Table 2.
Studies Evaluating Inflammation in the Renal System
| Pre-Clinical Studies | |||||
|---|---|---|---|---|---|
| Reference | Model | Treatment | Primary Finding | Inflammatory Measures | Additional Findings |
| Hasan R et al. [37] | Long Evans rats exposed to isoprenaline to induce renal oxidative damage | Canagliflozin for 2 weeks | ↑Antioxidant/anti-inflammatory signaling pathways | ↓Inflammatory cell infiltration ↑AMPK ↑Akt ↑eNOS ↓iNOS ↓NOX4 ↓Caspase 3 |
↓Apoptosis ↓Renal fibrosis |
| Vallon V et al. [38] | Type 1 diabetic Akita mice | Empagliflozin for 15 weeks | ↓Renal hyperfiltration | ↓CCL2 ↓CD14 ↓IL-6 ↓TIMP2 |
↓NF-κB ↓Albuminuria ↓Kidney growth makers ↔NOX2, NOX4, CCL5, TGFβ, renal collagen |
| Terami N et al. [39] | Diabetic db/db mice and cultured tubular epithelial cells (mProx24) | Dapagliflozin for 12 weeks in vivo and incubation with dapagliflozin in vitro | ↓Progression of diabetic nephropathy |
↓Macrophage infiltration (CD14, CD11c, CD206) ↓Mcp1, Tgfb expression ↓ROS |
↓β-cell damage ↓Albuminuria ↓Renal fibrosis |
| Birnbaum Y et al. [40] | BTBR ob/ob or wild-type mice | Dapagliflozin, vehicle, or dapagliflozin + saxagliptin for 8 weeks | ↓BUN | ↓NLRP3 inflammasome activation ↓Tnfa, Il1b, Il6 expression |
↓AMPK phosphorylation |
| Zaibi N et al. [41] | Human proximal tubular cells (HK-2) | Dapagliflozin for 24 hours in vitro | ↓Oxidative stress | ↓ROS | ↓Apoptosis Modified calcium dynamics |
| Das NA et al. [42] | Human proximal tubular cells (HK-2) | Empagliflozin for 24 hours in vitro | ↓Epithelial to mesenchymal transition ↓Epithelial cell migration |
↓ROS ↓NF-κB activation |
↓p38 MAPK ↓miR-21 ↓MMP2 |
| Ishibashi Y et al. [43] | Primary cultured human proximal tubular cells from normal kidney | Tofogliflozin for 24 hours in vitro | ↓Oxidative stress ↓Profibrotic factors |
↓ROS ↓MCP-1 |
↓Apoptosis |
| Yao D et al. [44] | Human proximal tubular cells (HK-2) | Dapagliflozin for 48 hours in vitro | ↓HMGB1-RAGE-NF-κB signaling pathway | ↓ROS ↓MCP-1 ↓NF-κB activation |
↓Fibrosis makers (FN and Col 1) ↓ICAM-1 |
| Satou R et al. [46] | Mouse proximal tubular cells cultured in high glucose conditions | Canagliflozin in vitro | ↓Angiotensinogen | ↓ROS | |
| Woods TC et al. [47] | New Zealand obese mice on high fat diet to induce diabetes | Canagliflozin for 6 weeks | ↓Angiotensinogen ↓Tubular fibrosis |
↓ROS ↓Monocyte/macrophage infiltration |
Normalization of systolic BP |
| Ke Q et al. [48] | Mouse C57BL/6 with kidney fibrosis induced by ischemic/reperfusion injury and primary proximal tubular epithelial cells | Dapagliflozin for 1 week in vivo and incubation with dapagliflozin in vitro | ↓Renal fibrosis ↑Itaconate (metabolic from TCA cycle) |
↓NLRP3 inflammasome activation ↓Caspase 1 ↓IL-1β ↓IL-18 |
↓mTOR signaling ↓HIF-1α signaling |
| Pirklbauer M et al. [49] | Human proximal tubular cells (HK-2 and RPTEC/TERT1) treated with TGF-β | Empagliflozin or canagliflozin in vitro | ↓Mediators of renal fibrosis | ND | ↓Tenascin C (TNC) ↓Thrombospondin 1(THBS1) ↓Platelet derived growth factor subunit B (PDGF-B) |