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Background. Chronic pulmonary conditions such as asthma and chronic obstructive pulmonary disease increase the risk of 
morbidity and mortality during infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). We 
hypothesized that individuals with such comorbidities are more susceptible to MERS-CoV infection due to increased expression 
of its receptor, dipeptidyl peptidase 4 (DPP4).

Methods. We modeled chronic airway disease by treating primary human airway epithelia with the Th2 cytokine interleukin 13 
(IL-13), examining how this affected DPP4 protein levels with MERS-CoV entry and replication.

Results. IL-13 exposure for 3 days led to greater DPP4 protein abundance, while a 21-day treatment raised DPP4 levels and 
caused goblet cell metaplasia. Surprisingly, despite this increase in receptor availability, MERS-CoV entry and replication were 
not significantly affected by IL-13 treatment.

Conclusions. Our results suggest that greater DPP4 abundance is likely not the primary mechanism leading to increased MERS 
severity in the setting of Th2 inflammation. Transcriptional profiling analysis highlighted the complexity of IL-13–induced changes 
in airway epithelia, including altered expression of genes involved in innate immunity, antiviral responses, and maintenance of the 
extracellular mucus barrier. These data suggest that additional factors likely interact with DPP4 abundance to determine MERS- 
CoV infection outcomes.
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Middle East respiratory syndrome coronavirus (MERS-CoV) 
was first identified in Saudi Arabia in 2012 [1]. Since its emer-
gence, the virus has spread to 27 countries and caused 936 
deaths out of 2604 confirmed cases (as of May 2023; World 
Health Organization [https://www.emro.who.int/health-topics/ 
mers-cov/mers-outbreaks.html]). Its high case fatality rate 
(∼35%) is reminiscent of the severe acute respiratory syndrome 
epidemic and has caused worldwide concern. The MERS clinical 
spectrum ranges from asymptomatic infection to mild upper re-
spiratory disease and life-threatening acute pulmonary disease, 
which can progress to respiratory failure, shock, and multiorgan 
failure [2, 3]. Epidemiologic studies indicate that mortality is 

significantly higher in persons with underlying comorbidities, 
including diabetes, obesity, cardiovascular diseases, renal dis-
ease, immunodeficiency, and chronic lung disease [4–7].

MERS-CoV uses dipeptidyl peptidase 4 (DPP4/CD26) as its 
cellular receptor [8]. DPP4 is a serine exopeptidase that cleaves 
X-proline or X-alanine dipeptides from the N-terminus of 
many bioactive proteins, including chemokines, growth fac-
tors, neuropeptides, and vasoactive peptides [9–11]. DPP4 tis-
sue expression is altered in association with disease states, such 
as inflammation, cancer, obesity, and diabetes [12]. One study 
reported that DPP4 is highly expressed in bronchial epithelial 
cells of patients with untreated asthma [13]. Notably, asthma 
is one of the most frequent comorbidities in patients with 
MERS [4–7]. Additional studies report that the DPP4 protein 
is increased in alveolar epithelial cells from smokers and pa-
tients with chronic obstructive pulmonary disease (COPD): 2 
high-risk comorbidities associated with severe MERS-CoV in-
fection outcomes [14, 15]. Thus, greater DPP4 expression in re-
spiratory epithelia is a possible mechanism underlying 
MERS-CoV susceptibility and outcomes.

Here, we test the hypothesis that during MERS-CoV 
infection, higher morbidity and mortality associated with 
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chronic conditions such as asthma and COPD arise from 
inflammation-mediated increases in DPP4. Using interleukin 
13 (IL-13) exposure in well-differentiated primary human air-
way epithelia (HAE) cultures as an in vitro model of type 2 in-
flammation, we found that short-term IL-13 exposure (3 days) 
significantly increased DPP4 abundance and the number of 
DPP4-expressing cells. Longer-term IL-13 exposure (21 days) 
also increased DPP4 expression and induced goblet cell metapla-
sia. Interestingly, despite the greater abundance of DPP4 in both 
settings, we observed no significant enhancement of MERS-CoV 
entry and/or replication. Transcriptional profiling demonstrated 
that IL-13–induced inflammation has complex effects on airway 
epithelia, including increased DPP4 abundance and changes in 
genes influencing virus binding and entry, innate immunity, 
and mucin production. The predicted effects of these changes in-
clude pro- and antiviral functions, with the overall outcome that 
IL-13 has no significant effect on MERS-CoV output. Overall, 
our findings suggest that greater DPP4 protein abundance asso-
ciated with Th2 inflammation is not a significant factor in deter-
mining MERS-CoV infection and spread.

METHODS

Primary Cultures of Airway Epithelia

Human primary airway epithelia derived from human donor 
lungs were obtained from the University of Iowa Cells and 
Tissue Core. To establish airway epithelial cultures, cells were iso-
lated from bronchi by enzymatic dispersion, seeded onto 
collagen-coated semipermeable membranes with a 0.4-μm pore 
size (0.6 cm2; Costar), and grown at an air-liquid interface 
in 1:1 DMEM/Ham’s F-12 medium containing Ultroser G at 
37 °C with 5% CO2 as described [16]. Only well-differentiated 
cultures were used in this study (>3 weeks postseeding), as as-
sessed by the presence of tight junctions (transepithelial 
resistance > 1000 Ω × cm2). The study was approved by the 
Institutional Review Board at the University of Iowa.

Cytokine Stimulation of Human Airway Epithelia and Measurement of 
DPP4 Protein Abundance

Cytokines were added to the basolateral medium at the indicated 
concentrations and changed every 2 days. DPP4 abundance was 
measured by enzyme-linked immunosorbent assay (ELISA), and 
DPP4-positive cells were quantified by flow cytometry. To min-
imize the effects of HAE donor variability, experiments were de-
signed so that the IL-13 and phosphate-buffered saline (PBS) 
treatment conditions were compared within donors. Detailed 
methods are provided in the supplementary material.

Viruses

The EMC/2012 strain of MERS-CoV (passage 8, designated 
MERS-CoV) was provided by Dr Bart Haagmans and Ron 
Fouchier (Erasmus Medical Center). See the supplementary 

material for detailed methods regarding MERS-CoV infection 
in HAE and pseudoparticle generation and transduction.

RESULTS

Short-term IL-13 Exposure Increases DPP4 in Primary Human Airway 
Epithelia

We sought to better understand how DPP4 protein abundance is 
regulated by proinflammatory cytokines that drive chronic air-
way inflammation. Interleukin 17, tumor necrosis factor α 
(TNF-α), interleukin 1, interferon γ (IFN-γ), and other cytokines 
contribute to the development of the Th2-low asthma endotype 
and regulate DPP4 protein in a cell type–specific manner 
[17–19]. We investigated whether these cytokines influence 
DPP4 protein abundance in human airways, using primary 
HAE derived from donor lungs and differentiated at an air- 
liquid interface. We treated HAE with interleukin 17A/tumor 
necrosis factor α, interleukin 1α, or IFN-γ for 3 days and quan-
tified the cellular abundance of DPP4 by ELISA. Consistent with 
our previous work, we found that baseline levels of DPP4 protein 
vary widely among HAE donors [20]; however, we observed no 
significant increase in DPP4 relative to baseline levels in any of 
the HAE donors in response to these cytokines (Figure 1A). 
Similarly, we tested the effects of interferon λ (IFN-λ), a cytokine 
that increases in HAE during MERS-CoV infection [20]. The 
HAE donors exhibited no significant changes in DPP4 levels af-
ter 3-day stimulation with IFN-λ (Figure 1B).

We next asked whether DPP4 abundance is altered under 
conditions that model the Th2-high asthma endotype. 
Th2-high asthma is driven by type 2 cytokines (interleukin 4 
[IL-4], interleukin 5, and IL-13) [21, 22]. Among these Th2 cy-
tokines, IL-13 plays the most important role in inducing phe-
notypic changes associated with asthma in cell and animal 
models [23–26]. Interestingly, IL-4 and IL-13 raise DPP4 ex-
pression in cultured renal carcinoma cells and renal tubular ep-
ithelial cells [27, 28], and IL-13 treatment increases DPP4 
mRNA expression in human bronchial epithelial cells [13]. 
To test whether treatment with IL-13 increases DPP4, we ex-
posed epithelia to IL-13 for 3 days and measured cellular 
DPP4 abundance by ELISA. We found that IL-13 treatment sig-
nificantly increased the DPP4 protein in epithelia from all HAE 
donors (Figure 1B). This IL-13–induced increase in DPP4 ex-
pression was dose dependent, with some variability in the mag-
nitude of the increase among donors (Figure 1C). The higher 
DPP4 protein levels persisted for at least 6 days following re-
moval of IL-13 from the media (Figure 1C) and were accompa-
nied by an increase in the number of DPP4-expressing cells as 
measured by flow cytometry (Figure 1D).

Effects of Short-term IL-13 Treatment on MERS-CoV Entry and Infection

We hypothesized that an IL-13–induced increase in DPP4 
would raise MERS-CoV binding and entry in airway epithelia. 
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To test for effects on viral entry, we treated HAE with IFN-λ or 
IL-13 for 3 days and then transduced cells with vesicular stoma-
titis virus (VSV)–based particles pseudotyped with the MERS S 
protein and bearing a luciferase reporter (Figure 2A). 
At 24 hours posttransduction, pseudoparticle-driven luciferase 
activity in the IFN-λ–treated cells was significantly reduced rel-
ative to the PBS control condition, while pseudoparticle trans-
duction was not significantly different with IL-13 treatment 
(Figure 2B). We speculate that pseudoparticle transduction 
was reduced in the IFN-λ–treated epithelia due to interferon 
(IFN)–mediated upregulation of host innate immune factors 
such as the IFITM proteins, which are known to block VSV 
and VSV-derived pseudoparticle entry by inhibiting viral fu-
sion with host membranes (as reviewed Majdoul and 
Compton [29]). To assess the impact of the IL-13 or IFN-λ 
treatment on infection with authentic virus, we applied 
MERS-CoV to epithelia and measured apically released 

viral progeny by plaque assay at 1 and 2 days postinfection 
(Figure 2A). As shown in Figure 2C, IFN-λ treatment produced 
the expected inhibition of viral replication at 1 and 2 days post-
infection; however, viral titers were unaffected by IL-13 treat-
ment. Together, these data suggest that a short-term IL-13 
exposure (3 days) and the concomitant increase in DPP4 do 
not significantly raise MERS-CoV entry or infection.

Long-term Exposure to IL-13 Increases DPP4 Abundance and Induces 
Goblet Cell Metaplasia in Human Airway Epithelia

We next examined whether DPP4-mediated MERS-CoV entry 
and infection are altered in the setting of goblet cell metaplasia. 
Goblet cell metaplasia and mucus hypersecretion are hall-
marks of many chronic airway diseases, including asthma, cys-
tic fibrosis, and COPD. In asthma, goblet cell metaplasia is 
associated with chronic exposure to Th2 cytokine–driven in-
flammation. We previously showed that 21-day exposure to 
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Figure 1. IL-13 treatment increases the abundance of DPP4 in human airway epithelia. A (left), Well-differentiated air-liquid interface cultures of primary HAE were main-
tained for 3 days in medium containing IL-17A/TNF-α (20 ng/mL; 10 ng/mL), IL-1α (20 ng/mL), or PBS. After 3 days, ELISA was used to determine DPP4 protein abundance in 
cell lysates (n = 6 HAE donors). Data are presented as mean ± SE. A (right), HAE were stimulated for 3 days with PBS or IFN-γ (100 ng/mL), and DPP4 protein in cell lysates 
was quantified by ELISA (n = 4). B, HAE were stimulated for 3 days with PBS, IFN-λ (1 ng/mL), or IL-13 (10 ng/mL), and DPP4 protein was measured in cell lysates (n = 7). A 
and B, A ratio paired t test was used to test for statistically significant differences in cytokine-treated epithelia relative to the PBS control. *P < .05. ns = not significant. C 
(left), HAE (n = 4) were grown in medium containing IL-13 at the indicated concentrations for 3 days; then, ELISA was used to determine DPP4 protein abundance in cell 
lysates. Repeated measures 1-way analysis of variance, followed by a Dunnett multiple-comparison test, was used to test for significant differences between IL-13 treatment 
at each concentration and baseline (0 ng/mL). *P < .05. C (right), HAE (n = 3) were stimulated with IL-13 (20 ng/mL) for 3 days; then, IL-13 was removed from the growth 
medium and the epithelia maintained for an additional 6 days. DPP4 abundance in cell lysates was measured by ELISA. A ratio paired t test was used to test for significant 
differences between time points. *P < .05. D, HAE (n = 4) were treated for 3 days with IL-13 (20 ng/mL) or PBS, followed by flow cytometry to quantify DPP4+ cells. Pe-
rcentages of DPP4+ cells are plotted for each HAE donor. A ratio paired t test was used to test for a statistically significant difference between the PBS and IL-13 conditions. 
**P < .01. DPP4, dipeptidyl peptidase 4; ELISA, enzyme-linked immunosorbent assay; HAE, human airway epithelia; IFN-γ, interferon γ; IFN-λ, interferon λ; IL-1α, interleukin 
1α; IL-13, interleukin 13; IL-17A, interleukin 17A; ns, not significant; PBS, phosphate-buffered saline; TNF-α, tumor necrosis factor α.
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IL-13 induced goblet cell metaplasia in HAE [30]. Using this 
IL-13 treatment protocol, we observed the expected dramatic 
increase in goblet cells and epithelium remodeling through 
dPAS staining (diastase and periodic acid–Schiff; Figure 3A), 
which was accompanied by increases in cellular DPP4 and 
the number of DPP4-expressing cells (Figure 3B and 3C). In 
keeping with this, immunofluorescent staining indicated sig-
nificantly higher DPP4 expression, as well as greater goblet 
cell abundance as assessed by immunostaining for MUC5AC 
(Figure 3D). While most DPP4-positive cells were MUC5AC 
positive, not every goblet cell expressed DPP4. We further in-
vestigated the distribution of DPP4-expressing cells in IL-13– 
treated epithelia using a publicly available single-cell RNA se-
quencing (RNAseq) data set (GEO accession GSE229202). 
This study confirmed that DPP4 mRNA increases after 2 or 
21 days of exposure to IL-13, primarily in secretory cell types 
such as goblet cells (Figure 3E). Immunofluorescence staining 
revealed that much of the DPP4 protein in IL-13–treated cul-
tures localized to the apical surface (Figure 3F), where it is like-
ly available to interact with the spike protein on the 
MERS-CoV envelope.

MERS-CoV Entry and Infection in the Setting of IL-13–Induced Goblet Cell 
Metaplasia

HAE were treated with PBS or IL-13 for 21 days and then in-
fected with MERS-CoV (Figure 4A). We found that infection 
of IL-13–treated cells with MERS-CoV produced variable re-
sults: in some donors, IL-13 treatment was associated with in-
creased virus titers in apical secretions at 1 day postinfection, 
while the opposite was observed in other donors. Overall, there 
was no significant increase in released progeny virus in IL-13– 
treated cells, despite their higher DPP4 expression (Figure 4B). 
Similarly, viral mRNA levels were not significantly different in 
the PBS- and IL-13–treated cells at 12 or 24 hours postinfection 
(Figure 4C). In a subsequent time course experiment, peak ti-
ters and virus growth kinetics were similar in paired IL-13– 
and PBS-treated HAE cultures infected with MERS-CoV, 
with respect to virus shed into the apical compartment as 
well as intracellular viral load (Figure 4D). Overall, these data 
suggest that greater receptor abundance in IL-13–treated cells 
has little overall impact on the progression of MERS-CoV 
infection.

IL-13 Treatment Alters Expression of Genes Involved in MERS-CoV 
Infection and Antiviral Defense

We were surprised that greater DPP4 abundance did not con-
sistently lead to increased MERS-CoV infection. Previous 
MERS-CoV infection experiments in the HAE model suggest 
that it is unlikely that the DPP4 concentrations measured 
in the PBS- or IL-13–treated cultures are sufficient to saturate 
the virus under these infection conditions [20]. We thus 
considered the possibility that IL-13 treatment may produce 
additional changes that moderate the impact of raising receptor 
abundance. We interrogated a data set from a previous study in 
which HAE were treated with IL-13 for 2 or 21 days and tran-
scriptional profiling was carried out by bulk RNAseq (GEO ac-
cession GSE240741). One prominent gene signature in the 
IL-13–treated epithelia was the up- and downregulation of mu-
cin genes, particularly following the 21-day treatment. Most 
striking was the elevation in MUC5AC after 21 days of IL-13 ex-
posure, accompanied by increased transcripts for MUC1, 
MUC13, MUC15, and MUC16 (summarized in the heat map 
in Figure 5A). These transcriptional changes are consistent 
with the increased dPAS staining and epithelial remodeling ob-
served in cultured cells after 21 days of IL-13 stimulation 
(Figure 3A) and with earlier studies of Th2 cytokine–induced 
goblet cell metaplasia [30–32].

We hypothesized that this mucus layer might provide pro-
tection from MERS-CoV infection in the IL-13–treated epithe-
lia by impeding access to DPP4 at the cell surface. To test this, 
epithelia were stimulated for 21 days with PBS or IL-13; then, 
cells were left unwashed or rinsed apically with dithiothreitol 
to remove accumulated mucus. After apical mucus removal, 
epithelia were infected with MERS-CoV, and apically shed 
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virus was quantified at 1 day postinfection. As shown in 
Figure 5B, for the PBS- and IL-13–treated epithelia, titers 
were significantly higher at 1 day postinfection when the mucus 
layer was removed prior to infection, suggesting that airway 
mucus does provide some protection against MERS-CoV infec-
tion. However, as infection levels were similarly affected by mu-
cus removal in the PBS- and IL-13–treated cells, it does not 
appear that the enhanced mucus layer in the IL-13–stimulated 
condition provides any additional benefit beyond this 
baseline level.

In our analysis of the RNAseq data set, we investigated tran-
scriptional changes in genes and pathways known to be 

involved in viral infection and antiviral host defense. The 
heat map in Figure 5C displays genes with identified roles in 
MERS-CoV binding and entry that were differentially ex-
pressed in IL-13–treated epithelia relative to PBS-treated cells. 
In addition to DPP4, IL-13 treatment raised the transcript 
abundances for CEACAM5, HSPA5, TMPRSS2, TMPRSS4, 
FURIN, and CD9. While these changes suggest that IL-13 treat-
ment should heighten susceptibility to MERS-CoV, we identi-
fied altered transcript levels for several IFN-stimulated genes 
(ISGs) and genes related to innate immune sensing and signal-
ing that might be expected to affect viral permissivity (see heat 
map in Figure 5D). Reverse transcriptase–qualitative 
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polymerase chain reaction was used to confirm the altered tran-
script abundances for a subset of these genes, as presented in 
Supplementary Figure 1. In the presence of IL-13, many ISGs 
increased: SOCS1, OAS1-3, ISG15, DDX58 (RIG-I), DDX60, 
IFIH1 (MDA5), IRF3, IRF9, CGAS, and NFKB2. Of note, IL-4 
and IL-13 are known to exert their effects through a signal 
transduction pathway that utilizes STAT6 [33, 34]. Many of 
the genes that increased in response to IL-13 are known targets 
of STAT6 signaling (Figure 5D, asterisks), suggesting that IL-13 
treatment influences the antiviral state by upregulating baseline 
levels of many STAT6-regulated antiviral molecules. These 
transcriptional changes were particularly pronounced with 
longer-term IL-13 exposure (21 days).

DISCUSSION

Underlying comorbidities such as chronic lung disease influ-
ence DPP4 expression in the respiratory tract and may affect in-
dividual MERS-CoV susceptibility. We used an in vitro model 
of well-differentiated HAE to investigate MERS-CoV infection 
in the setting of IL-13–induced inflammation. We found that 
DPP4 protein abundance and the number of DPP4-positive 
cells were reliably higher following IL-13 treatment on 
short (3 days) and longer (21 days) time scales. However, 
MERS-CoV replication was not universally increased in 
IL-13–treated cells. Instead, we observed that IL-13 treatment 
had variable and donor-dependent effects on viral replication 
early in the infection, and these differences did not translate 
to measurably different infection outcomes. These results 
indicate that increasing DPP4 abundance in airway epithelia 
is insufficient to enhance MERS-CoV infection in the setting 
of IL-13–induced inflammation.

We explored an RNAseq data set to ask whether global tran-
scriptional changes induced by IL-13 exposure might contrib-
ute to these findings. This analysis suggested that IL-13 
exposure changes the expression of MUC5AC and other mucin 
genes in ways that have the potential to affect mucus barrier 
function. There is debate about whether the increased presence 
of mucins is helpful or harmful in airway host defense, and it 
may be that the consequences of these changes are context 
and microbe dependent. For example, there is evidence that 
dysregulated mucin production contributes to impaired innate 
immunity in individuals with Th2 inflammation by reducing 
ciliary beat frequency and airway mucociliary transport [31, 
32, 35]. However, during respiratory viral infections, an intact 
mucin barrier can help protect against infection by restricting 
viral access to cell surface receptors. A protective effect of air-
way mucus has been observed for another coronavirus, 
SARS-CoV-2 [36, 37], as well as for influenza [38]. Our results 
suggest that increased mucins at the apical surface in IL-13– 
treated epithelia is relatively neutral with respect to their effects 
on MERS-CoV. The extra mucus was not a barrier to 

MERS-CoV infection (Figure 5B), and we saw no evidence 
that the mucus layer prevented shedding of viral progeny in in-
fected HAE cultures (Figure 4D). Thus, it seems unlikely that 
the relatively similar levels of MERS-CoV infection observed 
in PBS- and IL-13–treated epithelia can be explained by a pro-
tective effect from this enhanced mucus layer. It remains pos-
sible that Th2 cytokine–induced mucus production might 
influence MERS-CoV infection in an in vivo setting through 
effects on mucociliary clearance.

We noted that the expression of many ISGs and innate host 
defense factors was altered by IL-13–induced inflammation 
(Figure 5D). This observation is consistent with the concept es-
tablished in the literature that chronic IL-13 exposure affects 
the “antiviral state” of airway epithelia. For instance, Jakiela 
et al also noted that baseline levels of ISGs were broadly higher 
in airway cells after IL-13 stimulation [39]. Jackson et al [31] 
similarly reported changes to the host defense repertoire of 
HAE in the setting of IL-13–induced inflammation and goblet 
cell metaplasia. The authors found that while chronic IL-13 ex-
posure reduced the proportion of defensive secretory cells and 
caused a general downregulation of innate immune genes 
across most cell subsets, there was a subset with greater abun-
dance of ISGs: IFI27, IFITM2, IFITM3, IFI6, IFIH1, IRF6, and 
DDX58. These findings suggest that chronic IL-13 exposure has 
complex and variable effects on innate immune gene expres-
sion that operate at the level of individual cells. In our study, 
it is unknown whether higher DPP4 expression and altered ex-
pression of antiviral genes occurred in distinct or overlapping 
cell populations and how these changes related to a given cell’s 
infection status. It is difficult to predict whether the observed 
IL-13–induced transcriptional changes help or hinder the in-
nate immune response to MERS-CoV; however, our results im-
ply that the net effect of these changes may be to blunt the 
impact of greater DPP4 abundance by fortifying intracellular 
antiviral defenses.

Our results suggest that in people with airway disease char-
acterized by Th2 inflammation, increased MERS-CoV risk can-
not be attributed solely to upregulation of DPP4 and other 
factors required for viral attachment and entry on airway epi-
thelia. Several alternative explanations have been proposed. 
One possibility is that drugs used to prevent or treat asthma ex-
acerbations or COPD, which suppress inflammation and innate 
immunity, may compromise host immune responses to 
MERS-CoV infection. Additionally, there are reports that 
chronic Th2 cytokine exposure dampens IFN responses in air-
way epithelia. Reduced production of type I and type III IFNs 
was observed in response to viral infection in cells derived 
from people with asthma and COPD [40–42] and in airway ep-
ithelia from smokers [43]. There are also reports that IL-4/ 
IL-13 treatment inhibited TLR3 expression and IRF3 signaling 
and blunted ISG expression in airway epithelia infected with 
rhinovirus [39, 44]. Similarly, when goblet cell metaplasia was 
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modeled by FOXA3 overexpression in a human airway cell line, 
type I and type III IFN production in response to rhinovirus in-
fection was suppressed [45]. We found that IL-13 exposure al-
tered the baseline transcript abundances of several ISGs 
(Figure 5); however, we did not investigate whether IL-13 af-
fects the epithelia’s responsiveness to MERS-CoV infection— 
that is, whether IFNs and ISGs are more or less robustly in-
duced upon infection with MERS-CoV in IL-13–treated cells.

One limitation of this study is that the HAE donors were not 
stratified by measures of health status, such as smoking or 
chronic lung disease; therefore, it is difficult to know whether 
and to what extent such underlying conditions might have 
influenced the cells’ responses to IL-13 stimulation or 
MERS-CoV infection. It will be important to perform studies 
in HAE derived from donors with asthma and/or COPD to fur-
ther explore how the complex changes in these disease states af-
fect DPP4 levels and responses to MERS-CoV infection. This 
study also does not address the effects of increasing DPP4 
abundance in alveolar and other epithelia. In addition to its ex-
pression in secretory cells of the conducting airways, DPP4 is 
expressed in alveolar epithelial cells (type I and II cells) and en-
dothelial cells [14, 46], and alveolar epithelial cells are an im-
portant site of MERS-CoV infection. Alveolar epithelia may 
respond to Th2 inflammation in ways that are distinct from 
airway-derived epithelia, perhaps resulting in fewer compensa-
tory changes in innate immunity to overcome the effects of 
higher viral receptor availability. We further acknowledge 
that cultured epithelia do not fully capture the in vivo complex-
ity of the Th2 phenotype, which involves interactions between 
epithelia and immune cells (many of which express DPP4) in 
multiple organs and tissue types. In related work with the 
coronavirus SARS-CoV-2, human clinical studies and experi-
ments in mice suggest that systemic effects arising from 
IL-13–mediated inflammation are important determinants of 
disease severity [47–50].

Our findings indicate that the increased risk for severe MERS 
outcomes in the setting of IL-13–induced inflammation is more 
complex than simply greater DPP4 abundance. The potential 
effects of increased DPP4 abundance appear to be counteracted 
by other changes arising from chronic Th2 cytokine exposure 
that may limit viral permissivity. Importantly, our findings 
point to factors not present in the in vitro HAE cell culture 
model—including immune and other cell types, as well as sys-
temic effects—as potentially more significant contributors to 
the increased MERS severity in people with underlying comor-
bidities. Future studies involving animal models will be helpful 
in exploring these complex virus-host interactions during 
MERS-CoV infection.
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Infectious Diseases online. Consisting of data provided by the 

authors to benefit the reader, the posted materials are not copy-
edited and are the sole responsibility of the authors, so ques-
tions or comments should be addressed to the corresponding 
author.
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