Skip to main content
. Author manuscript; available in PMC: 2025 May 1.
Published in final edited form as: Trends Endocrinol Metab. 2024 Feb 29;35(5):425–438. doi: 10.1016/j.tem.2024.02.003

Table 2.

Studies Evaluating Inflammation in the Renal System

Pre-Clinical Studies
Reference Model Treatment Primary Finding Inflammatory Measures Additional Findings
Hasan R et al. [37] Long Evans rats exposed to isoprenaline to induce renal oxidative damage Canagliflozin for 2 weeks ↑Antioxidant/anti-inflammatory signaling pathways ↓Inflammatory cell infiltration
↑AMPK
↑Akt
↑eNOS
↓iNOS
↓NOX4
↓Caspase 3
↓Apoptosis
↓Renal fibrosis
Vallon V et al. [38] Type 1 diabetic Akita mice Empagliflozin for 15 weeks ↓Renal hyperfiltration ↓CCL2
↓CD14
↓IL-6
↓TIMP2
↓NF-κB
↓Albuminuria
↓Kidney growth makers
↔NOX2, NOX4, CCL5, TGFβ, renal collagen
Terami N et al. [39] Diabetic db/db mice and cultured tubular epithelial cells (mProx24) Dapagliflozin for 12 weeks in vivo and incubation with dapagliflozin in vitro ↓Progression of diabetic
nephropathy
↓Macrophage infiltration (CD14, CD11c, CD206)
Mcp1, Tgfb expression
↓ROS
↓β-cell damage
↓Albuminuria
↓Renal fibrosis
Birnbaum Y et al. [40] BTBR ob/ob or wild-type mice Dapagliflozin, vehicle, or dapagliflozin + saxagliptin for 8 weeks ↓BUN ↓NLRP3 inflammasome activation
Tnfa, Il1b, Il6 expression
↓AMPK phosphorylation
Zaibi N et al. [41] Human proximal tubular cells (HK-2) Dapagliflozin for 24 hours in vitro ↓Oxidative stress ↓ROS ↓Apoptosis Modified calcium dynamics
Das NA et al. [42] Human proximal tubular cells (HK-2) Empagliflozin for 24 hours in vitro ↓Epithelial to mesenchymal transition
↓Epithelial cell migration
↓ROS
↓NF-κB activation
↓p38 MAPK
↓miR-21
↓MMP2
Ishibashi Y et al. [43] Primary cultured human proximal tubular cells from normal kidney Tofogliflozin for 24 hours in vitro ↓Oxidative stress
↓Profibrotic factors
↓ROS
↓MCP-1
↓Apoptosis
Yao D et al. [44] Human proximal tubular cells (HK-2) Dapagliflozin for 48 hours in vitro ↓HMGB1-RAGE-NF-κB signaling pathway ↓ROS
↓MCP-1
↓NF-κB activation
↓Fibrosis makers (FN and Col 1)
↓ICAM-1
Satou R et al. [46] Mouse proximal tubular cells cultured in high glucose conditions Canagliflozin in vitro ↓Angiotensinogen ↓ROS
Woods TC et al. [47] New Zealand obese mice on high fat diet to induce diabetes Canagliflozin for 6 weeks ↓Angiotensinogen
↓Tubular fibrosis
↓ROS
↓Monocyte/macrophage infiltration
Normalization of systolic BP
Ke Q et al. [48] Mouse C57BL/6 with kidney fibrosis induced by ischemic/reperfusion injury and primary proximal tubular epithelial cells Dapagliflozin for 1 week in vivo and incubation with dapagliflozin in vitro ↓Renal fibrosis
↑Itaconate (metabolic from TCA cycle)
↓NLRP3 inflammasome
activation
↓Caspase 1
↓IL-1β
↓IL-18
↓mTOR signaling
↓HIF-1α signaling
Pirklbauer M et al. [49] Human proximal tubular cells (HK-2 and RPTEC/TERT1) treated with TGF-β Empagliflozin or canagliflozin in vitro ↓Mediators of renal fibrosis ND ↓Tenascin C (TNC)
↓Thrombospondin 1(THBS1)
↓Platelet derived growth factor subunit B (PDGF-B)