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Abstract

Deep learning models struggle to effectively capture data features and make accurate predic-

tions because of the strong non-linear characteristics of arbitrage data. Therefore, to fully

exploit the model performance, researchers have focused on network structure and hyperpara-

meter selection using various swarm intelligence algorithms for optimization. Sparrow Search

Algorithm (SSA), a classic heuristic method that simulates the sparrows’ foraging and anti-

predatory behavior, has demonstrated excellent performance in various optimization problems.

Hence, in this study, the Multi-Strategy Modified Sparrow Search Algorithm (MSMSSA) is

applied to the Long Short-Term Memory (LSTM) network to construct an arbitrage spread pre-

diction model (MSMSSA-LSTM). In the modified algorithm, the good point set theory, the pro-

portion-adaptive strategy, and the improved location update method are introduced to further

enhance the spatial exploration capability of the sparrow. The proposed model was evaluated

using the real spread data of rebar and hot coil futures in the Chinese futures market. The

obtained results showed that the mean absolute percentage error, root mean square error, and

mean absolute error of the proposed model had decreased by a maximum of 58.5%, 65.2%,

and 67.6% compared to several classical models. The model has high accuracy in predicting

arbitrage spreads, which can provide some reference for investors.

1 Introduction

The futures market plays a significant contribution to stabilizing commodity prices and pro-

moting capital flow. Among them, cross-variety arbitrage trading in futures has attracted wide-

spread attention from investors due to its low cost, small risk, and relatively stable returns. Its

essence is spread arbitrage, obtaining returns based on the regression of spreads between

futures contracts with stronger correlation. Therefore, in order to assist investors in formulat-

ing more scientific trading strategies to obtain substantial profits, it is extremely important to

accurately predict the trend of arbitrage spreads between futures contracts. However, the mar-

ket is dynamic and volatile, and the pricing of contracts is often based on a variety of complex

dynamic conditions [1]. These factors make the prediction of arbitrage spread trends a signifi-

cant challenge.
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The traditional solution to the problem of arbitrage spread trend prediction is to utilize

time series models, such as the autoregressive conditional heteroskedasticity (ARCH) model,

the autoregressive moving average (ARMA) model, the autoregressive integrated moving aver-

age (ARIMA) model, etc [2–5]. Although these models can fit the current data well, the predic-

tion effect is not ideal when facing out-of-sample data.

In recent years, with the development and perfection of artificial intelligence technology,

numerous machine learning models have been widely used in the field of financial time series

prediction due to their outstanding fitting ability. Tay and Cao [6] used support vector

machines (SVM) to predict the closing price of the Standard&Poor 500 stock index futures.

The experimental results show that this method is more effective than the back propagation

(BP) neural network model. Nayak et al. [7] combined the artificial chemical reaction optimi-

zation (ACRO) algorithm with the multilayer perceptron (MLP) to construct an artificial

chemical reaction neural network (ACRNN) for predicting stock market indices. Li [8]

achieved the prediction of the settlement price of China’s stock index futures through empiri-

cal mode decomposition (EMD) and radial basis function (RBF) neural networks. Compared

with the traditional time series model, the aforementioned methods have achieved a significant

improvement in prediction accuracy. Meanwhile, with the advent of the big data era, scholars

are conducting more and more research on deep neural network (DNN) models [9, 10]. Hu

[11] applied a convolutional neural network (CNN) to predict stock prices. However, since

CNNs are better at handling image problems, their accuracy is lower when facing time series

prediction. Berradi and Lazaar [12] predicted the stock price of Total Maroc from the Casa-

blanca Stock Exchange through a recurrent neural network (RNN) and used principal compo-

nent analysis (PCA) for dimensionality reduction, ultimately obtaining superior prediction

results. It is noteworthy that despite their effectiveness, there are still some issues with the

RNN model. Hochreiter and Schmidhuber [13] improved its unit structure and proposed the

long short-term memory (LSTM) network model, which effectively addressed their shortcom-

ings such as insufficient long-term memory capacity through the design of gate structures.

Numerous studies have shown that LSTM networks are able to discover long-term dependen-

cies in sequence information well, and are therefore widely used in the field of financial fore-

casting [14–17].

To further enhance the predictive performance of the LSTM model, it is necessary to opti-

mize its hyperparameters. However, there is no clear function relationship between model per-

formance and hyperparameters. Therefore, in practical applications, researchers often

determine the optimal values of hyperparameters based on their own experience, existing

research, and abundant experimental results. This approach not only results in a significant

waste of manpower and computational resources, but also introduces subjective factors that

make it difficult to ensure the optimality of the model. When the hyperparameter space is

more complex, the entire optimization process can be extremely time-consuming and ineffi-

cient. Therefore, finding the optimal combination of hyperparameters in neural network mod-

els has also become a challenging task.

In addition, in the futures market, arbitrage methods are mainly divided into two catego-

ries: mean reversion arbitrage methods and neural network arbitrage methods [18]. The mean

reversion method uses financial time series analysis methods to study the long-term relation-

ships that exist between futures, so as to design arbitrage strategies. For example, Liu and Lan

[19] constructed cointegration regression and vector error correction model to analyze the

monthly average closing price of polyvinyl chloride futures contracts. The results found that

there is a long-term equilibrium and short-term deviation relationship of the contract spread,

confirming the existence of intertemporal arbitrage opportunities in this contract. Liu [20]

applied the cointegration method to empirically analyze the prices of hogs, corn, and soybean
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meal. It was found that there is a long-term mean relationship between the three, and the trad-

ing simulation also confirmed the possibility of profit. The neural network arbitrage method

utilizes neural network models to predict spreads and formulate arbitrage strategies. At pres-

ent, the existing domestic research is mainly based on the mean reversion principle of spreads.

There are fewer studies on using neural network for arbitrage, and most of them have the dis-

advantages of single model and low prediction accuracy [21, 22]. Therefore, to develop scien-

tific and efficient arbitrage strategies, it is extremely important to accurately predict the

arbitrage spreads between futures.

Given the above reasons, this article proposes an arbitrage spread prediction model based on

multi-strategy modified SSA-optimized LSTM (MSMSSA-LSTM) by combining the sparrow

search algorithm [23] (SSA) with the LSTM network. This research have constructed a regression

model with high prediction accuracy by using MSMSSA to match the futures data features and

LSTM neural network topology structure. On this basis, this paper conducts an empirical analysis

using the spread dataset of rebar and hot coil futures in the Chinese futures market.

The main contributions of this article can be summarized as follows:

• This research has constructed the MSMSSA-LSTM model by improving the sparrow search

algorithm to achieve the trend prediction of arbitrage spread between futures.

• To verify the effectiveness of the MSMSSA-LSTM model, this research selected the MLP

model, RNN model, LSTM model, gated recurrent unit (GRU) model, and LSTM model opti-

mized by traditional sparrow search algorithm (SSA-LSTM) as comparative experiments. The

experimental results indicate that the MSMSSA-LSTM model has high prediction accuracy

and is more suitable for predicting the trend of arbitrage spread between futures.

The remaining chapters of this paper are organized as follows. Section 2 introduces the

hyperparameter optimization problem in the LSTM network model and its solutions. Section

3 analyzes some literature on optimizing LSTM models using metaheuristic algorithms. Sec-

tion 4 describes the sparrow search algorithm and its improvement strategies, and construct

the MSMSSA-LSTM model. Section 5 validates the effectiveness of the MSMSSA-LSTM

model in predicting arbitrage spread trends through comparative experiments. Finally, the

conclusion is given in Section 6.

2 Problem description

In neural networks, there are many parameters that need to be set manually which are hyper-

parameters. The selection of suitable hyperparameter values plays a crucial role in the final pre-

diction performance of the model. Therefore, how to choose appropriate hyperparameters

based on the characteristics of the data has always been a widely studied topic.

This section first described the hyperparameter optimization problem using mathematical

formulas. Secondly, several existing solutions to this problem and their respective drawbacks

were given. Finally, a new solution was proposed.

The following equation can be used to mathematically represent the hyperparameter opti-

mization problem in an LSTM network model:

min MSE ¼
1

n

Xn

j¼1

ðŷjðXÞ � yjÞ
2

s:t: xi 2 ½xis; xib� ði ¼ 1; 2; � � � ; dÞ

X ¼ ½x1; x2; � � � ; xd�
T

ð1Þ

8
>>>><

>>>>:
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In the equation, d represents the number of hyperparameters that need to be optimized in

the LSTM network. [xix,xib] denotes the range of values for the i-th hyperparameter, with a

lower limit of xis and an upper limit of xib. X indicates one combination of values taken by the

d hyperparameters. The total number of samples in the validation set is represented by n. yj
stands for the actual value of the j-th sample. When the hyperparameters are X, the model’s

predicted value for the j-th specimen is ŷ jðXÞ. The optimization goal of the LSTM network

model is to find an optimal hyperparameter combination X, which minimizes the mean square

error MSE on the validation set.

The traditional hyperparameter optimization techniques include grid search, random search,

and Bayesian optimization. Among them, grid search determines the optimal solution by exhaus-

tively traversing all combinations of hyperparameters. Random search searches for the global opti-

mal solution by randomly selecting sample points. Bayesian optimization attempts to seek the

optimal solution by constructing a posterior probability of the black box function output. Com-

pared to the three, Bayesian optimization fully considers the existing hyperparameter combination

information, while grid search and random search ignore this information, which can lead to seri-

ous resource waste. Although Bayesian optimization has shown good results in finding the opti-

mal combination of hyperparameters, it still has the disadvantages of slow search speed and easy

to fall into local optimal solutions. Therefore, this paper effectively solves the above problems by

combining the improved SSA algorithm with the LSTM network model.

3 Related works

In related work, there is a lot of research on using heuristic algorithms to optimize LSTM mod-

els. Some of them are listed below.

In 2022, Drewil and Al-Bahadili [24] applied genetic algorithms to find the optimal values

of window size and number of units in the LSTM network model. They selected air pollution

prediction for experiments and proved that the model modified by the optimization algorithm

outperformed the benchmark model. In 2023, Bacanin et al. [25] optimized the learning rate,

dropout rate, number of epochs, number of layers, and number of neuron cells in each layer in

the LSTM network using the improved particle swarm optimization algorithm. The experi-

mental results of cloud load prediction show that the optimized LSTM has superior perfor-

mance to other performed techniques. In 2020, Kumar and Haider [26] used the flower

pollination algorithm and particle swarm optimization algorithm to optimize the time lag,

number of hidden layers, number of hidden neurons, batch size, and epochs in the

RNN-LSTM model, respectively. The experimental results demonstrate that the optimized

model enhances performance and has higher accuracy. In 2022, Jovanovic et al. [27] applied

the salp swarm algorithm with a disputation operator to optimize the learning rate, dropout

rate, number of neurons in the LSTM layer, and the number of training epochs in the LSTM

network. They selected the West Texas Intermediate dataset for testing. The obtained results

demonstrate that the proposed model outperforms all other competitors and exhibits the best

performance. In 2024, Zhang et al. [28] optimized the Bi-LSTM model by using the whale opti-

mization algorithm with circle mapping and self-adaptive weight adjustment. The accuracy of

the proposed method is proved by the plug-load electricity consumption prediction. In 2022,

Bacanin et al. [29] achieved smart air quality prediction and node localization based on the

Graph LSTM and the improved dragonfly optimizer algorithm. In 2023, Gülmez [30] opti-

mized the learning rate, dropout rate, optimizer algorithm, layer existing or not existing, and

number of neurons in the LSTM model using the artificial rabbit optimization algorithm. Dow

Jones Index stock price data was used for testing. The results indicate that the model has cer-

tain universality and good prediction accuracy.

PLOS ONE Modified sparrow search algorithm for hyperparameter optimization in arbitrage prediction models

PLOS ONE | https://doi.org/10.1371/journal.pone.0303688 May 15, 2024 4 / 24

https://doi.org/10.1371/journal.pone.0303688


4 Methodology

Section 4.1 introduces the traditional sparrow search algorithm. Section 4.2 presents three

improvement strategies and name the improved algorithm as the multi-strategy modified spar-

row search algorithm (MSMSSA). Additionally, this section also provides the pseudocode of

MSMSSA. Section 4.3 constructs the MSMSSA-LSTM model and introduce its structure and

execution process.

4.1 Sparrow search algorithm

The sparrow search algorithm is a swarm intelligence optimization algorithm proposed based

on the foraging and anti-predation behavior of sparrow populations. When foraging, sparrows

will be divided into two types, discoverers and followers, based on the quality of the food

searched. The discoverer is responsible for finding food and providing the foraging area and

direction for the followers. The followers follow the discoverer to get better food. If the follow-

er’s position is poor, it will fly to other areas to forage. In addition, when a sparrow individual

discovers predators around the population, it will send out an alarm signal and move to a safe

area. Sparrows in the middle of the group will randomly approach other sparrows. Once the

alarm value is higher than the safety value, the discoverer will immediately lead the followers

out of the danger zone and fly to other safe areas to forage.

Assuming there are n sparrows in the sparrow population and the dimension of the search

space is d, then the position information of all sparrows can be regarded as an n×d matrix. The

position of each sparrow can be represented as xi,j, where i = 1, 2, 3, . . ., n, j = 1, 2, 3, . . ., d. xi,j

indicates the position information of the i-th sparrow in the j-th dimension. The quality of the

food searched by each sparrow is reflected by the fitness function. The fitness value of each

sparrow can be expressed as Fxi = f([xi,1, xi,2, xi,3, . . ., xi,d]).

Before each iteration, sparrows are sorted based on the size of their fitness values. The top

10% to 20% of sparrows are the discoverers. The position update formula for the discoverers

can be described by the following equation:

Xtþ1

i ¼
Xt

i � exp �
i

a � T

� �

; R2 < ST

Xt
i þ Q � L; R2 � ST

ð2Þ

8
><

>:

In this expression, t denotes the current number of iterations and T is a constant represent-

ing the total number of iterations. Xi denotes the position corresponding to the sparrow whose

fitness value is ranked i in the population. α is a random number between (0, 1]. Q is a random

number that follows a standard normal distribution. L is a 1×d matrix with all elements being

1. R2 and ST indicate the alarm value and safety value, respectively, with their ranges being

[0, 1] and [0.5, 1], respectively. When R2 < ST, it represents that no predators are detected at

this time, and the discoverer can perform a wide range of searches. When R2� ST, it indicates

that there are a large number of predators around the foraging environment at this time, and

the discoverer needs to immediately lead the followers to forage in other safe areas.

The position update formula for the followers can be described by the following equation:

Xtþ1

i ¼
Q � exp

Xt
worst � Xt

i

i2

� �

; i > n=2

Xtþ1
p þ jX

t
i � Xtþ1

p j � A
þ � L; i � n=2

ð3Þ

8
><

>:

Among them, Xp represents the optimal position of the current discoverer. Xworst denotes

the worst global position currently. A indicates a 1×d matrix, and each of its elements
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randomly takes the value of 1 or -1. A+ satisfies the equation A+ = AT(AAT)-1. When i> n / 2,

it represents that the fitness value of the i-th follower is poor, has not obtained food, is in a

state of starvation, and needs to fly to other areas to forage. When i� n / 2, the follower follows

the discoverer who is in the optimal position at this time to forage.

A certain number of sparrows are randomly chosen from the population to be responsible

for vigilance (watchers). If danger approaches, the watchers will immediately abandon their

food and move to a new location to continue foraging while sounding an alarm signal. The

position update formula for the watchers can be described by the following equation:

Xtþ1

i ¼

Xt
best þ b � jX

t
i � Xt

bestj; fi > fg

Xt
i þ K �

jXt
i � Xt

worstj

ðfi þ foÞ þ ε

� �

; fi ¼ fg
ð4Þ

8
><

>:

Where Xbest indicates the best global position currently. β and K are both step control param-

eters. β denotes a random number that follows a standard normal distribution, and K represents

a random number in the range of [–1, 1]. fi indicates the fitness value of the current watcher. fg

and fω denote the best and worst fitness values in the present entire sparrow population, respec-

tively. ε is a very small constant to avoid the denominator being 0. When fi > fg, it represents

that the current watcher is on the boundary of the population and is easy to become the target

of predators. When fi = fg, it indicates that the watcher in the middle of the population has

sensed danger and needs to approach other companions to ensure its own safety.

4.2 Improved strategies

4.2.1 Good point set theory. Research has shown that the distribution of the initial popu-

lation has a crucial impact on the search results of swarm intelligence optimization algorithms

[31]. However, the sparrow search algorithm uses the way of random sampling to generate the

initial population. This can lead to an uneven distribution of sparrows in the search space and

a lack of diversity, thereby affecting the optimization ability of the algorithm. At the same

time, during multiple experiments, the inconsistency in the initial population distribution

leads to differences in the results of the algorithm’s operation. The stability is poor. To address

these issues, this paper introduces the good point set theory [32, 33]. The population initialized

by the good point set can be evenly distributed in the search space, effectively improving the

diversity of the sparrows. The stability of the good point set is high, and the spatial distribution

obtained by solving the good points multiple times is consistent. Assuming the number of

sparrows is n, and the dimension of the search space is d, then the method of initializing the

population with a good point set is as follows:

PðkÞ ¼ fðr1∗k; r2∗k; � � � ; rd∗kÞ; k ¼ 1; 2; � � � ; ng ð5Þ

Among them, ri = 2cos(2πi/p), p is the smallest prime number that satisfies the inequality (p
−3)/2�d. The following formula can map P(k) to the search space where the population is

located:

Xj
k ¼ aj þmodðPðkÞj; 1Þ∗ðbj � ajÞ ð6Þ

In the formula, Xj
k represents the position of the kth sparrow in the jth dimension. aj and bj

respectively denote the lower and upper limits of the jth dimension.

Fig 1(A) is the initial population generated by random initialization. Fig 1(B) is the initial

population generated by good point set initialization. By comparison, it can be found that the

effect of initializing the population with a good point set is better.
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4.2.2 Proportion-Adaptive strategy. According to the foraging mechanism of the spar-

row, it is known that the discoverers and followers are responsible for global search and local

search, respectively. However, since the proportion of discoverers in the population is con-

stant, this will cause the algorithm to be unable to balance the two search methods. In the early

stage of the algorithm, the search space is large, and the number of discoverers is small, which

cannot carry out sufficient global search. In the later stage of the algorithm, the search area

gradually decreases, the number of discoverers is larger, and the number of followers is

smaller, which cannot carry out sufficient local search. To this end, this paper addressed the

above problem by dynamically adjusting the percentage of discoverers in the population. The

formula is as follows:

P ¼ min þ max � minð Þ∗cos
p

2
∗

t
T

� �2
 !

ð7Þ

Where max_ and min_ represent the maximum and minimum values of the proportion of

the population occupied by the discoverer, respectively. t is the current number of iterations. T

is a constant, denoting the total number of iterations. When max_ = 0.7, min_ = 0.2, and

T = 20, the change in the proportion of the population occupied by the discoverer sparrow is

shown in Fig 2.

Fig 2 shows the changes in the proportion of discoverers throughout the entire iteration

process. It can be observed that in the early stage, the proportion of discoverers is larger, which

allows for sufficient global search. In the later stage, the proportion of discoverers gradually

decreases, the proportion of followers increases, and the local search capability is enhanced.

4.2.3 Improved location update method. In the sparrow search algorithm, if the alarm

value is less than the safety value, the position update formula for the discoverers is:

Xtþ1

i ¼ Xt
i � exp �

i
a � T

� �

ð8Þ

The updated position is the present position multiplied by the exponential function with

the natural logarithm as the base. Through analysis, it can be found that the search range of the

discoverer is gradually decreasing and tending to zero. This will affect the convergence speed

Fig 1. Comparison of the initial population. (a) Random Initialization. (b) Good point set Initialization.

https://doi.org/10.1371/journal.pone.0303688.g001
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of the algorithm and make the algorithm prone to local optimum. To address this issue, this

paper has modified the position update formula for the discoverers, as shown in the following

equation:

Xtþ1

i ¼
Xt

i � ð1þ QÞ; R2 < ST

Xt
i þ Q � L; R2 � ST

ð9Þ

(

This paper improved the traditional SSA through the above three strategies and named it

the multi-strategy modified sparrow search algorithm (MSMSSA). The implementation proce-

dure of MSMSSA is illustrated in Algorithm 1.
Algorithm 1: The framework of the MSMSSA.
Input:
T: the total number of iterations
max_: the maximum proportion of discoverers in the population
min_: the minimum proportion of discoverers in the population
number: the number of sentinels
ST: the safety value

Fig 2. Dynamic change diagram of the proportion of discoverer sparrows.

https://doi.org/10.1371/journal.pone.0303688.g002
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Initializing a population of n sparrows using the good point set
method
Establish a fitness function F(X), where X = (x1,x2,� � �xd)
Output: Xbest, Fg
Calculate fitness values and sort them, recording the current best and
worst individuals
while (t � T)

Calculate P
R2 = rand(1)
for i = 1 to P*n do

Update the location of discoverers according to Eq (9)
end for
for i = P*n+1 to n do

Update the location of followers according to Eq (3)
end for
for i = 1 to number do

Update the location of sentinels according to Eq (4)
end for
Calculate the fitness values of the new location and update if

it is better
t = t + 1

end while
return Xbest, Fg

4.3 MSMSSA-LSTM model

The real target of cross-variety arbitrage trading is the spread between different futures con-

tracts. When the spread is higher than the equilibrium state, a short strategy is adopted, and

when it is lower than the equilibrium state, a long strategy is adopted. Profits can be obtained

through the regression of spread. Therefore, in order to seek higher returns, it is particularly

important to accurately predict the spread. Since the LSTM model performs excellently in

dealing with time series problems, this paper builds a spread prediction model for futures data

based on it. Selecting appropriate hyperparameters in LSTM can effectively improve the topol-

ogy of the network model and enhance its fitting and generalization capabilities. As a conse-

quence, to match the network model structure with the characteristics of futures data, this

paper combines the MSMSSA algorithm with the LSTM model to construct a MSMSSA-LSTM

prediction model.

4.3.1 Structure of MSMSSA-LSTM. In the MSMSSA-LSTM model, the network struc-

ture of LSTM mainly includes the input layer, LSTM layer, Dense layer, and output layer. The

objective of the MSMSSA algorithm optimization is the learning rate, the number of model

training, the number of neurons in two hidden layers, and the size of the time window, which

are five hyperparameters. Based on the parameters set in advance, the first generation of the

sparrow population is generated using the method of initializing with a good point set, and

LSTM modeling is carried out for individuals in the population in turn. The mean square

error (MSE) of the model on the validation set is used as the fitness function of the MSMSSA

algorithm, and its calculation formula is as follows:

f ¼
1

n

Xn

i¼1

ðŷi � yiÞ
2

ð10Þ

Among them, n is the sample size of the validation set. ŷi and yi respectively represent the

predicted value and the actual value of the i-th sample.
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According to the fitness values of each individual in the sparrow population, they are

divided into discoverers and followers, and their positions are updated by Formulas (9) and

(3). A certain number of vigilant sparrows are randomly selected and updated according to

Formula (4). It is judged whether the termination condition is satisfied. If it is satisfied, the

optimal value of the target parameter is output. Otherwise, it is re-divided. Continue to update

position information and calculate fitness values until the termination condition is satisfied.

Finally, the LSTM model is constructed based on the obtained optimal value of the target

parameter to realize arbitrage spread prediction. The structure of the MSMSSA-LSTM model

is shown in Fig 3.

4.3.2 Algorithm flow of MSMSSA-LSTM. The specific steps for optimizing LSTM net-

work hyperparameters using the MSMSSA algorithm are as follows:

Step 1. Process the data. Determine the input features of the model. Check whether the data

is missing, abnormal, disordered, etc. If it exists, process the data through corresponding pre-

processing operations. Normalize the data. Divide the data into training sets, validation sets,

and test sets according to a certain proportion.

Step 2. Set the parameters. Set the parameters in the MSMSSA algorithm, such as popula-

tion size, number of iterations, maximum and minimum proportions of the discoverer spar-

row in the population, number of watchers, safety values, etc.

Step 3. Generate the initial population. Based on parameters such as the number of popula-

tions, the dimension of the search space, the upper and lower limits of each target parameter

value, etc., generate the initial population through the method of initializing the good point

set.

Step 4. Calculate the fitness value. Perform LSTM modeling according to the target parame-

ters corresponding to each sparrow, return the mean square error on the validation set as its

fitness value, sort the fitness values, and find out the best and worst sparrow individuals.

Fig 3. The structure of the MSMSSA-LSTM model.

https://doi.org/10.1371/journal.pone.0303688.g003
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Step 5. Update the location information. Calculate the number of discoverers, followers,

and watchers, update their location information according to Formulas (9), (3)~(4), compare

the global optimal solution, and update the optimal fitness value.

Step 6. Determine the termination condition. When the number of iterations reaches the

maximum, return the optimal value of the target parameters. Otherwise, go back to step 4 and

continue execution.

Step 7. Build the model. Build the LSTM model according to the optimal value of the target

parameters.

Step 8. Make a prediction. Train the model with the training set and validation set data, use

the trained model to predict the test set, and get the prediction results.

The flowchart of the MSMSSA-LSTM algorithm is shown in Fig 4.

5 Experiments

To prove the effectiveness of MSMSSA-LSTM, this paper compared this method with MLP,

RNN, LSTM, GRU, and SSA-LSTM using the same training set and test set data under the

same operating environment. All the experiments are based on the TensorFlow deep learning

framework under the CentOS operating system, configured with NVIDIA CUDA 10.1 and

cuDNN 7.6 deep learning libraries to accelerate GPU computing. The Python version is 3.7,

Fig 4. The flowchart of the MSMSSA-LSTM algorithm.

https://doi.org/10.1371/journal.pone.0303688.g004
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and the TensorFlow version is 2.3. According to the influence factors, including the opening

price spread, highest price spread, lowest price spread, closing price spread, moving average

convergence and divergence (MACD), differential exponential average (DEA), difference

(DIF), and price spread fluctuation, the next minute’s closing price spread is predicted.

5.1 Data

5.1.1 Data description. This article selects the main contract data of rebar and hot coil

futures from December 4, 2020, to February 16, 2023, as the research object. To ensure the

continuity of the data and avoid the impact of contract delisting, another main contract data is

used as a replacement when it is two months away from the delivery period. At the same time,

to improve the predictive performance of the model, a large amount of data is needed for

training. Therefore, this article uses high-frequency trading data of 1-minute prices of rebar

and hot coil futures for research, totaling 180000 sets of data. They are divided into training

and testing sets in an 8:2 ratio. The training set is mainly used for optimizing target parameters

and training the model, while the testing set is mainly used to verify the predictive effect of the

model outside of the sample. The data is sourced from Eastern Wealth Choice data. Fig 5

shows the 1-minute trend of the closing prices of two futures in 2021.

As can be visualized from the chart above, the price trends of rebar and hot coil futures are

extremely similar. Table 1 shows the result of a basic statistical analysis of the price data for the

two futures.

Fig 5. The 1-minute trend of the closing prices of two futures in 2021.

https://doi.org/10.1371/journal.pone.0303688.g005

Table 1. The results of basic statistical analysis.

Variety Maximum Minimum Average Skewness Kurtosis

Hot coil 6723 3452 4742 0.1639 2.0922

Rebar 6198 3392 4570 0.1627 2.1290

https://doi.org/10.1371/journal.pone.0303688.t001
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5.1.2 Correlation analysis. Arbitrage trading can only be carried out among futures varie-

ties with a strong correlation. The calculation formula for correlation is as follows:

bXY ¼

Xn

i¼1

ðXi �
�XÞðYi �

�Y Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðXi �
�XÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðYi �
�Y Þ2

s ð11Þ

Where X and Y denote the price series of two different futures varieties respectively. n is the

total number of samples. Xi and Yi represent the ith sample in the respective price series. �X
and �Y are the average values of the respective price series. The correlation between the two

futures of rebar and hot coil can be obtained by using Eq (11) as shown in Table 2.

Table 2 shows that the correlation coefficient of rebar and hot coil is 0.9905, indicating that

there is a very strong correlation between the two, and arbitrage trading can be constructed.

However, the strength of the correlation cannot reflect the stability of the spread between the

two futures varieties, so a cointegration test needs to be performed.

5.1.3 Cointegration test. The cointegration test can only be performed if each data series

satisfies the same order of single integrality. Therefore, this research needs to carry out the unit

root test on the price series of rebar and hot coil futures first to determine their smoothness

and the order of single integrality. This research uses Eviews software to conduct an ADF test

to get Table 3.

As can be seen from the table, the ADF test values of HC and RB are both greater than the

critical values at the 1%, 5%, and 10% significance levels, and the P values are all greater than

0.05. Therefore, the price series of hot coil and rebar futures have a unit root and are non-sta-

tionary series. On this basis, the first-order difference is performed to obtain the series ρHC

and ρRB. The ADF test values are all less than the critical values at the 1%, 5%, and 10% signifi-

cance levels, and the P values are all less than 0.05. Therefore, there is no unit root and it is a

stationary series. Therefore, the price series of these two futures varieties are both first-order

integrated, meet the cointegration conditions, and can undergo cointegration testing.

This paper further tests the cointegration relationship between the price series of hot coil

and rebar futures using the EG two-step method. First, the OLS method is used to obtain the

following cointegration model:

HC ¼ � 459:8848þ 1:138095RBþ εt0 ð12Þ

Table 2. The correlation coefficient of rebar and hot coil futures.

Rebar Hot coil

Rebar 1.0000 0.9905

Hot coil 0.9905 1.0000

https://doi.org/10.1371/journal.pone.0303688.t002

Table 3. ADF unit root test.

Variety ADF test value 1% critical value 5% critical value 10% critical value P-value Conclusion

HC (Hot coil) -0.198257 -2.564975 -1.940826 -1.616699 0.6150 Unsteady

RB (Rebar) -0.087496 -2.564975 -1.940826 -1.616699 0.6536 Unsteady

ρHC -309.5277 -2.564975 -1.940826 -1.616699 0.0001 Steady

ρRB -309.3130 -2.564975 -1.940826 -1.616699 0.0001 Steady

https://doi.org/10.1371/journal.pone.0303688.t003
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Among them, HC is the explained variable and RB is the explanatory variable. εt0 is random

error. In this case, the value of R2 is 0.981099, which indicates that the model has a 98.1% prob-

ability of explaining the real situation well, and the fitting effect is good. Next, the smoothness

of the residual series is tested by the ADF method and the results are shown in Table 4.

Table 4 illustrates that at the 1% significance level, the ADF test value of the residual series

is less than the critical value, that is, the null hypothesis is rejected and the series is considered

to be stationary. According to EG cointegration theory, the price series of hot coil and rebar

futures have a stable long-term equilibrium relationship.

5.2 Evaluation criteria

To quantitatively measure the prediction effect of each model, this paper uses the mean abso-

lute percentage error (MAPE), the root mean square error (RMSE), the mean absolute error

(MAE), and the coefficient of determination (R2) as evaluation indexes. If the corresponding

values of MAPE, RMSE, and MAE are smaller, and R2 is closer to 1, it indicates that the predic-

tion effect of the model is better. The specific calculation formula is as follows:

MAPE ¼
1

n

Xn

i¼1

j
ŷi � yi

yi
j ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðŷi � yiÞ
2

s

ð14Þ

MAE ¼
1

n

Xn

i¼1

jŷi � yij ð15Þ

R2 ¼

Xn

i¼1

ðŷi � �yÞ2

Xn

i¼1

ðyi � �yÞ2
ð16Þ

Among them, n represents the total number of samples in the test set. ŷi and yi denote the

predicted and true values of the model, respectively. �y indicates the average of all true values.

5.3 Model implementation

5.3.1 Initialization of parameters. In the MSMSSA-LSTM model, this research chooses

the mean square error MSE as the loss function, uses the Adam algorithm as the optimizer,

and sets Dropout to 0.1 to prevent overfitting. The number of sparrows in the population is 15,

in which the maximum value of the proportion of discoverers is 0.7 and the minimum value is

0.2. The safe value is 0.8. The percentage of watchers is set to 20%. The number of iterations of

the algorithm is 20. There are five objective parameters to be optimized by the MSMSSA algo-

rithm, which are the learning rate, the number of iterations, the number of neurons in the two

hidden layers, and the time step. Before starting the optimization, each objective parameter

Table 4. Results of residual series stationarity test.

Residual series ADF test value 1% critical value 5% critical value 10% critical value

et -4.377162 -3.900159 -3.337733 -3.046223

https://doi.org/10.1371/journal.pone.0303688.t004
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should be limited to a reasonable search range to avoid the waste of resources. In this paper,

combined with relevant references and existing research [34–36], the appropriate search range

of target parameters is finally selected, as shown in Table 5.

5.3.2 Comparison of algorithms. To verify the performance of the improved sparrow

search algorithm, the SSA-LSTM model was designed for comparison. Meanwhile, in order to

avoid deviations in the results of a single run, this study conducted 10 independent experi-

ments on MSMSSA-LSTM and SSA-LSTM, respectively. During the experiments, the same

parameter settings were used for both methods. Specific details can be found in 5.3.1. Table 6

shows the optimization results of the objective function.

It can be found that the best value, the worst value, the average value, and the median value

of the optimization results of the MSMSSA algorithm are better than those of the SSA algo-

rithm, which indicates that MSMSSA has stronger spatial search capability and higher conver-

gence accuracy. The standard deviation and variance of the MSMSSA algorithm are also

smaller than the SSA algorithm, indicating that MSMSSA has higher stability.

In addition, this research also plots the optimization results of the two algorithms on the

objective function into a box plot. As shown in Fig 6. It is not difficult to see that the median

and mean of box-plot produced by the MSMSSA algorithm are smaller than those of the SSA

algorithm. Therefore, the box-plot of the MSMSSA algorithm is in a lower position, which

indicates that the overall quality of the solution generated by the MSMSSA algorithm is better

than that of the SSA algorithm. At the same time, the IQR of the box-plot generated by the

MSMSSA algorithm and the SSA algorithm are 8.91e-06 and 1.178e-05, respectively, indicat-

ing that the MSMSSA algorithm produces smaller discrete degrees and more stable optimiza-

tion results.

Fig 7 shows the convergence curves of the best optimization results of the two algorithms.

The MSMSSA algorithm found the minimum value of the objective function 1.6646e-04 at the

6th iteration. The SSA algorithm found the optimal objective function value at the 10th itera-

tion, which is 1.6807e-04. Therefore, the MSMSSA algorithm outperforms the SSA algorithm

both in terms of convergence speed and optimization accuracy.

According to the above analysis, the MSMSSA algorithm has stronger space exploration

performance, more accurate optimization precision, better robustness, and faster convergence

speed than the standard sparrow search algorithm. This indicates that the MSMSSA algorithm

can find a better combination of hyperparameters in the LSTM model, and provide help for

constructing high-precision arbitrage spread prediction model.

5.3.3 Optimization of target parameters. In 10 independent experiments, when the

objective function achieves the minimum value, the changes of each parameter during the

Table 5. The search range for target parameters.

Target parameters Search range

Learning rate [0.001, 0.01]

Epoch [10, 100]

Neuron numbers in the first hidden layer [1, 100]

Neuron numbers in the second hidden layer [1, 100]

Time step [5, 50]

https://doi.org/10.1371/journal.pone.0303688.t005

Table 6. The optimization results of the objective function.

Algorithm Best Worst Mean Median STD Variance

SSA 1.6807e-04 1.8595e-04 1.7654e-04 1.7501e-04 6.0240e-06 3.6288e-11

MSMSSA 1.6646e-04 1.7667e-04 1.7041e-04 1.6915e-04 3.9855e-06 1.5884e-11

https://doi.org/10.1371/journal.pone.0303688.t006
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optimization process are shown in Fig 8 and Table 7. It is not difficult to find that when the

MSMSSA algorithm is executed to the 6th round, the fitness value is 0.00016646. At the same

time, this value remains stable in the subsequent iteration process and no longer changes, indi-

cating that the optimal parameter combination in the model has been found, that is, the learn-

ing rate is 0.00775587, the number of epochs is 95, the number of neurons in the LSTM layer

is 40, the number of neurons in the Dense layer is 2, and the time step is 45. This paper con-

structs a high-precision LSTM model to achieve arbitrage spread prediction through the opti-

mal value of these parameters.

5.4 Experimental results and analysis

In this paper, MLP, RNN, LSTM, and GRU, which are more widely used time series forecast-

ing models in the financial field, are chosen as contrast experiments. At the same time, to dem-

onstrate the effectiveness of our improvement on the SSA, an SSA-LSTM model was designed

for validation. In the previous 10 independent experiments, the optimal combination of

parameters searched by the SSA is as follows: the learning rate is 0.00827520, the number of

model training is 48, the number of neurons in the first and second hidden layers is 70 and 3,

Fig 6. Box-plot of the optimization results of the two algorithms.

https://doi.org/10.1371/journal.pone.0303688.g006
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and the time step is 24. The same training set data is used to train each model, and the test set

data is predicted based on the trained model. Figs 9–14 show the prediction results.

In Figs 9–14, among the six forecasting models, the broken line fitting degree of real value

and predicted value is MSMSSA-LSTM, SSA-LSTM, GRU, LSTM, RNN, MLP from high to

low. Among them, MSMSSA-LSTM has the highest degree of broken line fitting which almost

coincides with each other, and MLP has the lowest degree of broken line fitting.

In order to more intuitively reflect the predictive performance of various models on futures

spread data and to demonstrate the effectiveness and superiority of the MSMSSA-LSTM

model, this paper calculated the evaluation indicators for each model based on their predicted

values and real value. The results are shown in Table 8.

As shown in Table 8, the MLP model has the largest MAPE, RMSE, and MAE values of

0.0212, 7.5799, and 5.6275, respectively, and the smallest R2 value of 0.9918, indicating that the

model is hard to fit effectively to futures spread data and has poor predictive performance.

Compared with MLP, the predictive performance of RNN has been improved, with MAPE,

RMSE, MAE, and R2 being 0.0148, 4.7028, 3.4576, and 0.9968, respectively. However, due to

Fig 7. Convergence curves of the best optimization results of the two algorithms.

https://doi.org/10.1371/journal.pone.0303688.g007
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the defects of gradient vanishing, gradient explosion, and insufficient long-term memory abil-

ity in RNN models, there is still plenty of room for improvement in their prediction accuracy.

LSTM effectively solves the problems of the RNN model by introducing gate structure and sig-

nificantly improves the predictive performance. The four evaluation indicators are, in order,

0.0109, 3.3225, 2.4217, and 0.9984. As a variant of the LSTM model, GRU has MAPE, RMSE,

MAE, and R2 values of 0.0115, 3.2126, 2.3824, and 0.9985, respectively. From the evaluation

indicators, GRU is slightly better than LSTM. The SSA-LSTM model reduces prediction error

by using the traditional sparrow search algorithm to find the optimal hyperparameter combi-

nation in the LSTM network, with evaluation indicators of 0.0095, 2.8525, 1.9701, and 0.9988,

respectively. This paper constructs a MSMSSA-LSTM model by improving the SSA algorithm.

Its MAPE, RMSE, and MAE are the smallest, at 0.0088, 2.6409, and 1.8251 respectively, and its

R2 is the largest, at 0.9990. Compared with the other five models, the MAPE of

MSMSSA-LSTM decreased by 58.5%, 40.5%, 19.3%, 23.5%, and 7.4%, respectively. The RMSE

decreased by 65.2%, 43.8%, 20.5%, 17.8%, and 7.4%, respectively. The MAE decreased by

67.6%, 47.2%, 24.6%, 23.4%, and 7.4%, respectively. The experimental results show that the

MSMSSA-LSTM model proposed in this paper has significantly better prediction accuracy

than the other five methods, and the effect is the best.

Fig 8. Optimization iterative process of target parameters.

https://doi.org/10.1371/journal.pone.0303688.g008

Table 7. Optimization iterative process of target parameters.

Iterative process Fitness value Learning rate Epoch Neuron numbers in the first hidden layer Neuron numbers in the second hidden layer Time step

1 0.00024109 0.00139690 47 76 13 43

2 0.00019869 0.00117265 41 72 8 35

3-5 0.00017066 0.00131146 40 79 5 15

6-20 0.00016646 0.00775587 95 40 2 45

https://doi.org/10.1371/journal.pone.0303688.t007
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According to the above analysis, the MSMSSA-LSTM model has a good predictive ability

for the trend of arbitrage spread. This can help investors formulate more scientific trading

strategies and seek higher returns.

6 Conclusion

This research proposes a novel technique for the problem of arbitrage spread forecasting

named MSMSSA-LSTM. The technique utilizes MSMSSA to automatically seek the optimal

Fig 9. Comparison of the predicted value and the real value for MLP.

https://doi.org/10.1371/journal.pone.0303688.g009

Fig 10. Comparison of the predicted value and the real value for RNN.

https://doi.org/10.1371/journal.pone.0303688.g010
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combination of hyperparameters in the LSTM model. This effectively solves the problem that

hyperparameters in LSTM are difficult to determine and cannot be adjusted with training.

Based on the standard sparrow search algorithm, MSMSSA introduces the good point set the-

ory, the proportion-adaptive strategy, and the improved location update method to further

enhance the spatial search capability of SSA. This paper innovatively applies the MSMSSA

algorithm and LSTM model to the field of futures arbitrage and has achieved good results. The

newly proposed model is evaluated using real spread data of rebar and hot coil futures in the

Fig 11. Comparison of the predicted value and the real value for LSTM.

https://doi.org/10.1371/journal.pone.0303688.g011

Fig 12. Comparison of the predicted value and the real value for GRU.

https://doi.org/10.1371/journal.pone.0303688.g012
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Fig 13. Comparison of the predicted value and the real value for SSA-LSTM.

https://doi.org/10.1371/journal.pone.0303688.g013

Fig 14. Comparison of the predicted value and the real value for MSMSSA-LSTM.

https://doi.org/10.1371/journal.pone.0303688.g014

Table 8. Comparison of six models evaluation indexes.

Model MAPE RMSE MAE R2

MLP 0.0212 7.5799 5.6275 0.9918

RNN 0.0148 4.7028 3.4576 0.9968

LSTM 0.0109 3.3225 2.4217 0.9984

GRU 0.0115 3.2126 2.3824 0.9985

SSA-LSTM 0.0095 2.8525 1.9701 0.9988

MSMSSA-LSTM 0.0088 2.6409 1.8251 0.9990

https://doi.org/10.1371/journal.pone.0303688.t008
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Chinese futures market, and compared with the SSA-LSTM model and several classical

machine learning methods. The key findings are as follows:

1. Compared with the SSA algorithm, the MSMSSA algorithm has stronger global optimiza-

tion ability and better robustness. Faced with hyperparameter optimization problems in

LSTM models, the MSMSSA algorithm has shown better applicability.

2. Compared with several classical machine learning methods, the mean absolute error of the

proposed model is reduced by at least 23.4%. This indicates that using the MSMSSA algo-

rithm to optimize the LSTM network can minimize the influence of human factors and

improve the generalization ability and prediction effect of the model.

In summary, the experimental results show that the MSMSSA-LSTM model outperforms

all comparative experiments and has the highest accuracy in arbitrage spread trend prediction.

The limitation of this model is that the training time is long. During the hyperparameter opti-

mization process, the LSTM network may run hundreds or thousands of times. The time cost

is very high. Therefore, future research will continue to accelerate algorithm optimization and

improve model performance.
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