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Abstract.

Human anatomy is the foundation of medical imaging and boasts one striking characteristic: its 

hierarchy in nature, exhibiting two intrinsic properties: (1) locality: each anatomical structure 

is morphologically distinct from the others; and (2) compositionality: each anatomical structure 

is an integrated part of a larger whole. We envision a foundation model for medical imaging 

that is consciously and purposefully developed upon this foundation to gain the capability of 

“understanding” human anatomy and to possess the fundamental properties of medical imaging. 

As our first step in realizing this vision towards foundation models in medical imaging, we devise 

a novel self-supervised learning (SSL) strategy that exploits the hierarchical nature of human 

anatomy. Our extensive experiments demonstrate that the SSL pretrained model, derived from 

our training strategy, not only outperforms state-of-the-art (SOTA) fully/self-supervised baselines 

but also enhances annotation efficiency, offering potential few-shot segmentation capabilities with 

performance improvements ranging from 9% to 30% for segmentation tasks compared to SSL 

baselines. This performance is attributed to the significance of anatomy comprehension via our 

learning strategy, which encapsulates the intrinsic attributes of anatomical structures—locality and 

compositionality—within the embedding space, yet overlooked in existing SSL methods. All code 

and pretrained models are available at GitHub.com/JLiangLab/Eden.
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1 Introduction and Related Works

Foundation models [4], such as GPT-4 [22] and DALL.E [23], pretrained via self-supervised 

learning (SSL), have revolutionized natural language processing (NLP) and radically 

transformed vision-language modeling, garnering significant public media attention [18]. 

But, despite the development of numerous SSL methods in medical imaging, their success in 

this domain lags behind their NLP counterparts. What causes these striking differences? We 

believe that this is because the SSL methods developed for NLP have proven to be powerful 
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in capturing the underlying structures (foundation) of the English language; thus, a number 

of intrinsic properties of the language emerge naturally, as demonstrated in [19], while the 

existing SSL methods lack such capabilities to appreciate the foundation of medical imaging

—human anatomy. Therefore, this paper is seeking to answer a fundamental question: How 
to learn foundation models from human anatomy in medical imaging?

Human anatomy exhibits natural hierarchies. For example, the lungs are divided into the 

right and left lung (see Fig. 6 in Appendix) and each lung is further divided into lobes, two 

on the left and three on the right lung. Each lobe is further subdivided into segments, 

each containing pulmonary arteries, veins, and bronchi which branch in predictable, 

dichotomous fashion. Consequently, anatomical structures have two important properties: 

locality: each anatomical structure is morphologically distinct from others; compositionality: 

each anatomical structure is an integrated part of a larger whole. Naturally, a subquestion 

is how to exploit the anatomical hierarchies for training foundation models? To this end, 

we devise a novel SSL training strategy, which is hierarchical, autodidactic, and coarse, 

resulting in a pretrained model, which is versatile, and leading to anatomical embedding, 

which is dense and semantics-meaningful. Our training strategy is hierarchical because it 

decomposes and perceives the anatomy progressively in a coarse-to-fine manner (Sect. 2.1); 

autodidactic because it learns from anatomy through self-supervision, thereby requiring no 

anatomy labeling (Sect. 2); and coarse because it generates dense anatomical embeddings 

without relying on pixel-level training (Sect. 3, ablation 1). The pretrained model is versatile 
because it is strong in generality and adaptability, resulting in performance boosts (Sect. 3.1) 

and annotation efficiency (Sect. 3.2) in myriad tasks. The generated anatomical embedding 

is dense and semantics-rich because it possesses two intrinsic properties of anatomical 

structures, locality (Sect. 3.3) and compositionality (Sect. 3.4), in the embedding space, 

both of which are essential for anatomy understanding. We call our pretrained model Adam 
(autodidactic dense anatomical models) because it learns autodidactically and yields dense 

anatomical embedding, nicknamed Eve (embedding vectors) for semantic richness (Fig. 1). 

We further coin our project site Eden (environment for d ense embeddings and networks), 

where all code, pretrained Adam and Eve are placed.

In summary, we make the following contributions: (1) A novel self-supervised learning 

strategy that progressively learns anatomy in a coarse-to-fine manner via hierarchical 

contrastive learning; (2) A new evaluation approach that facilitates analyzing the 

interpretability of deep models in anatomy understanding by measuring the locality and 

compositionality of anatomical structures in embedding space; and (3) A comprehensive 

and insightful set of experiments that evaluate Adam for a wide range of 9 target tasks, 

involving fine-tuning, few-shot learning, and investigating semantic richness of Eve in 

anatomy understanding.

Related Works:

(i) Self-supervised learning methods, particularly contrastive techniques [2, 16], have 

shown great promise in medical imaging [12, 25]. But, due to their focus on image-level 

features, they are sub-optimal for dense recognition tasks [28]. Recent works [10, 13] 

empower contrastive learning with more discriminative features via using the diversity in the 
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local context of medical images. In contrast to them, which overlook anatomy hierarchies 

in their learning objectives, Adam exploits the hierarchical nature of anatomy to learn 

semantics-rich dense features. (ii) Anatomy learning methods integrate anatomical cues 

into their SSL objectives. But, GLC [6] requires spatial correspondence across images, 

limiting its scalability to non-aligned images. Although TransVW [11], SAM [31], and 

Alice [15] relax this requirement, they neglect hierarchical anatomy relations, offering no 

compositionality. By contrast, Adam learns consistent anatomy features without relying on 

spatial alignment across images (see Fig. 7 in Appendix) and captures both local and global 

contexts hierarchically to offer both locality and compositionality. (iii) Hierarchical SSL 
methods exploit transformers’ self-attention to model dependencies among image patches. 

But, they fail to capture anatomy relations due to inefficient SSL signals that contrast 

similar anatomical structures [26] or disregard relations among images [29, 30]. Adam goes 

beyond architecture design by introducing a learning strategy that decomposes anatomy into 

a hierarchy of parts for coarse-to-fine anatomy learning, and avoids semantic collision in its 

supervision signal.

2 Method

Our self-supervised learning strategy, depicted in Fig. 2, aims to exploit the hierarchical 

nature of human anatomy in order to capture not only generic but also semantically 

meaningful representations. The main intuition behind our learning strategy is the principle 

of totality in Gestalt psychology: humans commonly first recognize the prominent objects in 

an image (e.g., lungs) and then gradually recognize smaller details based on prior knowledge 

about that object (e.g., each lung is divided into lobes) [24]. Inspired by this principle, 

we propose a training strategy, which decomposes and perceives the anatomy progressively 

in a coarse-to-fine manner, aiming to learn both anatomical (local and global) contextual 

information and also the relative hierarchical relationships among anatomical structures. Our 

framework is comprised of two key components:

(1) Anatomy Decomposer (AD) is responsible for decomposing relevant anatomy into 

a hierarchy of anatomical structures to guide the model to learn hierarchical anatomical 

relationships in images. The AD component takes two inputs: an image I and an anatomy 

granularity level n, and generates a random anatomical structure instance x. We generate 

anatomical structures at desired granularity level n in a recursive manner. Given an image 

I, we first split it vertically into two halves (A in Fig. 2). Then, we iteratively alternate 

between horizontally and vertically splitting the resulting image parts until we reach the 

desired granularity level (B, C, D in Fig. 2). This process results in 2n image patches xi i = 1
2n

. 

In this set, we randomly sample an instance x, which will be used as the input for training 

the model. As such, during the pretraining, anatomical structures at various granular levels 

are generated and present to the model.

(2) Purposive Pruner (PP) is responsible for compeling the model to comprehend anatomy 

more effectively via learning a wider range of distinct anatomical structures. Intuitively, 

similar anatomical structures (e.g. ribs or disks) should have similar embeddings, while also 

their finer-grained constituent parts (e.g. different ribs or disks) have (slightly) different 
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embeddings. To achieve such desired embedding space, the anatomical structures need to be 

intelligently contrasted from each other. Our PP module, in contrast to standard contrastive 

learning approaches, identifies semantically similar anatomical structures in the embedding 

space and prevents them from being undesirably repelled. In particular, given an anchor 

anatomical structure x randomly sampled from image I, we compute the cosine similarities 

between features of x and the ones of the points in the memory bank, and remove the 

samples with a similarity greater than a threshold γ from the memory bank. Thus, our 

PP prevents semantic collision, yielding a more optimal embedding space where similar 

anatomical structures are grouped together while distinguished from dissimilar anatomical 

structures.

Overall Training.

Our framework consists of two twin backbones fθ and fξ, and projection heads ℎθ and 

ℎξ . fθ and ℎθ are updated by back-propagation, while fξ and ℎξ are updated by exponential 

moving average (EMA) of fθ and hθ parameters, respectively. We use a memory bank to 

store the embeddings of negative samples MB = ki i = 1
K , where K is the memory bank size. 

For learning anatomy in a coarse-to-fine manner, we progressively increase the anatomical 

structures granularity. Thus, at each training stage, anatomical structures with granularity 

level n ∈ 0, 1, ..  will be presented to the model. Given input image I and data granularity 

level n, we pass them to our AD to get a random anatomical structure x. We apply an 

augmentation function T .  on x to generate two views xq and xk, which are then processed 

by backbones and projection heads to generate latent features q = ℎθ fθ xq  and k = ℎξ fξ xk . 

Then, we pass q and MB to our PP to remove false negative samples for anchor x, 

resulting in pruned memory bank MBpruned, which is used to compute the InfoNCE [7] 

loss ℒ = − log exp(q ⋅ k/τ)
exp(q ⋅ k/τ) + i = 1

K′ exp q ⋅ ki/τ
, where τ is a temperature hyperparameter, K′ is 

size of MBpruned, and ki ∈ MBpruned. Our AD module enables the model to first learn anatomy 

at a coarser-grained level, and then use this acquired knowledge as effective contextual 

clues for learning more fine-grained anatomical structures, reflecting anatomical structures 

compositionality in its embedding space. Our PP module enables the model to learn a 

semantically-structured embedding space that preserves anatomical structures locality by 

removing semantic collision from the model’s learning objective. The pretrained model 

derived by our training strategy (Adam) can not only be used as a basis for myriad target 

tasks via adaptation (fine-tuning), but also its embedding vectors (Eve) show promises to be 

used standalone without adaptation for other tasks like landmark detection.

3 Experiments and Results

Pretraining and Fine-Łuning Settings:

We use unlabeled training images of ChestX-ray14 [27] and EyePACS [8] for pretraining 

and follow [7] in pretraining settings: SGD optimizer with an initial learning rate of 0.03, 

weight decay 1e-4, SGD momentum 0.9, cosine decaying scheduler, and batch size 256. 

The input anatomical structures are resized to 224 × 224; augmentations include random 

crop, color jitter, Gaussian blur, and rotation. We use data granularity level (n) up to 4 and 
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pruning threshold γ = 0.8 (ablation in Appendix). Following [10, 16], we adopt ResNet-50 as 

the backbone. For fine-tuning, we (1) use the pretrained encoder followed by a task-specific 

head for classification tasks, and a U-Net network for segmentation tasks where the encoder 

is initialized with the pretrained backbone; (2) fine-tune all downstream model’s params; (3) 

run each method 10 times on each task and report statistical significance analysis.

Downstream Łasks and Baselines:

We evaluate Adam on a myraid of 9 tasks on ChestX-ray14 [27], Shenzhen [14], VinDr-

CXR [20], VinDR-Rib [21], SIIM-ACR [1], SCR [9], ChestX-Det [17], and DRIVE [5], 

covering various challenging tasks, diseases, and organs. We compare Adam with SOTA 

image- (MoCo-v2 [7]), patch- (TransVW [11], VICRegL [3], DenseCL [28]), and pixel-level 
(PCRL [32], DiRA [10], Medical-MAE [29], SimMIM [30]) SSL methods.

1) Adam provides generalizable representations for a variety of tasks.—To 

showcase the significance of anatomy learning via our SSL approach and its impact 

on representation learning, we compare transfer learning performance of Adam to 8 

recent SOTA SSL methods with diverse objectives, as well as 2 fully-supervised models 

pretrained on ImageNet and ChestX-ray14 datasets, in 8 downstream tasks. As seen in 

Fig. 3, (i) our Adam consistently outperforms the SOTA dense SSL methods (VICRegL 

& DenseCL) as well as the SOTA medical SSL methods (PCRL & DiRA), and achieves 

superior or comparable performance compared to fully-supervised baselines; (ii) our Adam 

demonstrates a significant performance improvement over TransVW, which is specifically 

designed for learning recurring anatomical structures across patients. This emphasizes the 

effectiveness of our coarse-to-fine approach in capturing both local and global context of 

anatomical structures hierarchically, in contrast to TransVW which learns them at a fixed 

level; and (iii) our Adam remains superior to ViT-based SSL methods such as Medical-MAE 

and SimMIM, which divide the input image into smaller patches and utilize self-attention 

to model patch dependencies. This underscores the importance of our learning strategy in 

effectively modeling the hierarchical relationships among anatomical structures.

2) Adam enhances annotation efficiency, revealing promise for few-shot 
learning.—To dissect robustness of our representations, we compare Adam with top-

performing SSL methods from each baseline group, based on Fig. 3, in limited data 

regimes. We conduct experiments on Heart and Clavicle segmentation tasks, and fine-tune 

the pretrained models using a few shots of labeled data (3, 6, 12, and 24) randomly sampled 

from each dataset. As seen in Table 1, Adam not only demonstrates superior performance 

against baselines by a large margin (Green nums.) but also maintains consistent behavior 

with minimal performance drop as labeled data decreases, compared to baselines. We 

attribute Adam’s superior representations over baselines, as seen in Fig. 3 and Table 1, 

to its ability to learn the anatomy by preserving locality and compositionality of anatomical 

structures in its embedding space, as is exemplified in the following.

3) Adam preserves anatomical structures locality.—We investigate Adam’s 

ability to reflect locality of anatomical structures in its embedding space against existing 

SSL baselines. To do so, we (1) create a dataset of 1,000 images (from ChestX-ray14 
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dataset) with 10 distinct anatomical landmarks manually annotated by human experts in 

each image, (2) extract 224 × 224 patches around each landmark across images, (3) extract 

latent features of each landmark instance using each pretrained model under study and 

then pass them through a global average pooling layer, and (4) visualize the features by 

using t-SNE. As seen in Fig. 4.1, existing SSL methods lack the ability in discriminating 

different anatomical structures, causing ambiguous embedding spaces. In contrast, Adam 

excels in distinguishing various anatomical landmarks, yielding well-separated clusters in its 

embedding space. This highlights Adam’s ability to learn a rich semantic embedding space 

where distinct anatomical structures have unique embeddings, and identical structures share 

near-identical embeddings across patients.

4) Adam preserves anatomical structures compositionality.—The embedding 

of a whole should be equal or close to the sum of the embedding of its each part (see 

E(P) examples in Fig. 4.2). To investigate Adam’s ability to reflect compositionality of 

anatomical structures in its embedding space against existing SSL baselines, we (1) extract 

random patches from test images of ChestX-ray14, and decompose each patch into 2, 3, or 

4 non-overlapping sub-patches, (2) resize each extracted patch and its sub-patches to 224 

× 224 and then extract their features using each pretrained model under study, (3) compute 

cosine similarity between the embedding of each patch and the aggregate of the embeddings 

of its sub-patches, and (4) visualize the similarity distributions with Gaussian kernel density 

estimation (KDE). As seen in Fig. 4.2, Adam’s distribution is not only narrower and taller 

than baselines, but also the mean of similarity value between embedding of whole patches 

and their aggregated sub-parts is closer to 1.

Ablation 1: Eve’s accuracy in anatomy understanding was studied by visualizing dense 

correspondence between (i) an image and its augmented views and (ii) different images. 

Given two images, we divide them into grids of patches and extract their features Eve1

and Eve2 using Adam’s pretrained model. For each feature vector in Eve1, we find its 

correspondence in Eve2 based on highest cosine similarity; for clarity, we show some of 

the high-similarity matches (≥0.8) in Fig. 5.1. As seen, Eve has accurate dense anatomical 

representations, mapping semantically similar structures, regardless of their differences. 

Although Adam is not explicitly trained for this purpose, these results show its potential for 

landmark detection and image registration applications, as an emergent property.

Ablation 2: Effect of Anatomy Decomposer was studied by gradually increasing 

pretraining data granularity from coarse-grained anatomy (n = 0) to finer levels (up to n = 4) 

and fine-tuning the models on downstream tasks. As seen in Fig. 5.2, gradual increment of 

data granularity consistently improves the performance across all tasks. This suggests that 

our coarse-to-fine learning strategy deepens the model’s anatomical knowledge.

Ablation 3: Effect of Purposive Pruner was studied by comparing a model with and 

without PP (i.e. contrasting an anchor with all negative pairs in the memory bank) during 

pretraining. Figure 5.3 shows PP leads to significant performance boosts across all tasks, 

highlighting its key role in enabling the model to capture more discriminative features by 

removing noisy contrastive pairs.
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Ablation 4: Adaptability of our framework to other imaging modalities was explored 

by utilizing fundoscopy photography images in EyePACS as pretraining data, which possess 

complex structures due to the diverse variations in retinal anatomy. As depicted in Fig. 5.4, 

Adam provides superior performance by 1.4% (p < 0.05) in the blood vessel segmentation 

task compared to the top-performing SSL methods that also leverage the same pretraining 

images. This highlights the importance of effectively learning the anatomy and also 

showcases the potential applicability of our method to various imaging modalities.

4 Conclusion and Future Work

A key contribution of ours lies in crafting a novel SSL strategy that underpins the 

development of powerful self-supervised models foundational to medical imaging via 

learning anatomy. Our training strategy progressively learns anatomy in a coarse-to-fine 

manner via hierarchical contrastive learning. Our approach yields highly generalizable 

pretrained models and anatomical embeddings with essential properties of locality and 

compositionality, making them semantically meaningful for anatomy understanding. In 

future, we plan to apply our strategy to provide dense anatomical models for major imaging 

modalities and protocols.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Existing SSL methods lack capabilities of “understanding” the foundation of medical 

imaging—human anatomy. We believe that a foundation model must be able to transform 

each pixel in an image (e.g., a chest X-ray) into semantics-rich numerical vectors, called 

embeddings, where different anatomical structures (indicated by different colored boxes) 

are associated with different embeddings, and the same anatomical structures have (nearly) 

identical embeddings at all resolutions and scales (indicated by different box shapes) across 

patients. Inspired by the hierarchical nature of human anatomy (Fig. 6 in Appendix), we 

introduce a novel SSL strategy to learn anatomy from medical images (Fig. 2), resulting in 

embeddings (Eve), generated by our pretrained model (Adam), with such desired properties 

(Fig. 4 and Fig. 8 in Appendix).
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Fig. 2. 
Our SSL strategy gradually decomposes and perceives the anatomy in a coarse-to-fine 

manner. Our Anatomy Decomposer (AD) decomposes the anatomy into a hierarchy of parts 

with granularity level n ∈ 0, 1, ..  at each training stage. Thus, anatomical structures of 

finer-grained granularity will be incrementally presented to the model as the input. Given 

image I, we pass it to AD to get a random anchor x. We augment x to generate two 

views (positive samples), and pass them to two encoders to get their features. To avoid 

semantic collision in training objective, our Purposive Pruner removes semantically similar 

anatomical structures across images to anchor x from the memory bank. Contrastive loss is 

then calculated using positive samples’ features and the pruned memory bank. The figure 

shows pretraining at n = 4.
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Fig. 3. 
Adam provides superior performance over fully/self-supervised methods. All SSL methods 

are pretrained on ChestX-ray14 dataset. Statistical significance analysis (p < 0.05) was 

conducted between Adam and the top SSL baseline in each task.
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Fig. 4. 
Adam preserves locality and compositionality properties, which are intrinsic to anatomical 

structures and critical for understanding anatomy, in its embedding space.
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Fig. 5. 
Ablation studies on (1) Eve’s accuracy in anatomy understanding, (2) effect of anatomy 

decomposer, (3) effect of purposive pruner, and (4) adaptability of our framework to other 

imaging modalities.
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Table 1.

Few-shot transfer on two medical segmentation tasks. Adam provides outstandingly better performance 

compared with SSL baselines. Green numbers show Adam’s performance boosts compared with the second-

best method in each task/shot.

Method SCR-Heart [Dice(%)] SCR-Clavicle [Dice(%)]

3-shot 6-shot 12-shot 24-shot 3-shot 6-shot 12-shot 24-shot

MoCo-v2 44.84 59.97 69.90 79.69 23.77 29.24 38.07 44.47

DenseCL 64.88 74.43 75.79 80.06 36.43 51.31 63.03 69.13

DiRA 63.76 64.47 76.10 81.42 31.42 38.59 66.81 73.06

Adam (ours) 84.35(↑19) 86.70(↑12) 89.79(↑14) 90.45(↑9) 66.69(↑30) 79.41(↑28) 83.96(↑17) 84.76(↑12)
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