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Abstract

The specific emitter identification is widely used in electronic countermeasures, spectrum

control, wireless network security and other civil and military fields. In response to the prob-

lems that the traditional specific emitter identification algorithm relies on a priori knowledge

and has poor generalizability, and the existing specific emitter identification algorithm based

on deep learning has poor feature selection and the adopted feature extraction network is

not targeted, etc., the specific emitter identification algorithm based on multi-sequence fea-

ture learning is proposed. Firstly, multiple sequence features of the emitted signal of the

communication radiation source are extracted, and these features are combined into multi-

ple sequence features. Secondly, the multiple sequence fusion convolutional network is

constructed to fuse and deeply extract the multiple sequence features and complete the

classification of individual communication radiation sources through the classifier of neural

network. The selected sequence features of this algorithm contain more and more essential

RFF information, while the targeted design of the multi-sequence feature fusion learning

network can effectively extract the essential RFF information. The results show that the

algorithm can significantly improve the performance of SEI compared with the benchmark

algorithm, with a recognition rate gain of about 17%.

Introduction

Specific Emitter Identification (SEI) [1], i.e., the unique identification of the target radiation

source is achieved by extracting the Radio Frequency Fingerprint (RFF) features on the

received signal that can reflect the individual differences of the radiation source [2]. In the

field of electronic countermeasures reconnaissance, the ability to accurately and quickly inter-

cept and identify the enemy’s communication signals can provide commanders with more

basis for decision making [3]. In the civil field, SEI can be used to identify illegal incoming

radio stations, thus securing the communication network and has some academic research

value [4].

SEI algorithms can be broadly classified into two categories at present: traditional SEI algo-

rithms and deep learning-based SEI algorithms. Traditional SEI algorithms, in terms of the

types of extracted features, can be divided into three categories: signal parameter statistical
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features [5, 6], signal transform domain statistical features [7, 8], and mechanism model fea-

tures [9, 10]. These three types of features have achieved fruitful results in different stages and

scenarios, but the common problem is that they are limited to human knowledge of signal

essence, mathematical tools and radiation source mechanism, and it is more difficult to under-

stand and extract complex essential features to meet the generality, stability and comprehen-

siveness requirements of SEI.

In recent years, deep learning has been widely developed and applied in the field of SEI

[11], and deep neural networks are able to retrieve abstract features through multiple implicit

layers with nonlinear activation functions, which is beneficial for extracting deep subtle fea-

tures of radiation source signals [12]. Yiwei Pan et al. proposed a vector map-based SEI algo-

rithm, which applied deep learning techniques to achieve the joint extraction of multiple

complex features [13]. Jinkai Xu et al. designed a SEI algorithm based on variational modal

decomposition, and designed deep convolutional neural networks for feature extraction and

classification recognition of the decomposed high-frequency components [14]. Jian Wang.

et al. extracted multiple transform domain features of the emitted signal from the communica-

tion radiation source and combined these features into multi-domain features, after which

they constructed a multi-channel convolutional neural network and used multi-channel con-

volutional operation for deep extraction of multi-domain features. The classification of indi-

vidual communication radiation sources was accomplished by the classifier of the neural

network [15]. He Zunwen et al. proposed a fusion classification algorithm based on multichan-

nel transform projection, integrated deep learning and generative adversarial networks for the

SEI problem [16].

The above SEI algorithms either use a single feature or a multi-feature fusion algorithm,

and all of them have achieved good results. But the above algorithms have three problems:

first, some SEI algorithms use a single feature, and recognition algorithms using only one

transform domain information have different recognition performance in different scenes, dif-

ferent channels and noise conditions, and there is no guarantee that artificially selecting a

domain feature is the optimal feature, so the phenomenon of sub-optimal recognition effect

often occurs. Second, although some SEI algorithms utilize multiple features, they do not

design a more effective feature extraction network for multiple feature inputs, resulting in the

fusion effect of features and the extraction of RFF information not being optimal. Third, most

of the SEI algorithms perform certain mathematical operations on the original signal wave-

form and turn it into other graphic features or sequence features before extracting fingerprint

features. However, the RFF features of the signal are mainly embedded in the sequence wave-

form, and the mathematical operation to other features, such as graphic features, can make the

fingerprint features visually distinguishable, but with the process of mathematical operation of

the signal, the RFF features of the signal will inevitably be lost with the operation process, so

that the deep network cannot fully utilize the RFF features covered in the signal features.

To solve the above problems, the algorithm in this study takes time-domain in-phase/quad-

rature (I/Q) sequence features as the main features and supplements time-domain amplitude/

phase (A/P) sequence features and frequency-domain A/P sequence features composed as

multiple sequences to avoid the problems of unsatisfactory recognition results due to poor fea-

ture selection and inadequate feature learning due to transforming features to reduce RFF fea-

tures information. At the same time, a multisequence feature fusion algorithm is designed

based on the input sequences, making full use of various sequence features and the single-

channel and multichannel complementary features of each sequence feature, and adding a

channel attention mechanism [17] and a temporal convolutional network (TCN) [18] to the

network to redefine the channel feature weights and extract the temporal information embed-

ded in the multisequence. The advantages of convolutional neural networks for fusion and
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extraction of multiple sequences features are fully exploited. To demonstrate the superiority of

the proposed algorithm in this study, comparison simulations with other SEI algorithms are

conducted, and the simulated results show that the SEI algorithm based on multiple sequence

feature learning outperforms the benchmark algorithm at all signal-to-noise ratios. The com-

parison simulations of single sequence feature input with multiple sequence input and the con-

trolled simulated groups of each module of the network are also conducted to further illustrate

the rationality of the multi-feature fusion of the model in this study and the rationality of the

construction of the multi-serial fusion convolutional network.

Transmitter model and acquisition signal pre-processing

Transmitter model

The typical structure of an I/Q orthogonal modulation transmitter [19] is shown in Fig 1,

which is basically identical to the structure of an actual communication transmitter used in

practice. However, RFF mainly originates from uncontrollable or unintentional error factors

in the design, manufacturing, and operation process of the transmitter, and these error factors

are called distortion. Currently, it is generally believed that the possible sources of RFF in com-

munication transmitters include but are not limited to distortion of I/Q modulators, filters,

oscillators, and power amplifiers.

This section will summarize the mechanism of distortion in I/Q modulators, filters, oscilla-

tors, and power amplifiers, and provide corresponding distortion mathematical models.

Due to imperfections in the hardware production process, I/ Q modulators are subject to I/

Q imbalance, which is mainly manifested as gain mismatch, phase mismatch, and DC bias

[20]. Assuming that sb,I(t) and sb,Q(t) are the baseband waveforms of the I/Q channels, respec-

tively, the ideal baseband signal is

s0ðtÞ ¼ sb;IðtÞ þ jsb;QðtÞ ð1Þ

And the baseband signal carrying the I/Q modulator distortion can be expressed as

sðtÞ ¼ ð1 � gÞðsb;IðtÞ þ cIÞ þ jð1þ gÞðsb;QðtÞ þ cQÞej� ð2Þ

where g is the gain mismatch, ϕ is the phase deviation of the quadrature error, and cI and cQ
are the DC components generated by the two mixers, respectively.

Fig 1. I/Q quadrature modulation transmitter.

https://doi.org/10.1371/journal.pone.0299664.g001
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The filter distortion is mainly manifested by skewed amplitude-frequency response and

fluctuations in ripple and group time delaybias [19]. Assuming that the ideal baseband shaping

filter is gt, the ideal transmit signal is

s0ðtÞ ¼ ejð2pfctþyÞ
XL

k¼1

ðakgðt � kT0 � tÞÞ ð3Þ

where fc is the carrier frequency, θ is the initial phase, τ is the time delay, ak is the transmitted

symbol sequence, and T0 is the symbol period. Let Gf be the frequency response of gt, then the

frequency response of the distortion filter can be expressed as

Hð f Þ ¼ Gðf ÞAð f Þej�ðf Þ ð4Þ

Where Af = a0 + ancos(2παnf) denotes amplitude distortion, ϕf = b0 + bncos(2πβnf) is phase dis-

tortion, a0 and b0 are linear gain, an and bn are fluctuating gain, and αn and βn depend on the

period of amplitude ripple and delay fluctuation, then the signal carrying filter distortion can

be expressed as

sðtÞ ¼ ejð2pfctþyÞ
XL

k¼1

ðakhðt � kT0 � tÞÞ ð5Þ

where ht ¼
R1
� 1

Hðf Þej2pftdf is the distorted baseband shaping filter.

The oscillator distortion is mainly manifested as phase noise near the carrier frequency. For

the ideal signal shaped as Eq (3), assuming that the phase noise is φ(t), the signal carrying the

oscillator distortion can be expressed as

sðtÞ ¼ ejð2pfctþyþφðtÞÞ
XL

k¼1

ðakgðt � kT0 � tÞÞ ð6Þ

φ(t) is equivalent to adding a time-varying additive factor to f(c). A 1st order autoregressive

model is usually used to characterize φ(t)

φðtÞ ¼ ð1 � coÞφðt � 1Þ þ covðtÞ ð7Þ

Where φ(0) = 0, v(t) is the Gaussian white noise with unit variance, and c(o) reflects the indi-

vidual differences of transmitters. Eq (7) shows that: the larger the co, the more random the φ
(t) and the more obvious the perturbation to fc; conversely, the greater the correlation of φ(t),
the higher the stability of the signal carrier frequency.

The effect of power amplifier distortion on the signal is mainly manifested in two ways: the

amplitude/phase compression effect, where the signal amplitude is compressed in the satu-

rated region, and the amplitude/phase conversion effect, where the signal amplitude produces

additional phase in the nonsaturated region [19]. For narrowband amplifiers, the Taylor level

model is usually used to describe them. It is assumed that the ideal signal input to the amplifier

is

s0ðtÞ ¼ rðtÞejð2pfctþyÞ ð8Þ

Where ρ(t) = sb,I(t) + jsb,Q(t) is the ideal complex baseband waveform, the signal carrying the
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amplifier distortion can be expressed as

sðtÞ ¼
XK

k¼1

l2k� 1ðs0ðtÞÞ
k
ðs∗

0
ðtÞÞk� 1

¼ l1rðtÞejð2pfctþyÞ þ
XK

k¼2

l2k� 1jrðtÞj
2k
rðtÞejð2pfctþyÞ

ð9Þ

where λ1, λ3, . . ., λ2K−1 is the coefficient of the Taylor series and λ1 = 1. usually have λ3 < 0 and

|λk< 0| decreases with increasing k. Therefore, the second term of Eq (9) is mainly character-

ized by λ3, which weakens the amplitude of the input signal and causes the AM/AM compres-

sion effect. When λk is complex, the signal amplitude is converted into additional phase,

resulting in an AM/PM conversion effect.

The above distortion mathematical models to a certain extent demonstrate the process of

actual RFF generation. The radiated source signals generated based on these distortion mathe-

matical models contain RFFs simulated from the distortion mechanism of the radiated source,

which is similar to the process of actual RFF generation in the radiated source. Therefore, the

radiated source signals generated based on the above distortion mathematical models are simi-

lar to actual radiated source signals, which can be used as data for studying individual identifi-

cation algorithms of radiated sources.

Signal pre-processing

The pre-processing is divided into two main parts, the standardization processing and the gen-

eration of multiple sequence signals. Standardization processing means eliminating the inter-

ference of irrelevant factors without losing the signal information integrity. The

standardization process includes symbol rate estimation, carrier synchronization, signal delay

and phase estimation, interpolation filtering, and amplitude normalization. After the standard-

ization process is completed, it is necessary to combine different signal sequence representa-

tions to convert the overharvest sequences into time domain I/Q sequences, time domain A/P

sequences, and frequency domain A/P sequences after Fourier transform for this study.

The received signal after normalization is sampled at the sampling rate Fs to obtain a base-

band signal complex sequence of length N

rðnÞ ¼ rIðnÞ þ jrQðnÞ; n ¼ 0; . . . ;N � 1 ð10Þ

The instantaneous amplitude A(n) and the instantaneous phase P(n) of the signal are

defined as follows

AðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
I ðnÞ þ r2

QðnÞ
q

;

PðnÞ ¼ arctan
�

rIðnÞ
rQðnÞ

;

8
>><

>>:

ð11Þ

The Fourier transform can be used to obtain a frequency domain complex sequence as fol-

lows

XðKÞ ¼ XIðKÞ þ jXQðKÞ ¼ DFT½rðnÞ� ¼
XN� 1

n¼0

rðnÞe� jk2p
N n; 0 � k � N � 1 ð12Þ

PLOS ONE Specific emitter identification based on multiple sequence feature learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0299664 May 15, 2024 5 / 21

https://doi.org/10.1371/journal.pone.0299664


The signal amplitude spectrum X(K) and phase spectrum F(K) can be obtained byF(K), as

shown in Eq (13).

FðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

I ðKÞ þ X2
QðKÞ

q
;

FðKÞ ¼ arctan
�

XIðKÞ
XQðKÞ

;

8
>><

>>:

ð13Þ

A certain arrangement of the above time-domain sequence with the frequency-domain A/P

sequence can yield the required multiple sequence signal representation in this study, as

shown in Eq (14).

rIð0Þ rIð1Þ . . . rIðN � 1Þ

rQð0Þ rQð1Þ . . . rQðN � 1Þ

Að0Þ Að1Þ . . . AðN � 1Þ

Pð0Þ Pð1Þ . . . PðN � 1Þ

Fð0Þ Fð1Þ . . . FðN � 1Þ

Fð0Þ Fð1Þ . . . FðN � 1Þ

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

6�N

ð14Þ

Multi-sequence fusion convolutional network design

In order to more fully extract and efficiently identify the RFF features embedded in multiple

sequences, this study constructs a multiple sequence fusion convolutional network structure,

which can organically fuse and deeply mine the multiple sequence features of communication

radiation sources. Under single-source conditions, the designed network architecture can

accurately identify individuals by learning the unique characteristics of the radiation source.

The network structure can capture subtle differences in the spectral data of radiation sources

and use them to distinguish between different sources. Compared to traditional rule-based or

feature engineering methods, this learning approach can better adapt to complex radiation

source features and achieve higher recognition accuracy. As shown in Fig 2, the multi-

Fig 2. Structure of multi-sequence fusion convolutional network.

https://doi.org/10.1371/journal.pone.0299664.g002
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sequence fusion convolutional network mainly contains four parts, which are multi-sequence

feature fusion module, squeezing and excitation module, Temporal convolutional module and

softmax classification module.

Multi-sequence feature fusion module

The multi-sequence feature fusion module consists of three multi-channel convolutional

blocks and a cancatenate layer. First, the RFF features contained in each of the time domain I/

Q sequence, time domain A/P sequence, and frequency domain A/P sequence are extracted by

the three multi-channel convolution blocks. The extracted feature sequences are then vector

spliced with the original feature sequences in Cancatenate. The final output feature sequence

has both deep and shallow features, both time domain and frequency domain features, with

rich feature levels and rich content, which is more conducive to the subsequent feature learn-

ing and extraction.

The structure of one of the multichannel convolution blocks is shown in Fig 3. The multi-

channel convolution block consists of three parallel convolution units (Conv Unit1, Conv

Unit2, and Conv Unit3), a cancatenate layer (Cancatenate), and a convolution unit (Conv

Unit4) composed of layers in turn. The convolutional unit consists of a 1D convolutional

layer, a BN layer, and a ReLU activation function, which normalizes the data to mitigate the

effect of gradient disappearance on the network, and a ReLU activation function that enhances

the nonlinear representation of the network and mitigates the gradient disappearance prob-

lem. The dropout is set after the 1D convolutional layer to reduce the overfitting of the net-

work during training by randomly subtracting some neurons.

The multi-channel convolution block shunts a certain set of received two-channel sequence

features into two single channels, channel 1 and channel 2, and one double channel, channel 3.

Then, these three input data streams are fed to Conv Unit1, Conv Unit2, and Conv Unit3,

respectively, and the sequence features single and dual channel features are learned. Subse-

quently, the learned multi-channel features are fused in Cancatenate and fed to Conv Unit4

for further fusion and extraction of the complementary features of single and dual channels.

Squeeze and excitation block (SE block)

The Attention Mechanism [21] can help the model assign different weights to each part of the

input feature vector to extract more critical and important information, so that the model can

make more accurate judgments without imposing greater overhead on the model’s computa-

tion and storage. Squeeze and incentive network (SENet) [17] is a channel attention mecha-

nism, and the squeeze and incentive block (SE block) structure is the core structure in SENet.

Fig 3. Multi-channel convolution block.

https://doi.org/10.1371/journal.pone.0299664.g003
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In this study, the inputs and outputs of the SE block structure are slightly modified, and its

structure is shown in Fig 4. For the sequence feature X (X 2 RW×H) output from the upper

layer of the neural network, the channel statistics vector Z (Z 2 R1×H) can be generated by

global average pooling Fsp, where the ith element of Z is calculated by the following equation.

Zi ¼ FspðXiÞ ¼
1

W

XW

j¼1

Xið1; jÞ ð15Þ

Z can generate the weight vector S of the sequence feature X channel by a specific variation

Fex as shown in Eq (16). where δ refers to the RELU function, σ is the Sigmoid activation func-

tion, W1 2 RH
r�H , W2 2 H � RH

r .

S ¼ FexðZ;WÞ ¼ sðgðZ;WÞÞ ¼ sðW2dðW1ZÞÞ ð16Þ

After obtaining the weight vector S for the channel of sequence feature X, the channel fea-

ture of X can be rescaled by multiplication using S to generate a new feature vector ~X
(~X 2 RW�H). the ith element of ~X is calculated by Eq (17), where ~X ¼ ½~s1 ; ~s2 ; . . . ; ~sH �.

~si ¼ Fscaleðxi; siÞ ¼ sixi ð17Þ

The specific structure of the SE block inserted in this study is shown in Fig 5.

Temporal convolutional module and softmax classification module

TCNs use convolution instead of recursion for modeling time series and have the advantage of

being able to extract an effective representation of the input data by building multiple filters.

The main structures used in TCN models are causal convolution and inflationary convolution,

and connections are established by constructing blocks of temporal residuals.

Causal convolution ensures that there is no future information leakage, and the convolution

operation is performed in strict chronological order, i.e., the convolution operation at moment

t occurs only on the data before the moment t − 1 and t − 1 in the previous layer, so that the

convolution kernel is F = (f1, f2, . . ., fK), where K is the size of the convolution kernel, and the

input sequence X = (x1, x2, . . ., xT), then the causal convolution at xT is

FðxTÞ ¼
XK

k¼1

fkxT� Kþk ð18Þ

To address the modeling problem of traditional convolutional neural networks, which

require linear stacking of multiple layers of convolution to fit longer time series, TCNs reduce

the number of convolutional layers by increasing the range of perceptual fields per layer using

inflation convolution. The difference between inflationary convolution and normal

Fig 4. Modified SE block structure.

https://doi.org/10.1371/journal.pone.0299664.g004
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convolution is that inflationary convolution adds spacing to the standard convolutional kernel,

thus expanding the contact area of the model.

Let the filter be F = (f0, f1, . . ., fk−1), the sequence signal be S = (s0, s1, . . ., sT), and the value st
at the moment of t in the input sequence is convolved with the expansion to obtain

FðstÞ ¼ ðFd∗SÞst ¼
XI� 1

i¼0

fist� di ð19Þ

where: d is the expansion factor; I is the filter size. Thus the operation of the expansion convo-

lution is equivalent to introducing a fixed interval between two adjacent filters, which increases

the perceptual field range.

The TCN model uses a residual connection to solve the model training degradation prob-

lem, by learning the amount of residuals between the input to output target function and the

original function, and adding the residuals to the original input to obtain the final target map-

ping function, if the input variable is xl and the actual mapping of the target output is H(xl),

the residual mapping is

Fðxl;WlÞ ¼ HðxlÞ � xl ð20Þ

where xl is the input of the lth layer; Wl is the weight matrix of the lth layer. The input xl is

passed directly to the output as the initial result by means of a shortcut connection (shortcut),

and the output result is H(xl) = F(xl, Wl) + xl, when F(xl, Wl), H(xl) = xl.

Fig 5. Inserted SE block structure.

https://doi.org/10.1371/journal.pone.0299664.g005
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A typical TCN consists of a TCN residual block (TRB) stack. The structure of TRB is shown

in Fig 6, containing convolutional layers and nonlinear mappings, and the main parameters

are the convolutional kernel size and the expansion factor.

The convolutional layer performs an inflated convolution operation between the feature

vector of the upper layer and the convolutional kernel of the current layer, where the input

vector of the upper layer is ~zi� 1 ¼ ð~zi� 1
1
; ~zi� 1

2
; . . . ; ~zi� 1

T Þ and the output of the current layer to

the lower layer vector is ~zi ¼ ð~zi
1
; ~zi

2
; . . . ; ~zi

TÞ, and ReLU is used as the activation function

between the convolutional layers to enhance the characteristics of the original signal and

reduce noise. Afterwards, the neural network training unit is deactivated using a random deac-

tivation (Dropout) layer, which allows the network’s generalization performance to be

improved, randomly responding to the nodes of the network, ensuring the sparsity of the net-

work and reducing overfitting [22].

In this study, an improved TCN feature extraction model is constructed by connecting the

temporal residual blocks and using residual hopping and inflated convolution inside the resid-

ual blocks to maximize the utilization of forward resources and reduce the network degrada-

tion. The temporal convolution module is shown in Fig 7, which consists of eight temporal

residual blocks stacked sequentially, with the number of convolution kernels being 64, the size

Fig 6. TCN residual block.

https://doi.org/10.1371/journal.pone.0299664.g006
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of convolution kernels being 7, and the expansion coefficients being 1,2,4,8,16,32,64,128. Each

residual block has the same expansion coefficients, and the expansion coefficients grow layer

by layer between different residual blocks to ensure that the local perceptual fields of the con-

volution can be expanded in a sequential manner.

The temporal convolution module is followed by the softmax classification module. softmax

classification module mainly consists of one layer of full convolutional layers. Let the output of

the temporal convolution module be out64×n = [out1, out2, . . ., outn], where outn contains

enough feature information. Therefore, the input received by the fully-connected layer is outn,

the number of neurons in the fully-connected layer is the number of target categories, and the

activation function uses the Softmax function.

Simulated background

Radiated source signal parameters

To verify the performance of the proposed algorithm, this study generates radiated source data

using the transmitter distortion mathematical model mentioned earlier. The relevant parame-

ters of the dataset are set as follows:

• The number of radiated sources and distortion parameters: This study summarized 9 distor-

tion parameters, namely g, ϕ, cI, cQ, an, bn, co, λ3, and λ5, as the fingerprint features control-

ling the radiation source, using a mathematical model of transmitter distortion. In the

simulation process, a specific set of values for the 9 distortion parameters represents a spe-

cific radiation source. The study employed 7 different sets of distortion parameter values,

Fig 7. Temporal convolutional module.

https://doi.org/10.1371/journal.pone.0299664.g007
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resulting in the simulation of 7 radiation sources with distinct fingerprint features. There are

7 radiated sources with a default distortion parameter of {a0, b0, αn, βn} = {1, 0, 4, 4}. The dis-

tortion parameters of the other radiated sources are shown in Table 1 [20].

• Transmitted signal information: Random sequences are generated through a random num-

ber function for simulation, to eliminate the effect of signal content on individual identifica-

tion of radiated sources.

• The method of signal waveform shaping: A raised cosine shaping filter with a roll-off factor

of 0.35 is used to shape the baseband signal waveform.

• Signal frequency: The transmission frequency is 1750 kHz, and the signal is sampled and

demodulated to zero intermediate frequency during signal reception.

• Modulation parameters: QPSK modulation mode, modulation rate is 500 kBaud, symbol

number L = 200.

• Sampling rate: 10 MHz, therefore 20 sampling points per symbol.

• The form of the signal after receiving and processing: Zero-intermediate frequency complex

baseband signal.

According to the above simulation settings, the time-domain waveform and frequency-

domain spectrum of the signal can be obtained, as shown in Fig 8.

Training and testing sample configuration

Each radiation source is simulated to generate 6400 signal samples during training, and Gauss-

ian white noise is added to these 6400 samples, and the signal-to-noise ratios are equally dis-

tributed from 0dB to 30dB at 2dB intervals, i.e., there are 400 radiation source samples under

each signal-to-noise ratio (SNR) in each class. At the same time, 300 samples are randomly

selected for training and updating the network parameters for each of the 400 signal-to-noise

samples in each class, and the remaining 100 are used for validation.

When testing, the corresponding Gaussian white noise, modulation rate offset and other

effects are added. The specific parameters are as follows: Gaussian white noise ranges from

0dB to 30dB, and in 2dB intervals. The modulation rate offset values are 0 kBaud to 150

kBaud, and 10 kBaud intervals. Also 800 samples are generated for each S/N ratio under each

type of radiation source, and the modulation rate effect is added at a modulation rate offset

value for every 50 samples of the 800 samples.

Table 1. Aberration parameters of different radiation sources. (In each condition, only one radiation source is active. For example, Condition 3 indicates that only the

third radiation source is active).

Parameters Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 Condition 7

g 0.0299 0.0188 0.0081 -0.0025 -0.0128 -0.023 -0.0329

ϕ 0.0137 0.0093 0.005 0.0006 -0.0038 -0.0081 -0.0125

cI 0.0142 0.0097 0.0052 0.0007 -0.0038 -0.0083 -0.0128

cQ 0.0147 0.0102 0.0057 0.0012 -0.0033 -0.0078 -0.0123

an -0.064 -0.0429 -0.0218 -0.0007 0.0204 0.0415 0.0627

bn -0.074 -0.0498 -0.0256 -0.0014 0.0228 0.047 0.0713

co 0.0002 0.001 0.0018 0.0026 0.0034 0.0042 0.005

λ3 -0.2915-0.0079i -0.0003-0.0004i -0.4371-0.0092i -0.1459-0.0066i -0.5827-0.0096i -0.0731-0.0042i -0.3643-0.0085i

λ5 0.0295+0.0005i 0.0001+0.0004i 0.0821+0.0048i 0.0338+0.0014i 0.0537+0.0029i 0.0571+0.0035i 0.0484+0.0022i

https://doi.org/10.1371/journal.pone.0299664.t001
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Implementation details

In this study, four simulations are set up to evaluate the algorithms proposed in this study. In

the first simulation the algorithm of this study is compared with four algorithms, which are

vector map based specific radiation source identification algorithm [13], VMD based commu-

nication radiation source individual identification algorithm [14], multi-domain feature fusion

based communication radiation source individual identification algorithm [15], and multi-fea-

ture fusion classification algorithm for communication specific radiation source identification

[16]. The second simulation explores the effect of signal modulation rate variation on network

identification performance. The third simulation explores the network performance of the

Fig 8. The waveform and spectrum of the simulated signal. (a) The waveform of the signal received under condition 1. (b) The spectrum of the signal received under

condition 1. (c) The waveform of the signal received under condition 2. (d) The spectrum of the signal received under condition 2.

https://doi.org/10.1371/journal.pone.0299664.g008
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proposed network under different signal sequences, which are classified into four types,

namely, time-domain I/Q sequences, time-domain amplitude phase sequences, frequency-

domain amplitude phase sequences and their fusion sequences. In the fourth simulation we

build three sets of controlled frameworks, MODEL-A (multi-sequence feature fusion module

Table 2. Multi-sequence fusion convolutional network structure and parameters.

Network Structure Parameters Input Output

multi-sequence feature fusion module Multi-channel convolution block 1 Convolution unit 1 (7,5) 2000×2 2000×5

Convolution unit 2 (7,5) 2000×2 2000×5

Convolution unit 3 (7,10) 2000×2 2000×10

Cancatenate 1 (7,10) 2000×5,2000×5,2000×10 2000×20

Convolution unit 4 (7,20) 2000×20 2000×20

Multi-channel convolution block 2 2000×2,2000×2,2000×2 2000×20

Multi-channel convolution block 3 2000×2,2000×2,2000×2 2000×20

Cancatenate 2000×20,2000×20,2000×20

2000×2,2000×2,2000×2

2000×66

squeezing and excitation module (r = 4) 2000×66 2000×66

Temporal convolutional module TRB-1 (64,7,1) 2000×66 2000×64

TRB-2 (64,7,2) 2000×64 2000×64

TRB-3 (64,7,4) 2000×64 2000×64

TRB-4 (64,7,8) 2000×64 2000×64

TRB-5 (64,7,16) 2000×64 2000×64

TRB-6 (64,7,32) 2000×64 2000×64

TRB-7 (64,7,64) 2000×64 2000×64

TRB-8 (64,7,128) 2000×64 1×64

Softmax classification module FCN (64,7) 1×64 1×7

https://doi.org/10.1371/journal.pone.0299664.t002

Table 3. Comparison of average recognition accuracy of different SEI algorithms under different input features.

SEI algorithm Sampling signal form Number of sample

points utilized

Input feature form Feature size Average

accuracy rate

Proposed algorithm 4000 points of baseband complex

sequence signal sampling points

2000 Time domain I/Q sequences

Time domain A/P sequence

Frequency domain A/P sequences

6×2000 0.737

Vector map algorithm 4000 Grayscale vector image 300×300×3 0.570

Variational modal

decomposition algorithm

4000 Second eigenmode function signal

sequence

1×4000 0.222

Multi-domain feature fusion

algorithm

4000 Time domain I/Q sequences

Power Spectrum Sequence

I-way integral bispectral sequence

Q-way integral bispectral sequence

5×1280 0.429

Multi-projection feature

fusion algorithm

4000 Two-dimensional projection of wavelet

eigencoefficient matrix

Two-dimensional projection of the

bispectral eigencoefficient matrix

Two-dimensional projection of the

Hebert sign coefficient matrix

224×224×3

224×224×3

224×224×3

0.326

Proposed algorithm 4000 Second eigenmode function signal

sequence

1×4000 0.267

Proposed algorithm 4000 Time domain I/Q sequences

Power Spectrum Sequence

I-way integral bispectral sequence

Q-way integral bispectral sequence

5×1280 0.680

https://doi.org/10.1371/journal.pone.0299664.t003

PLOS ONE Specific emitter identification based on multiple sequence feature learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0299664 May 15, 2024 14 / 21

https://doi.org/10.1371/journal.pone.0299664.t002
https://doi.org/10.1371/journal.pone.0299664.t003
https://doi.org/10.1371/journal.pone.0299664


removed), MODEL-B (squeezing and excitation module removed), and MODEL-C (temporal

convolutional module removed).

The structure and parameters of the multi-sequence fusion convolutional network in the

simulations of this study are shown in Table 2. Combined with the description of the network

structure details in the previous section, the specific structure and parameters of the multi-

sequence fusion convolutional network in the simulations of this paper can be obtained.

All algorithms use NVIDIA Quadro RTX 6000 and Keras2.6.0 Tensorflow-GPU2.4.0 as the

back-end simulated platform to facilitate performance comparisons between networks. Uni-

form hyperparameters were established for network training and testing. adam optimizer was

used to optimize the network in the simulations. The initial learning rate was set to 0.001, the

absolute cross entropy was the loss function, and the gradient update batch size was 64. during

the training process for the validation of the loss assessment set, when the validation loss still

did not improve after 30 epochs, we stopped the training process to save the weights of the

model with the minimum validation loss. Set the maximum number of training hours of the

algorithm on the training set to 200. first construct the test model, then load the trained

weights file, and finally predict the radiation source class for each test signal.

Simulated results and discussion

Performance comparison between this algorithm and other algorithms

Firstly, the performance performance of the algorithm in this study is tested. Two single fea-

ture extraction algorithms [13, 14] and two multi-feature extraction algorithms [15, 16] are

selected for comparison with the algorithm in this study. The literature [13] uses only vector

map to extract features for recognition and is noted as vector map algorithm. The literature

[14] uses only the high-frequency component of the variational modal decomposition to

extract features for recognition, and is noted as the variational modal decomposition algo-

rithm. Similar to the algorithm in this study, literature [15] and literature [16] also use the idea

of multi-feature extraction, and literature [15] uses multi-threshold data such as time-domain

I/Q sequences, power spectrum sequences and integrated bispectral sequences of I/Q two-way

to extract features for recognition, which is noted as multi-domain feature fusion algorithm.

The literature [16] uses the fusion of wavelet eigencoefficient matrix 2D projection image, bis-

pectral eigencoefficient matrix 2D projection image, and Hebert sign coefficient matrix 2D

projection image to extract features for recognition, which is noted as multi-projection feature

fusion algorithm.

Table 3 and Fig 9 show the average recognition accuracy of the algorithm in this study and

the comparison algorithm under the corresponding inputs, as well as the graph of the recogni-

tion rate with the variation of signal-to-noise ratio. It can be seen that the algorithm in this

study has the highest final recognition rate and outperforms the other algorithms in terms of

recognition accuracy and noise immunity performance, and the average recognition rate is

ahead by about 17%. The vector map algorithm and the variational modal decomposition algo-

rithm are both single feature extraction algorithms, and the recognition effect differs greatly,

indicating that the selection of features has a greater impact on the recognition rate, and the

vector map features are better than the sequence features of the variational modal decomposi-

tion. The multi-domain feature fusion algorithm and the multi-projection feature fusion algo-

rithm are both multi-feature extraction algorithms, and the recognition effect of the multi-

domain feature fusion algorithm is better than that of the multi-projection feature fusion algo-

rithm. The main reason is that the basic features in the multi-domain feature fusion algorithm

contain time domain I/Q sequences and more fingerprint features of the radiation source,

however, the basic features of the multi-projection feature fusion algorithm are the projection
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image features generated by multiple transformations, and the intermediate process loses a lot

of fingerprint features of the radiation source to cause the algorithm recognition effect is not

good. The recognition effect of the proposed network in this study is better than that of the

variational modal decomposition algorithm and the multi-domain feature fusion algorithm in

the case of the same input features, respectively. This is because the network used in the com-

parison algorithm does not construct a network according to the characteristics of the input

signal, and simply splices the network for recognition, which leads to poor recognition effect.

The multi-sequence fusion convolutional network constructed in this study fully exploits the

fingerprint features contained in the input features. The algorithm in this study performs very

well with the input of the multiple sequence features proposed in this study.

Fig 10 demonstrates the variation of the recognition rate of each type of radiation source at

different signal-to-noise ratios, where the recognition is generally poor at low signal-to-noise

ratios and generally good at high signal-to-noise ratios. As shown in Fig 11, which demon-

strates the schematic diagram of the effect of Gaussian white noise on RFFs, Fig 11(a) is the I/

Q two-way signal waveform diagram of the ideal received signal without transmitter distor-

tion, which represents the ideal case without transmitter distortion. Fig 11(b) shows the differ-

ence between the received signal without noise but containing the effect of transmitter 1

distortion and the ideal signal, which is mainly affected by the transmitter 1 distortion and

contains most of the transmitter 1 fingerprint information. Fig 11(c) shows the difference

between the received signal containing noise and the ideal signal with the influence of trans-

mitter 1 distortion. Compared with Fig 11(b), it can be seen that the Gaussian white noise

affects the difference between the received signal with the influence of transmitter 1 distortion

Fig 9. Recognition rate comparison curve.

https://doi.org/10.1371/journal.pone.0299664.g009
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and the ideal signal, which disturbs the fingerprint information of transmitter 1 to a certain

extent and increases the difficulty of extracting and identifying the fingerprint information of

transmitter 1. Therefore, under the low signal-to-noise ratio, the greater the influence of

Gaussian white noise, the more difficult the extraction and identification of fingerprint infor-

mation, and the lower the identification rate of the radiation source.

The effect of modulation rate offset on recognition performance is divided

Simulations are conducted to investigate the effect of modulation rate parameter variations on

the identification performance of the proposed algorithm. Based on the data obtained from

the simulations, we find the average recognition rate of the radiation source for the algorithm

in this paper with different modulation rate offsets. Fig 12 shows that when the modulation

deviation is below 100 kBaud, the proposed algorithm shows a higher recognition rate, which

is higher than the average recognition rate of the benchmark algorithm without modulation

rate offset. When the modulation deviation is between 100 kBaud and 150 kBaud, the average

recognition rate of this algorithm still remains above 50%, which indicates that this algorithm

has good robustness. In order to further improve the robustness of this paper, we can add sam-

ples of multiple modulation rate signals when constructing the training set to improve the

adaptability of this paper’s algorithm to modulation deviations.

Classification recognition rate for different sequence feature inputs

The recognition results of the multi-sequence feature fusion convolutional neural network-

based approach are compared with those of the single sequence feature-based neural network

approach. The recognition results of the network with different signal-to-noise ratios are

Fig 10. Variation of recognition rate of each category with different SNR.

https://doi.org/10.1371/journal.pone.0299664.g010
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obtained as shown in Fig 13. The analysis of the simulated results shows that the algorithm

with fusion of multiple sequence features is better than the algorithm with single sequence fea-

tures, especially at lower signal-to-noise ratios. Among the algorithms based on single

sequence features, the algorithm based on time domain sequence is significantly better than

the algorithm based on frequency domain sequence, which indicates that the time domain

sequence contains more information about the individual fingerprint of the radiation source,

while the frequency domain sequence has undergone Fourier transform, which to a certain

extent loses or transforms the fingerprint features of the radiation source, making it more diffi-

cult to mine the fingerprint features. The algorithm based on time domain I/Q sequences is

better than the algorithm based on time domain AP sequences, which indicates that the time

domain I/Q sequences contain more and more essential information of individual fingerprints

(a)

(c)

(b)

Fig 11. Schematic diagram of the effect of Gaussian white noise on RFFs. (a) Signal waveform of the ideal received signal. (b) Difference between the received signal

with transmitter 1 distortion and the ideal received signal. (c) Difference between the received signal with transmitter 1 distortion and 10dB noise and the ideal received

signal.

https://doi.org/10.1371/journal.pone.0299664.g011
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Fig 12. Average recognition rate at different modulation rate offsets.

https://doi.org/10.1371/journal.pone.0299664.g012

Fig 13. Algorithm performance comparison of single sequence features and multiple input sequence features.

https://doi.org/10.1371/journal.pone.0299664.g013
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of radiation sources. Therefore, the algorithm based on multi-domain feature fusion outper-

forms the algorithm with single-domain features in recognition results, especially at low sig-

nal-to-noise ratio.

Comparison of the functions of each module

The recognition accuracy of the model in this study is compared with ModelA, ModelB, and

ModelC. Fig 14 shows that the proposed model provides the best recognition performance,

which indicates that the advantages of the modules are complementary and their combination

leads to a superior model. the recognition performance of ModelC is significantly degraded,

indicating the importance of temporal correlation feature extraction of the input data as well

as global feature extraction.

Conclusion

In this study, a new efficient radiation source individual recognition algorithm with multiple

sequence inputs by adding attention mechanism is proposed for extracting features from mul-

tiple sequence representations of signals. Simulation results show that the algorithm has the

advantages of high recognition accuracy, good robustness and stability. It is also shown that

using an efficient model structure and extracting features from spatial and temporal perspec-

tives has great potential in communication systems.
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