaoccupied) anddensityof tangles (permm2) across eight

brain regions. Theywere right-skewed and square root transformation

was used for analyses.

Lewy bodies were initially classified as none, nigral-predominant,

limbic-type, and neocortical-type, and were recategorized to “neocor-

tical disease (1)” if initially staged as neocortical-type and “no (0)” if

otherwise. A four-stage classificationwas also initially applied to LATE-

NC (ie, none, amygdala, amygdala + limbic, and amygdala + limbic +

neocortical) and was then recategorized to “no (0)” if initially classified

as none or amygdala and “yes (1)” if otherwise.28

Hippocampal sclerosis was graded as absent (0) or present (1)

based on severe neuronal loss and gliosis in hippocampal section CA1

and/or subiculum. Gross infarcts and microscopic infarcts were both

graded as no (0; if no infarcts were detected) or yes (1; if one or more

infarcts were detected). Atherosclerosis, arteriolosclerosis, and CAA

were all initially staged as none, mild, moderate, and severe, and were

dichotomized to “no (0)” if initially classified as none ormild and to “yes

(1)” if otherwise.

2.6 Statistical analysis

Toexamine theassociationsof fractal regulationwithdementia-related

neuropathologies, we first fitted linear or logistic regression mod-

els with the fractal regulation α1 as a continuous predictor. Linear

regressions were used for amyloid β and PHFtau that were considered
separately as a continuous outcome variable; logistic regressions were

used for the other eight pathological outcomes that were considered

separately as a dichotomous variable. The same set of models were

then repeated to test the associations of the fractal regulation α2 with
these neuropathologies. All modelswere adjusted for age at death, sex,

and education. We used the actigraphy proximate to death for calcu-

lating α1 and α2. As sensitivity analyses, we restricted the dataset to

participants with a time interval between the actigraphy proximate to

death and death≤2 years and repeated the above-mentionedmodels.

A series of mixed-effects models were used to test whether better

maintained fractal regulation provides cognitive resilience and offsets

the negative effects of pathologies on cognitive decline. Specifically,

we first performed a linear mixed-effects model (ie, model A) to deter-

mine the longitudinal changes in global cognition after considering

demographics (ie, age at death, sex, and education)30,31 and the10neu-

ropathologies. The model included a term for time in years to death

and included the corresponding interactions of this time variable with

demographics and neuropathologies. We then augmented this model

by further including α1 (or α2 separately) proximate to death (as well
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TABLE 1 Participant demographics, clinical characteristics, and
pathological disease burden.

Measure

Mean (SD) or

N (%) Range

Demographics

Age

At baseline (years) 82.8 (5.8) 59.0–99.8

At death (years) 91.1 (6.0) 65.9–108.3

Sex

Female 384 (72.0%) –

Male 149 (28.0%) –

Education (years) 14.7 (2.8) 5–25

APOE ε4 carrier status

Carriers 114 (21.4)

Non-carriers 412 (77.3%)

Cognition

Mini-Mental State

Examination

At baseline 27.4 (3.0) 1–30

At last actigraphy visit 23.8 (6.3) 0–30

Pathological markers

Amyloid β, square root
transformed

1.82 (1.18) 0–4.79

PHFtau tangles, square root

transformed

2.36 (1.36) 0–7.32

Lewy bodies

0 (no) 453 (85.0%) –

1 (neocortical disease) 80 (15.0%) –

LATE-NC

0 (none or amygdala) 339 (63.6%) –

1 (limbic or neocortical) 194 (36.4%) –

Hippocampal sclerosis

0 (no) 485 (91.0%) –

1 (yes) 48 (9.0%) –

Chronic gross infarcts

0 (no) 327 (61.4%) –

1 (yes) 206 (38.6%) –

Chronic microinfarcts

0 (no) 360 (67.5%) –

1 (yes) 173 (32.5%) –

Atherosclerosis

0 (none-mild) 400 (75.0%) –

1 (moderate-severe) 133 (25.0%) –

Arteriolosclerosis

0 (none-mild) 380 (71.3%) –

1 (moderate-severe) 153 (28.7%) –

(Continues)

TABLE 1 (Continued)

Measure

Mean (SD) or

N (%) Range

Cerebral amyloid angiopathy

0 (none-mild) 351 (65.9%) –

1 (moderate-severe) 182 (34.1%) –

Fractal regulation

α1 0.88 (0.07) 0.60–1.11

α2 0.77 (0.11) 0.39–1.30

Others

Interval between last actigraphy

visit and death (years)

2.28 (2.19) 0.02–12.91

APOE, apolipoprotein E; LATE-NC, limbic-predominant age-related TDP-43

encephalopathy neuropathological change; PHF, paired helical filament.

as the interaction between α1 or α2 with the time variable, and we

separately denoted the models as model B1 and model B2, respec-

tively. Evidence of cognitive resilience was rendered when α1 in model

B1 (or α2 in model B2) was still associated with the rate of change in

global cognition (ie, the interaction of the time lag with α1 or α2).32

Additionally, we also performed a reference model (model C) without

considering any covariates to determine the variance of the rate of

cognitive decline and separately, an augmented model (model D) with

adjustment of demographics and apolipoprotein E gene (APOE) ε4 car-

rier status (as well as their interactions with the time variable). With

the two sets of nested models (ie, models C, D, A, B1, and separately,

models C, D, A, B2), wewould be able to specifically examine howmuch

variance of the rate of cognitive decline can be respectively explained

by demographics and APOE ε4 carrier status, neuropathologies, and

α1 or α2. Similarly, we also performed sensitivity analyses to restrict

the analysis based on participants who had their last actigraphy within

2 years before death. Additionally, we have previously reported that

total daily activity derived from actigraphy was related to cognitive

resilience.29 We thus separately augmented the models B1 and B2 by

further including total daily activity (and its interaction with the time

variable) to examine whether any observed results were independent

from the effect of total daily activity.

All statistical analyseswereperformedusingMATLAB (Ver. R2022a,

The MathWorks Inc., Natick, MA, USA). Statistical significance was

determined a priori at a nominal level of alpha= 0.05.

3 RESULTS

There were 533 decedents who had assessment of actigraphy and had

all 10 neuropathological indices. Table 1 summarizes their demograph-

ics, clinical characteristics, and pathological disease burden.

Among the 10 neuropathologies, α1 was associated with Lewy bod-
ies, gross chronic infarcts, chronicmicroinfarcts, and arteriolosclerosis.

Specifically, for each 1 SD increase in α1, the odds of having neocor-

tical Lewy body disease decreased by 21.0% (95% confidence interval
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TABLE 2 Linear regressionmodels examining the cross-sectional associations of fractal regulation with neuropathologies.

Neuropathology α1 α2
Estimate (95%CI) p value Estimate (95%CI) p value

Amyloid β −0.008 (−0.106, 0.090) 0.871 0.047 (−0.052, 0.146) 0.349

PHFtau tangles 0.003 (−0.108, 0.115) 0.953 −0.063 (−0.176, 0.049) 0.270

Odds ratio (95%CI) p value Odds ratio (95%CI) p value

Lewy body disease 0.790 (0.627, 0.996) 0.047 0.996 (0.780, 1.270) 0.972

LATE-NC 0.994 (0.831, 1.188) 0.945 0.992 (0.829, 1.187) 0.929

Hippocampal sclerosis 0.804 (0.600, 1.078) 0.144 0.980 (0.730, 1.318) 0.896

Gross chronic infarcts 0.773 (0.648, 0.923) 0.005 0.893 (0.748, 1.066) 0.210

Chronic microinfarcts 0.813 (0.678, 0.974) 0.025 1.021 (0.851, 1.224) 0.822

Atherosclerosis 0.862 (0.710, 1.047) 0.134 0.989 (0.811, 1.206) 0.916

Arteriolosclerosis 0.795 (0.658, 0.960) 0.017 1.028 (0.852, 1.241) 0.769

Cerebral amyloid angiopathy 1.111 (0.927, 1.331) 0.255 1.043 (0.871, 1.250) 0.643

Sensitivity analysis Estimate (95%CI) p value Estimate (95%CI) p value

Amyloid β −0.090 (−0.217, 0.037) 0.164 0.002 (−0.124, 0.127) 0.978

PHFtau tangles −0.072 (−0.192, 0.047) 0.233 −0.118 (−0.235,−0.001) 0.049

Odds ratio (95%CI) p value Odds ratio (95%CI) p value

Lewy body disease 0.694 (0.504, 0.955) 0.025 0.975 (0.700, 1.359) 0.881

LATE-NC 1.076 (0.854, 1.355) 0.533 0.995 (0.796, 1.244) 0.965

Hippocampal sclerosis 1.109 (0.721, 1.705) 0.637 0.850 (0.562, 1.286) 0.439

Gross chronic infarcts 0.774 (0.618, 0.970) 0.026 0.910 (0.732, 1.131) 0.392

Chronic microinfarcts 0.743 (0.587, 0.941) 0.014 1.007 (0.803, 1.262) 0.954

Atherosclerosis 0.833 (0.654, 1.062) 0.140 1.014 (0.797, 1.289) 0.909

Arteriolosclerosis 0.802 (0.632, 1.017) 0.069 1.064 (0.847, 1.338) 0.592

Cerebral amyloid angiopathy 1.056 (0.836, 1.335) 0.646 1.105 (0.880, 1.389) 0.390

Note: Models were adjusted for age at death, sex, and education. Results represent changes in the level (for continuous outcomes) or the odds (for

dichotomized outcomes) for each 1 standard deviation increase in α1 or α2. Sensitivity analysis was performed in participants with the time interval

between last actigraphy and death of ≤2 years. Detailed results are summarized in Tables S1 and S2. LATE-NC, limbic-predominant age-related TDP-43

encephalopathy neuropathological change; PHF, paired helical filament.

[CI]: 0.4% to 37.3%). Similarly, the odds of having gross chronic infarcts,

chronic microinfarcts, and arteriolosclerosis decreased by 22.7% (95%

CI: 7.7% to 35.2%), 18.7% (95%CI: 2.6% to 32.2%), and 20.5% (95%CI:

4.0% to 34.2%), respectively (Table 2; Table S1). Consistent results with

comparable or relatively greater effect sizes were observed from sen-

sitivity analyses using 324 decedents who had their last actigraphy (ie,

proximate to death) within 2 years before the time of death (Table 2;

Table S2). Nevertheless, α1 was not associated statistically with the

other six neuropathologies; α2 was not associated statisticallywith any
of the ten neuropathologies (Table 2; Tables S1 and S2).

The longitudinal analysis included 519 decedents who had finished

at least two cognitive assessments. The reference model (ie, model C)

demonstrated that global cognition progressively declined over time

with a rate of −0.1069 (standard error [SE]: 0.0046; p < 0.0001; Table

S3) per year. The decline rate had a variance of 0.0084 (Table 3).

After further adjusting for demographics and APOE ε4 carrier status

(model D), the variance reduced to 0.0076, meaning that demograph-

ics together with APOE ε4 carrier status explained about 9.31% of the

variance of cognitive decline (Table 3; note that only APOE ε4 carrier

status was significantly associatedwith cognitive decline in this model;

Table S3). The 10 neuropathologies together explained 33.51% of the

variance (ie, in model A; Table 3) on top of demographics (note that

in this model, APOE ε4 carrier status was no longer significantly asso-

ciated with cognitive decline, meaning that its effect was explained

by certain neuropathologies; Table S3). Finally, in model B1, α1 was

still associated with cognitive decline after considering the effects of

demographics, APOE ε4 carrier status, and all 10 neuropathologies.

For each 1 SD increase in α1, the rate of cognitive decline was off-

set by 0.0170 (SE: 0.0037; p < 0.0001; Figure 1; Table S3), an effect

that is equivalent to that of a more than a half-unit (close to a half

SD) decrease in PHFtau tangles or a more than a 2-unit (close to 1.8

SD) decrease in amyloid β (note, both amyloid β and PHFtau tangles

were square root transformed; Table S3). Besides, α1 explained an

additional 3.03% of the variance in cognitive decline on top of demo-

graphics and neuropathologies (Table 3). The observation remained

statistically significant after further adjusting for total daily activity,
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TABLE 3 Linear mixed-effects models examining the contribution of fractal regulation to longitudinal cognitive decline.

Primary analysis Sensitivity analysis

Nestedmodels Remaining variance % variance explained Remaining variance % variance explained

C (reference) 0.0084 – 0.0072 –

D (C+ demographics+APOE) 0.0076 9.31% 0.0067 6.56%

A (D+ pathologies) 0.0048 33.51% 0.0042 34.48%

B1 (A+ α1) 0.0045 3.03% 0.0038 5.39%

B2 (A+ α2) 0.0046 1.59% 0.0040 2.80%

Note: Results were from two sets of nestedmodels (ie, set 1: C, D, A, B1; set 2: C, D, A, B2). The% of variance explained represents variance of the rate of cog-

nitive decline explained by the added variables. Specifically, in model D, it is the variance explained by demographics (age, sex, education, and apolipoprotein

E [APOE] ε4 carrier status); inmodel A, it is the variance explained by all 10 neuropathologies on top of demographics andAPOE ε4 carrier status; inmodel B1,

it is the variance explained by α1 on top of demographics, APOE ε4 carrier status, and neuropathologies; in model B2, it is the variance explained by α2 on top
of demographics, APOE ε4 carrier status, and neuropathologies.

-8 -6 -4 -2 0

time to death (years)

0

0.2

0.4

0.6

global cognition (n.u.)

with amyloid  and PHFtau (1-unit)
when 

1
 is 1-SD above mean

when 
2
 is 1-SD above mean

F IGURE 1 Better maintained fractal regulation buffers cognitive
decline associated with neuropathologies. The red dotted line shows a
representative apolipoprotein E (APOE) ε4 non-carrier womanwith
age at death and years of education both at the corresponding average
levels of all participants andwith amyloid β and PHFtau burdens (both
1-unit in terms of the square root transformed version of the two
variables). The representative participant has faster global cognitive
decline with aging. The green line shows a similar representative
participant, but with the corresponding α1 at 1 SD above the average
levels. Similarly, the blue dash-dotted line shows a similar
representative participant, but with the corresponding α2 at 1 SD
above the average levels.

with a slight decrease in the effect size (Table S3). In model B2, α2 was
also associated with cognitive decline after considering the effects of

demographics, APOE ε4 carrier status, and all 10 neuropathologies. For
each 1 SD increase in α2, the rate of cognitive decline was offset by

0.0110 (SE: 0.0038; p = 0.0035; Figure 1; Table S3), an effect that is

equivalent to that of an about 0.4-unit decrease in PHFtau tangles or

a 1.3-unit decrease in amyloid β (Table S3). Besides, α2 explained an

additional 1.59% of the variance in cognitive decline on top of demo-

graphics and neuropathologies (Table 3). The observation became not

statistically significant after further adjusting for total daily activity

(Table S3). In sensitivity analysis based on 311 participants who had

their last actigraphy within 2 years before the time of death, all above

observations were retainedwith relatively greater effect sizes (Table 3

and Table S4).

4 DISCUSSION

The clinical expression of neuropathologies demonstrates great

heterogeneity,1 suggesting that resilience exists accounting for

the inconsistencies between pathology and cognitive performance.

Such cognitive resilience has attracted much attention especially

in AD.4,30,31,33 In this large sample of community-dwelling older

adults, we found that better maintained fractal regulation, especially

at smaller time scales, was able to offset the longitudinal cognitive

decline caused by neuropathologies, with a considerable large effect

size equivalent to that of an around half-unit change in PHFtau tangles

or an around 2-unit change in amyloid β. The results suggest that bet-
ter maintained fractal regulation offers resilience to cognitive decline

due to neuropathologies. Besides, both fractal regulation measures

explained a significant portion of the variance of global cognitive

decline above and beyond demographics, APOE ε4 carrier status,

and the 10 neuropathologies that are known to impair cognition,

suggesting additional pathways independent of pathological changes

in the brain that support cognitive intactness.

We operationalized resilience as residual decline after regress-

ing out the effects of brain pathologies.32 A few prior studies have

used a similar approach based on brain imaging. For example, the

brain functional networks have been hypothesized to maintain an

efficient topological organization to support cognitive health in pre-

symptomatic genetic frontotemporal dementia patients.8 In another

study of AD patients, the segregation of the brain’s connectome that

forms distinct functional networks has been proposed to support cog-

nitive reserve in AD.9 Nevertheless, brain imaging is expensive and

reliant significantly on patient cooperation. To enhance the study of

cognitive resilience, especially in large population cohorts and for
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scalable applications, there is a need for non-invasive tools that can

assess andmonitor resilience.5

Wearable devices offer a distinct advantage in this regard, as they

can continuously monitor physiological data in natural settings with-

out disrupting people’s daily routines. This provides a significant edge

over imaging modalities.20,34 Similar to the concept of a network con-

trol property supporting these imaging findings, fractal organization

in physiological outputs is believed to represent the adaptability and

plasticity of the underlying regulatory networks.12 Fractal regulation

in physiology is believed to reflect the integrative property of the com-

plex networks in which biological processes that function at different

time scales are coupled or orchestrated to ensure optimal performance

of the body. Our findings also support the network theory of cognition

resilience.

In our previous study of longitudinal antemortem motor activity

data of MAP participants, we observed that both the two α’s progres-
sively decreased with aging within the individual, with a greater rate

of decline in α2.23 It is thus plausible that the better maintained frac-

tal regulation at the end of life reflects a slower declining profile of

fractal regulation. To explore this possibility, we examined whether

the longitudinal changes in the fractal metrics played a similar role

of resilience as the fractal metrics proximate to death by replacing

the annual change in α1 or α2 (ie, the random-slope of a separate

mixed-effects model for the change of α over time23) with α1 or α2
itself in the linear mixed-effects model. We observed similar results,

that is, a slower decline in α during late life counteracted the longi-

tudinal decline in global cognition caused by neuropathologies. These

additional results support the finding that better-maintained fractal

regulation delineates cognitive resilience to brain pathologies. How-

ever, the late-life changing profile of fractal regulation can be difficult

tomodel due to unforeseeable events, for example, the development of

multiple comorbidities or hospitalizations. The use of the fractal met-

rics derived from actigraphy proximate to death was thus preferred in

this currentwork as theymay indicate a residue state aftermany years’

declines,where ahigher value represents bettermaintained function in

terms of fractal regulation.

Future studies are warranted to enhance the understanding of the

generation andmaintenance of fractal regulation. In this current study,

we observed significant associations of α1 with neocortical Lewy body
disease and markers for cerebrovascular diseases (ie, gross chronic

infarcts, chronic microinfarcts, and arteriolosclerosis). In a prior study,

we reported that α1 (ie, representing the fractal regulation at smaller

time scales) predicted incident Alzheimer’s dementia and longitudi-

nal cognitive changes.21 The prediction ability of α1 for Alzheimer’s

dementia and cognitive decline thus may be partially driven by Lewy

bodies and cerebrovascular diseases. The observation that α1 was still
associated with cognitive decline after considering all neuropatholo-

gies further suggests that such a predictive ability of α1 is independent
of andbeyond theknownneuropathologies.While it is limited for infer-

ing a causal directionality, future effort should focus on elucidating the

neural correlates and mechanisms underlying the change in α1. Addi-
tionally, based on prior animal studies, the intrinsic circadian function

plays a key role in generating and maintaining a fractal structure at

larger timescales (ie, the α2).35,36 The current observation that α2 was
not associated with any of the 10 studied neuropathologies whereas

it was able to offset cognitive decline independently from the neu-

ropathologies therefore further highlights the urgency in identifying

thepathophysiological pathwaysunderlying the linkbetween circadian

function and AD and related dementias.

Our findings also encourage additional analyses toward differenti-

ating specific resilience capacities against different neurodegenerative

diseases. For example, whether fractal regulation overlaps with cog-

nitive resilience defined by the imaging modalities or offers a new

dimension to measure this important modulating factor of cogni-

tion is unclear. Additionally, novel genetic analyses may help identify

molecular mechanisms mediating the resilience offered by fractal

regulation and encourage further research to examine the genetic

components of fractal regulation, andwhat genetic activitiesmay inter-

act with fractal regulation to affect cognition in neurodegenerative

diseases.

The current study has notable strengths, including its longitudinal

assessment of cognitive profiles in a large community-based cohort

of older adults, extending until death, and thorough postmortem

histopathological examinations for dementia-related neuropatholo-

gies. However, it is important to acknowledge certain limitations. First,

cognitive decline has multifactorial causes. While our findings sug-

gest an association between fractal metrics and cognitive decline

beyond the influence of the 10 examined neuropathologies, the study

was not specifically designed to identify whether this resilience fac-

tor is neuropathology specific. Second, chronic comorbidities, linked

to accelerated cognitive decline, were not directly integrated into

the statistical models. Although some comorbidities may be indicated

by neuropathological variables, incorporating their clinical manifes-

tations directly into models could provide a more comprehensive

understanding. Lastly, the accumulation of brain pathology may com-

mence decades before death. For a more robust examination of

cognitive resilience, future studies should incorporate in vivo data on

neuropathologies.
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