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Abstract
Purpose  The variable responses to immunotherapy observed in gastric cancer (GC) patients can be attributed to the intricate 
nature of the tumor microenvironment. Glutathione (GSH) metabolism significantly influences the initiation and progres-
sion of gastric cancer. Consequently, targeting GSH metabolism holds promise for improving the effectiveness of Immune 
checkpoints inhibitors (ICIs).
Methods  We investigated 16 genes related to GSH metabolism, sourced from the MSigDB database, using pan-cancer 
datasets from TCGA. The most representative prognosis-related gene was identified for further analysis. ScRNA-sequencing 
analysis was used to explore the tumor heterogeneity of GC, and the results were confirmed by  Multiplex immunohisto-
chemistry (mIHC).
Results  Through DEGs, LASSO, univariate and multivariate Cox regression analyses, and survival analysis, we identi-
fied GGT5 as the hub gene in GSH metabolism with the potential to promote GC. Combining CIBERSORT, ssGSEA, and 
scRNA analysis, we constructed the immune architecture of GC. The subpopulations of T cells were isolated, revealing 
a strong association between GGT5 and memory CD8+ T cells. Furthermore, specimens from 10 GC patients receiving 
immunotherapy were collected. mIHC was used to assess the expression levels of GGT5 and memory CD8+ T cell markers. 
Our results established a positive correlation between GGT5 expression, the enrichment of memory CD8+ T cells, and a 
suboptimal response to immunotherapy.
Conclusions  Our study identifies GGT5, a hub gene in GSH metabolism, as a potential therapeutic target for inhibiting the 
response to immunotherapy in GC patients. These findings offer new insights into strategies for optimizing immunotherapy 
of GC.
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Abbreviations
GC	� Gastric cancer
GSH	� Glutathione
ICIs	�  Immune checkpoint inhibitors
ROS	� Reactive oxygen species
TCM	� Central memory CD8+ T cells

TEM	� Effector memory CD8+ T cells
TME	� Tumor microenvironment

Introduction

Gastric cancer (GC) is one of the most prevalent digestive 
malignancies, ranking fifth in terms of tumor morbidity and 
fourth in terms of mortality [1]. Its incidence is particularly 
high in East Asia [2]. Although reports indicate a decline 
in its incidence rates over the past few years, advanced GC 
still has an adverse prognosis, with a five-year survival rate 
of 10% to 30% [3, 4].

In recent years, immunotherapy has shown promise for 
improving the clinical outcome of patients with GC. How-
ever, due to the strong tumor heterogeneity of GC, tumor 
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immune escape events occur frequently, and the efficacy of 
immunotherapy remains limited and uncertain. According 
to the results of CheckMate-649 [5], patients with GC who 
received Nivolumab in combination with chemotherapy had 
better clinical benefits than those treated with chemotherapy 
alone, regardless of the PD-L1 Combined Positive Score 
(CPS). In the combination treatment group, the two-year 
overall survival (OS) rate was nearly 40%, progression-free 
survival (PFS) was significantly increased, and the objec-
tive response rate (ORR) was almost 70%. However, the 
results of KEYNOTE-062 suggested that immunotherapy 
combined with chemotherapy did not provide any advan-
tage over chemotherapy alone [6]. Therefore, the differ-
ences in GC patients' response to immunotherapy need to be 
addressed. It is essential to investigate the likely mechanisms 
and determine predictive biomarkers for immunotherapy 
effectiveness.

The metabolism of tumor cells plays a significant role in 
regulating the immune response in tumors. Previous studies 
have already shown that amino acid metabolism is widely 
involved in immune responses and tumor proliferation in 
the tumor microenvironment (TME) [7]. Treatment with 
immune checkpoint inhibitors (ICIs) can enhance the tumor 
infiltration and anti-tumor function of T cells by reprogram-
ming amino acid metabolism and rebalancing nutrient uti-
lization within the TME [8, 9]. Immunotherapy-induced 
IFN-γ can inhibit glutathione (GSH) synthesis and cause 
GSH depletion, inducing tumor ferroptosis [10]. In order 
to undertake the large amount of energy required for tumor 
proliferation, invasion, and metastasis, tumor cells signifi-
cantly enhance the uptake and catabolism of glutamine, 
competing with T cells [11, 12]. Tumor cells can regulate 
reactive oxygen species (ROS) metabolism through GSH 
and NADPH produced by glutamine metabolism to maintain 
redox homeostasis [13]. Blocking GSH metabolism can not 
only inhibit tumor proliferation, but also restore anti-tumor 
immunity. Inhibition of GSH metabolism leads to a decrease 
in myeloid-derived suppressor cells (MDSCs) and facilitates 
their conversion into M1 macrophages, which promote the 
process of cross-presentation for tumor antigens and activate 
CD8+ T cells, thereby performing anti-tumor functions [14]. 
Therefore, targeting GSH metabolism has the potential to 
improve immunotherapy response and survival outcomes in 
GC patients as a novel strategy. However, the mechanism of 
GSH metabolism in regulating TME in GC patients requires 
further exploration.

Considering the issues mentioned above, we investi-
gated genes related to GSH metabolism in the Molecular 
Signatures Database (MSigDB) and used them to construct 
a prognostic gene signature based on data from The Can-
cer Genome Atlas (TCGA) public database. To under-
stand the potential mechanism of immune evasion in GC, 
we conducted CIBERSORT analysis and tumor immune 

dysfunction and exclusion (TIDE) analysis. Finally, we con-
ducted a systematic interrogation of different immune cell 
types related to hub genes through single-cell RNA (scRNA) 
sequencing analysis, aiming to elucidate the critical role of 
immune cells related to GSH metabolism in regulating tumor 
progression in GC. These findings should provide potential 
strategies to enhance the response to immunotherapy in GC.

Materials and methods

Data source

The bulk RNA-seq data (HTSeq-count format) and clini-
cal information for TCGA, which includes 11,069 samples 
from 33 types of cancer, were downloaded from the Xena 
(https://​xenab​rowser.​net/). The external validation cohort of 
GC was acquired from GSE15459 [15], included 200 pri-
mary gastric tumors based on GPL570 platform (Affymetrix 
Human Genome U133 Plus 2.0 Array). The single-cell data-
set (GSE167297 [16]) was obtained from the GEO database, 
which includes 15,729 cells from 10 human superficial and 
deep layers of diffuse-type gastric cancer using 10X Genom-
ics. Gene sets related to GSH metabolism were retrieved 
from the MSigDB database [17] (https://​www.​gsea-​msigdb.​
org/​gsea/​msigdb). Three pathways, namely Kyoto Encyclo-
pedia of Genes and Genomes (KEGG), WikiPathways (WP), 
and Gene Ontology Biological Process (GOBP), were found 
to be highly correlated. To further explore the gene signa-
tures of GSH metabolism, we performed an intersection of 
the three gene sets. All statistical analysis of data was per-
formed using R software (version 4.1.3).

Differential expression analysis and functional 
enrichment analysis

We compared the differential expression level of gene signa-
tures involving GSH metabolism across cancer types based 
on the count format data from TCGA database, using the R 
package "limma." Marker genes were then identified by set-
ting the threshold at a false discovery rate (FDR) < 0.05. To 
explore highly correlated pathways, we performed GO and 
KEGG functional enrichment analyses using the R package 
"clusterProfiler" and filtered the GO and KEGG terms with a 
cutoff of p value < 0.05 and FDR < 0.05. Finally, we created 
a circle plot using the R package "GOplot."

Construction of a prognostic model

The "glmnet" R package was used to conduct Least Abso-
lute Shrinkage and Selection Operator (LASSO) Cox regres-
sion analysis to select genes significantly associated with 
GC prognosis. Univariate and multivariate Cox regression 
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analyses were also performed to screen the most independ-
ent prognostic factors for GC patients. Ultimately, GGT5 
was identified as the hub gene for GSH metabolism in GC, 
as it was differentially expressed in both tumor and normal 
tissues and emerged as an independent prognostic factor. 
The optimal cutoff value for GGT5 was determined using 
the "surv_cutpoint" function in the "survminer" R package. 
Patients with GC were then divided into high and low group 
based on this cutoff value, and Kaplan-Meier (KM) survival 
curves and the log-rank test were constructed using the 
"survival" and "survminer" R packages. The HR value was 
calculated using the “survival” R package. RNA-seq data 
of 200 gastric cancer patients and their survival data affili-
ated from GSE15459 were analyzed for external validation. 
Patients were divided into high and low groups according 
to the optimal cutoff value of GGT5; then, the KM survival 
curve was plotted.

Clinical information on gastric cancer was collected from 
TCGA, including tumor stage, histological grade, T stage, 
N stage, and M stage. Based on these clinical characteris-
tics, patients were clustered into different risk groups. The 
expression level of GGT5 was measured in each group and 
plotted in a violin plot using the "ggplot2" package.

DCA (Decision Curve Analysis) is a method for assess-
ing the net benefit of a forecasting model. We conducted the 
DCA curve to predict the clinic benefit of GGT5 signature 
compared with another four published models using the 
“ggDCA” R package.

Estimation of immune cell infiltration

CIBERSORT analysis was used to identify differential 
infiltration of immune cells between groups with high/low 
GGT5 expression. Spearman correlation analysis was then 
employed to explore immune cell infiltration. The "ggpubr" 
package was utilized to plot immune cell abundance using 
a violin plot. Immune cells with statistically significant 
differences were selected for visualization in scatter plots 
using the "ggplot2" package. MCP-counter allows quanti-
fication of the absolute abundance of 8 immune cell pop-
ulations and 2 stromal cell populations in a mixed tissue 
from transcriptome data. EPIC (Estimating the Proportion 
of Immune and Cancer cells) can accurately detect major 
cell types in tumors directly based on gene expression lev-
els in tumors. xCell combines the ssGSEA analysis with 
deconvolution methods to understand the heterogeneity of 
cells that make up the tumor microenvironment in tumor 
samples. ESTIMATE infers the ratio of stroma and immune 
cells in a tumor sample from gene expression characteris-
tics. In our study, we conducted MCP-counter, EPIC, xCell, 
ESTIMATE analysis to validate the result of CIBERSORT 
based on the “IOBR” R package.

Additionally, we obtained markers of 28 different immune 
cell types from the TISIDB [18] database (http://​cis.​hku.​hk/​
TISIDB), an online portal for studying tumor and immune 
system interactions. Single-sample gene set enrichment 
analysis (ssGSEA) was used to investigate the relationship 
between hub genes and infiltration of the 28 immune cell 
types using the "GSVA" package.

Tumor immune dysfunction and exclusion (TIDE) 
and the relationship with immune‑related genes

To investigate immune evasion mechanisms in GC, we 
examined the dysfunction and exclusion of T cells. We 
employed TIDE analysis to predict the curative effect 
of immunotherapy. Patients with higher TIDE scores are 
more likely to experience immune escape and have a poorer 
response to ICIs. For a deeper understanding of the close 
relationship between GGT5 and immune infiltration, we vis-
ualized the correlation between GGT5 and immune-related 
genes, such as immune activation genes, immunosuppressive 
genes, chemokines, and chemokine receptors, using a bubble 
plot generated by the "corrplot" package.

ScRNA data processing and dimensionality 
reduction

The GC scRNA-seq data used in this study were obtained 
from GSE167297, which was published in the GEO data-
base. The dataset consisted of 10 samples, and all raw data 
were processed using the "Seurat" package. Quality con-
trol was performed according to the following criteria: (1) 
the cell count of each sample was at least 500, and (2) the 
proportion of mitochondrial genes was less than 5%. Next, 
the "NormalizeData" function was used to normalize the s4 
data, and the "FindVariableFeatures" function was applied 
to recognize the top 2000 highly variable genes (HVGs). The 
selected HVGs were further identified, centered, and scaled 
using the "ScaleData" function.

Cell clustering, annotation, and marker genes 
identification

According to principal component analysis (PCA), scores 
were assigned to the Seurat data. Each PC term included half 
of its features, which combined information related to the 
features. The "RunPCA" function was used for dimension 
reduction of highly variable genes (HVGs). Spectral clus-
tering was then employed to identify different cell clusters. 
The "FindNeighbors" and "FindClusters" functions were 
subsequently utilized for further clustering, with the resolu-
tion parameter set to 0.4. Nonlinear dimensionality reduction 
was visualized by T-Distributed Random Neighbor Embed-
ding (t-SNE). To cluster different cell types, the "SingleR" 
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package was used to reference a database. The "FindAllMak-
ers" function was then employed to screen for characterized 
genes with a logfc.threshold of 0.5. The expression level 
of GGT5 in each different cell type was measured and por-
trayed as a violin plot. The composition ratio and cell num-
ber of each cell type were compared and displayed in a bar 
chart using the "ggplot2" package. T cells were extracted for 
further analysis. The NormalizeData, RunPCA, FindNeigh-
bors, and FindClusters functions were reloaded to cluster 
different T cell subtypes. The tSNE clustering analysis was 
reperformed to display the expression distribution of T cell 
subsets. Marker genes for each subgroup of T cells were 
screened in published articles and the CellMarker database, 
and the identified clusters were reannotated. The expression 
value of GGT5 in all T cell subsets and the correlation scores 
between GGT5 and different CD8 T cells were calculated.

Pseudotime trajectory analysis

To classify the exhaustion of T cells during the process of 
tumor-educating, the “Monocle 2” package was utilized for 
trajectory of each single cell. The raw UMI count matrices 
of 10 gastric cancer patients were imported using Seurat 
and converted as a cds file with Monocle. Following the 
standard quality control process, we filtered some low-
quality cells, setting the filter parameters as follows: mean 
expression ≥ 0.1, num_cells_expressed ≥ 10, the q-value of 
different genes was less than 0.05. Then, we portrayed the 
trajectory of T cells, CD8+ T cells, and CD4+ T cells into 
tSNE plots.

Multiplex immunohistochemistry (mIHC) analysis

To investigate the connection between GGT5 expression and 
memory CD8+ T cells, and the response to immunotherapy, 
a total of 10 specimens of GC patients undergoing immu-
notherapy at Beijing Chaoyang Hospital were obtained for 
this study. Each patient's response to immunotherapy was 
evaluated based on RECIST criteria, which categorized 
the patients into either the partial response (PR) group or 
the non-PR group. mIHC analysis was performed with 
the Opal™ 4-color Multiplex reagents kit (PerkinElmer, 
USA). Antibodies for GGT5 (ab283267), CD45RO (ab23), 
CCR7 (ab253187) were purchased from Abcam Inc. Anti-
body for CD8 (66868-1-Ig) was purchased from Protein-
tech. According to the manufacturer’s instructions, nuclear 
staining was conducted with DAPI (PerkinElmer, USA), 
GGT5 (ab283267, 1:2000) was stained with opal 620, CD8 
(66868-1-Ig, 1:50,000) was stained with opal 570, CD45RO 
(ab23, 1:5000) was stained with opal 520, CCR7 (ab253187, 
1:300) was stained with opal 690. Memory CD8+ T cells 
were defined as CD8, CD45RO, and CCR7-positive cells. 

The multiplex fluorophore-stained slides were scanned by 
Beijing Bodu Hengyi Technology company. Each channel 
was individually captured and analyzed using NDP View 2 
software.

Result

Construction of GSH metabolic signature

The workflow chart of this study is presented in Fig. 1. Ini-
tially, the MSigDB database was searched to systematically 
identify signature genes of GSH metabolism. By intersect-
ing the 3 GSH metabolism gene sets from KEGG, WK, and 
GOBP databases, a total of 16 genes were selected. Next, 
these genes were analyzed in 33 types of pan-cancer datasets 
from TCGA. After excluding cancer types without matched 
normal samples, 17 cancer types were retained for further 
analysis, and differential expression gene (DEG) analysis 
of GSH metabolic genes was performed between the 17 
cancer types and normal tissues (Fig. S1a). Of these, 6 
GSH metabolism genes were found out to be differentially 
expressed in GC (p < 0.05) (Fig. 2a). These genes included 
GGT1, GGT5, GPX1, GPX4, GSS, and GSTA1 (Table 1). 
Furthermore, LASSO regression analysis was conducted to 
screen potential prognostic-related genes (Fig. 2b, c), and all 
six of these genes were found to be prognostic factors and 
were considered as GSH metabolic signature.

GO and KEGG enrichment analysis of key genes

For a deeper understanding of the correlation of the signa-
ture and GC, the ‘clusterProfiler’ package was utilized to 
perform GO and KEGG analysis. The results are presented 
in Fig. 2d–f. For BP, MF, and KEGG, six of the selected 
key genes were strongly correlated with GSH metabolism, 
which validates the screening process. Additionally, KEGG 
analysis revealed enrichment in arachidonic acid metabo-
lism, taurine and hypotaurine metabolism, and ferroptosis. 
GO BP terms showed that the top two terms were cellular 
modified amino metabolic process and sulfur compound 
metabolic process. In GO MF terms, the top two terms were 
peroxidase activity and oxidoreductase activity, acting on 
peroxide as acceptor.

Identification of the key gene of GSH metabolism 
in GC

To explore the latent mechanism of the key genes in GC, 
the differential expression levels between GC and paired 
adjacent normal tissues were measured using ‘limma’ 
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package. The results were presented as violin plots using the 
‘ggplot’ package (Fig. 3a). The expression values of GGT5, 
GPX1, and GSS were found to be significantly higher in GC 
(p < 0.05), whereas the expression values of GGT1, GPX4, 
and GSTA1 showed no statistical significance between GC 
and normal tissues. Furthermore, univariate Cox regres-
sion analysis was conducted to determine the prognostic 
effect (Table 2). This study included age, gender, histologic 
grade, tumor stage, T stage, N stage, M stage, six key genes, 
and risk score calculated by LASSO analysis, radiation ther-
apy, reflux history, antireflux treatment, Barrett's esophagus, 
family history, new tumor event, lymph node count, lymph 
nodes positive, and signet ring cell carcinoma to identify 
the risk factors of GC. According to the results, GGT5 was 
identified as the hub gene for GSH metabolism in GC. Not 
only was it differentially expressed in tumor tissue, but it 
also emerged as an independent prognostic gene.

Clinical characteristics and outcome related to GGT5 
in gastric cancer

To estimate the prognostic value of GGT5, KM curves were 
portrayed to display the survival rate of GC patients. The 
results revealed that patients in group of high GGT5 expres-
sion had poorer overall survival (OS) than those with low 
expression (p = 0.00029, HR (95% CI) 0.55 (0.39–0.78)). 
Similarly, the progression-free interval (PFI) (p = 0.0041, 
HR (95% CI) 0.60 (0.40–0.91)), disease-free interval (DFI) 
(p = 0.0033, HR (95% CI) 0.20(0.10–0.41)), and disease-
specific survival (DSS) (p = 0.023, HR (95% CI) 0.49 
(0.30–0.80)) consistently showed a survival trend (Fig. 3b), 
indicating that higher expression of GGT5 was closely 
related to adverse clinical outcomes in GC patients. To 
validate the result in the TCGA cohort, we collected 200 
GC patients from GSE15459; it shows that high GGT5 
expression group had a significantly worse OS than the low 
GGT5 expression group (Fig. S3a, p = 0.00035, HR (95% 
CI) 0.49(0.32–0.76)).

Fig. 1   Analysis workflow of this study
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Besides, DCA curves were used to compare our GGT5 
model with another four published models [19–22]. We 
found that GGT5 has better clinical application value than 
other GC signatures (Fig. S3b). Furthermore, the correla-
tion between GGT5 and clinical–pathologic characteristics, 
including histologic grade, tumor stage, T stage, N stage, 
and M stage, was measured. According to T stage and histo-
logic grade, GGT5 was expressed at higher levels in T3 + T4 
stages than in T1 + T2 stages (p = 0.006) and in G3 grade 
than in G1 + G2 grades (p = 0.00014), indicating that the 
value of GGT5 increased with higher clinical stage (Fig. 5a). 
However, the results between GGT5 and tumor stage, N 
stage, and M stage showed no statistical significance (Fig. 
S2b). In conclusion, these findings show that patients with 
higher expression of GGT5 have poorer clinical outcomes.

Correlation Between GGT5 and Immune Infiltration

The proportion of tumor-infiltrating immune subsets was 
employed according to the CIBERSORT algorithm, by 
deconvoluting the expression matrix of 22 immune cells 
through linear support vector regression [23, 24]. In our 
study, the GC samples were classified into high/low groups 
based on the optimal cutoff value of GGT5 and subsequently 
analyzed for tumor heterogeneity between the two groups. 
As depicted in Fig. 4a, naïve B cells (p = 0.041), regula-
tory T cells (Tregs) (p = 0.046), monocytes (p < 0.001), and 
resting Mast cells (p < 0.001) were observed to have higher 
expression levels in the high GGT5 group, whereas the low 
expression group exhibited high expression levels of resting 
CD4 memory T cells (p = 0.019), activated CD4 memory T 
cells (p = 0.021), follicular helper T cells (p = 0.001), and 
M0 macrophages (p = 0.002). EPIC, MCP-counter, xCell, 
and ESTIMATE were conducted to validate the results 
above. All of these methods to explore the immune infil-
tration mode of tumor microenvironment show consistent 
trend; the CD8+ T cells were observed to have significantly 
higher expression levels in the GGT5 high expression group 
(Fig. S3c-d).

For further validation, we calculated the correlation 
value of GGT5 and various immune cells, as illustrated in 
Fig. 4b. Our analysis revealed that GGT5 exhibited a posi-
tive correlation with regulatory T cells (Tregs) (R = 0.17, 
p = 0.00062), CD8 T cells (R = 0.11, p = 0.024), naïve B cells 
(R = 0.17, p = 0.00052), monocytes (R = 0.25, p = 3.7e−07), 

Fig. 2   The expression mode diagram of glutathione metabolism-
related genes of pan-cancer from TCGA and enrichment of GO and 
KEGG a The bubble plot displays the differentially expression dia-
gram of genes associated with glutathione metabolism between 
tumor and normal tissues across pan-cancer types. Only the data of 
FDR < 0.05 were retained and it shows that there are 6 genes differen-
tially expressed in GC. The dot size indicates the FDR and the color 
represents the fold-change, b, c LASSO regression analysis to screen 
the prognostic-related genes, d the circle plot for KEGG analysis, 
terms with p < 0.05 were present. The top 10 terms of BP (e) and MF 
(f) for GO analysis, of which the p value is less than 0.05, were plot-
ted

◂

Table 1   Information of 6 
glutathione metabolic key genes

Gene Full name of gene Coefficient Metabolism-related KEGG pathways

GGT5 Gamma-glutamyltransferase 5 0.15532 Glutathione metabolism
Taurine and hypotaurine metabolism
Arachidonic acid metabolism
Metabolic pathways

GPX4 Glutathione peroxidase 4 0.108807 Glutathione metabolism
Arachidonic acid metabolism
Metabolic pathways
Ferroptosis

GPX1 Glutathione peroxidase 1 0.093588 Glutathione metabolism
Metabolic pathways
Thyroid hormone synthesis
Amyotrophic lateral sclerosis
Huntington disease

GSTA1 Glutathione S-transferase alpha 1 0.089869 Glutathione metabolism
Metabolism of xenobiotics by cytochrome P450
Drug metabolism—cytochrome P450

GGT1 Gamma-glutamyltransferase 1 -0.10619 Glutathione metabolism
Taurine and hypotaurine metabolism
Cyanoamino acid metabolism
Arachidonic acid metabolism

GSS Glutathione synthetase -0.17165 Glutathione metabolism
Cysteine and methionine metabolism
Biosynthesis of cofactors
Ferroptosis



	 Cancer Immunology, Immunotherapy (2024) 73:131131  Page 8 of 19



Cancer Immunology, Immunotherapy (2024) 73:131	 Page 9 of 19  131

and resting Mast cells (R = 0.26, p = 1.7e−07). Conversely, 
GGT5 showed a negative association with resting CD4 mem-
ory T cells (R = -0.2, p = 5e−05). However, the correlation 
between GGT5 and immune cells like activated CD4 mem-
ory T cells, follicular helper T cells, and M0 macrophages 
was not statistically significant (Fig. S2a). These findings 
suggest that GGT5 may influence different types of immune 
cells, particularly T cells, to modulate the TME of GC.

Relationship between GGT5 and immune‑related 
genes and immune therapy

The TIDE scores were utilized to predict the efficiency 
of immunotherapy on GGT5. A higher TIDE score indi-
cates a greater tendency of immune escape and a poorer 
response to immune checkpoint inhibitors (ICIs). As shown 
in Fig. 5b, patients with higher expression of GGT5 had 
a higher TIDE score (p < 2.2e−16), suggesting that GGT5 
overexpression may lead to an adverse response to immuno-
therapy. To further investigate the role GGT5 in the TME of 
GC, correlation analysis between GGT5 and immune genes 
was estimated (Fig. 5c). The results show a positive correla-
tion with immune active genes, immune suppressive genes, 
chemokines, and chemokine receptors, particularly immune 
active genes and chemokine receptors. These findings sug-
gest the regulatory role for GGT5 in the TME of GC is pos-
sibly related to these immune-related genes.

Identification of GGT5‑related immune cell 
infiltration in gastric cancer

For this study, we analyzed 10 gastric cancer samples from 
GSE167297. After adjusting for batch differences, we 
integrated the samples and identified the top 2000 highly 

Fig. 3   Expression pattern and survival analysis of the key genes 
for GSH metabolism a The differential expression level of 6 glu-
tathione metabolic signature in GC and adjacent normal tissues 
shows that expression values of GGT5, GPX1, and GSS are extremely 
higher in gastric cancer (p < 0.05), while the expression values of 
GGT1, GPX4, and GSTA1 have no significant meaning between 
GC and adjacent normal tissues, b the GC samples were classi-
fied into high and low groups of GGT5 expression according to the 
maxstat method. The KM curves including overall survival analysis 
(p = 0.00029), progression-free interval analysis (0.0041), disease-
free interval analysis (p = 0.0033), and disease-specific survival anal-
ysis (p = 0.023) were plotted, and these suggest that GGT5 is a risk 
gene associated with a poor outcome of gastric cancer

◂

Table 2   Univariate and 
multivariate Cox regression 
analysis of 6 glutathione 
metabolic key genes and clinic 
characteristics in gastric cancer

Variables Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Age  >  = 65/ < 65 1.6 (1.1–2.2) 0.01 1.82 (1.23–2.69) 0.003
Gender Female/male 1.3 (0.93–1.9) 0.12
histologic.grade G3/G1 + G2 1.3 (0.93–1.9) 0.121 1.27 (0.85–1.90) 0.24
tumor.stage III + IV/I + II 1.8 (1.3–2.6) 0.001 1.25 (0.64–2.45) 0.506
M.stage M1/M0 2.0 (1.15–3.6) 0.015 1.59 (0.84–3.01) 0.155
N.stage N2 + N3/N1 1.6 (1.15–2.2) 0.005 1.41 (0.86–2.29) 0.171
T.stage T3 + T4/T1 + T2 1.6 (1.1–2.5) 0.018 1.41 (0.83–2.42) 0.206
GGT1 0.92 (0.8–1.1) 0.275 0.86 (0.72–1.03) 0.109
GGT5 1.2 (1–1.5) 0.013 1.21 (0.98–1.48) 0.07
GPX1 1.2 (0.94–1.5) 0.165 1.03 (0.74–1.42) 0.878
GPX4 1.2 (0.91–1.5) 0.23 1.01 (0.72–1.42) 0.939
GSS 0.82 (0.64–1.1) 0.129 0.84 (0.59–1.20) 0.339
GSTA1 1.1 (0.99–1.1) 0.112 1.09 (1.00–1.20) 0.055
riskScore 2.8 (1.6–4.9) < 0.001
radiation.therapy Yes/No 0.33 (0.16–0.69) 0.003 0.43 (0.20–0.92) 0.029
reflux.history Yes/No 0.58 (0.29–1.2) 0.128
antireflux.treatment Yes/No 0.76 (0.43–1.4) 0.361
barretts.esophagus Yes/No 1.1 (0.44–2.7) 0.842
family.history Yes/No 1.0 (0.49–2.1) 0.978
new.tumor.event Yes/No 3.7 (2.4–5.6) < 0.001 3.51 (2.18–5.64) < 0.001
lymph.node.count ≥ 16/< 16 0.81 (0.51–1.1) 0.241
lymphnodes.positive Yes/No 2.0 (1.3–3.1) 0.002 0.98 (0.52–1.87) 0.961
Signet.ring.cell.carcinoma Yes/No 2 (0.99–4.1) 0.052
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variable genes (HVGs) based on their mean and dispersion. 
We then performed principal component analysis (PCA) 
downsizing and retained the top 20 dimensions of cells. 
Next, we used t-SNE clustering to visualize the cluster-
ing of 15,729 cells from gastric cancer tissues, which were 
assigned to 14 clusters (Fig. 6a). Using the "SingleR" pack-
age and marker genes, we identified 8 cell types, includ-
ing T cells, B cells, dendritic cells (DC), endothelial cells, 

Fig. 4   The relationship between GGT5 and immune cells of GC 
a CIBERSORT analysis reveals the relationship of GGT5 with 22 
kinds of immune infiltrating cells, it indicates that there are 8 kinds 
of immune cells differentially expressed in high (red) and low (green) 
expression group of GGT5 (p < 0.05), b the correlation analysis dis-
plays a positive connection between GGT5 with T cells regulatory 
(Treg), T cells CD8, B cells naïve, monocytes, and mast cells resting, 
while it has a negative connection with T cells CD4 memory resting

◂

Fig. 5   The relationship of GGT5 with clinicopathological characters 
and immune features a the relationship between GGT5 with clinico-
pathological characters of gastric cancer, including histologic grades 
(p = 2.1e−06) and T stage (p = 0.018), indicates that high expression 
of GGT5 is highly related to the development of gastric cancer, b 
the prediction efficiency of response to ICIs based on TIDE scores 

shows that higher expression of GGT5 is related to a higher TIDE 
score, also a poorer response to ICIs therapy, c the bubble plots repre-
sent the relationship of GGT5 with immune-related genes, including 
immune-active genes and chemokine receptors. It displays that GGT5 
is positively associated with these immune-related genes. The color 
and size of the dots represent the correlation coefficient
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epithelial cells, monocytes, NK cells, and smooth muscle 
cells (Fig. 6b). Notably, T cells had multiple subgroups and 
a high number of cells, indicating their potential importance 
in gastric cancer (Fig. 6c).

To validate our findings, we screened the top 10 HVGs 
of each cluster (Fig. 6d), which were confirmed as marker 
genes for each cell type. We then portrayed the expression 
level of GGT5 in each infiltrating cell type using a violin plot 
(Fig. 6e), which showed that GGT5 expressed particularly 
higher in T cells. Therefore, we selected T cells for further 
investigation and sub-division in this study.

We performed PCA downsizing again for selected T cells, 
retaining only the top 10 dimensions. This led to the iden-
tification of 11 clusters (Fig. 7a), which were reannotated 
using marker genes highly expressed in each cluster and 
lowly expressed in others, based on the CellMarker data-
base and relevant articles. Next, we measured the activity of 
GSH metabolism using the KEGG, GO, and WikiPathways 
databases (Fig. 7g) and found that it was active in T cells 
of gastric cancer. To increase our understanding of GGT5’s 
role in T cells, we measured the expression value of GGT5 in 
each subpopulation available (Fig. 7b) and found that it was 
most highly expressed in C0-CD8-IL7R, C5-CD8-CCR7, 
and C8-CD8-TK1 clusters, suggesting a close association 
between GGT5 and CD8 T cells. To evaluate the differentia-
tion states of different T cells, the continuous trajectory of T 
cell exhaustion was portrayed by Monocle 2 and visualized 
as a tSNE plot (Fig. 7c). Additionally, we isolated the CD8 
and CD4 T cell clusters to elucidate the association between 
GGT5 and CD8+ T cells. The results indicate that cluster 0 
and 5 were predominantly observed in the early and middle 
stages of the differentiation trajectory for both the entire 
T cell exhaustion system and CD8+ T cells (Fig. 7d). The 
expression level of GGT5 in CD8+  T cells was significantly 
higher than in CD4+ T cells (Fig. 7e), with concentration 
primarily in the early and middle phases of the T cell trajec-
tory (Fig. 7f). This suggests that elevated GGT5 expression 
might contribute to T cell exhaustion.

To further interrogate the association between GGT5 
and CD8+ T cells, we obtained markers for 28 immune 
cell types and conducted ssGSEA analysis to explore the 
interplay among these immune cells, GGT5, and gastric can-
cer tumor stage using the TISIDB database (Fig. 8a). Our 
analysis revealed that higher GGT5 expression and advanced 
tumor stage were linked to increased enrichment of memory 

CD8+ T cells. Furthermore, correlation analysis revealed a 
robust positive relationship between GGT5 expression and 
central memory CD8+ T (TCM) cells, along with effector 
memory CD8+ T (TEM) cells (Fig. 8b).

Multiplex immunohistochemistry (mIHC) analysis 
of GC tissue specimens

Multiplex immunohistochemistry (mIHC) analysis was per-
formed among 10 GC tissue specimens to further explore 
the association between GGT5 expression with memory 
CD8+ T cells and immunotherapy. The response of all the 
10 patients to immunotherapy was documented (Table S2). 
The most representative mIHC staining images of GGT5, 
CD8, CD45RO, and CCR7 are shown in Fig. 8. Multiplexed 
fluorophore-stained slides of 4 other patients were not pre-
sented due to the markedly low expression of each maker 
and diminished fluorescence intensity. Patients in Group 1 
(patient1, 9, 10) were categorized as PR according to the 
RECIST, and patients in Group 2 (patient 2, 3,7) were des-
ignated as non-PR. Obviously, GGT5 expression displayed 
a positive correlation with memory CD8+ T cells. Further-
more, patients with typically poorer responses to immuno-
therapy (Group 2) exhibited higher levels of GGT5 expres-
sion and a greater concentration of memory CD8+ T cells. 
Hence, our mIHC results not only confirmed the significant 
correlation between GGT5 and memory CD8+ T cell enrich-
ment but also revealed that patients with elevated GGT5 
expression had a diminished response to immunotherapy.

Discussion

Reactive oxygen species (ROS) exert severe damage on 
DNA in the cell [25, 26]. As an adaptive response, tumor 
cells possess high levels of molecules that scavenge ROS. 
GSH metabolism plays an antioxidant role that helps to elim-
inate free radicals and detoxify agents, and is commonly 
elevated during oxidative stress [27]. Disturbances in GSH 
metabolic homeostasis play a crucial role in the occurrence 
and progression of diseases, including cancers [28]. Fur-
thermore, GSH metabolism can promote metastasis and is 
positively associated with therapeutic resistance in various 
cancer types [27, 29, 30]. Therefore, GSH metabolism has 
become a crucial target for cancer research and treatment.

In this study, genes related to GSH metabolism were 
screened to identify the active metabolic gene. GGT5 was 
finally identified as the hub gene of GSH metabolism and 
predicted to regulate the TME of GC. The mechanism of 
how GGT5 affects GC was explored at both the bulk RNA 
and scRNA levels. We found that: (1) GGT5 is an inde-
pendent prognostic gene marker for GC and can promote 
the tumor microenvironment; (2) GGT5 has a highly positive 

Fig. 6   Overview of single-cell analysis from gastric cancer a a dem-
onstration of t-SNE of gastric cancer samples, 14 cell clusters, and 
different cell types identified by marker genes, b the expression pat-
tern of each cell type, c the cell ratio in each cluster indicates that 
T cell has the most multiple subsets, d heatmap shows the top 10 
marker genes of clusters, representing the characteristic features of 
each cell type, e the expression level of GGT5 in each cell type shows 
that GGT5 has a high expression value in T cells

◂
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connection with immune-related genes, and high expres-
sion of GGT5 can alleviate the effect of ICIs on cancers; (3) 
GGT5 plays its role mainly by promoting memory CD8+ 
T cells.

The GGT​ family acts in a crucial role in extracellular 
metabolism of GSH, which can maintain the balance of GSH 
metabolism via cleaving GSH peptides. It has been sug-
gested that GGT​ family is elevated in multiple cancers and 
can lead to poor clinic outcome, such as stomach, ovarian, 
pancreatic, breast cancer [31–34]. Moreover, an accumula-
tion of evidence suggests that GGT​ family plays an impor-
tant role in tumorigenesis and progression of stomach cancer 
[35]. Not only is GGT5 associated with poor outcome in GC, 
but also with the ability to regulate the TME [36, 37]. In this 
study, GGT5 expression was measured based on TCGA and 
found to have higher expression in GC compared to normal 
tissues. Moreover, higher GGT5 expression in gastric cancer 
is correlated with poor clinical outcomes based on OS, DFI, 
PFI, and DSS analyses. Furthermore, the clinical correlation 
analysis revealed that GGT5 expression is elevated in higher 
grades of gastric cancer, such as histologic grade 3 and T 
stages III-IV. These findings suggest an indispensable role of 
GGT5 in tumor invasion. However, the specific mechanisms 
of how GGT5 affects GC is still unclear.

It has been largely noted that in response to pathogens or 
dangerous environments, immune cells release leukotrienes 
(LTs) to defend against damage [38]. GGT5, a γ-glutamyl 
leukotrienes, can metabolize LTC4 to LTD4 [39, 40], mak-
ing it a key player in the active role of asthma pathogenesis 
[41] and indicating that it serves a significant role in the 
immune response. TIDE analysis predicted that high GGT5 
expression is associated with a poorer response to ICIs in 
gastric cancer, prompting further investigation into how 
GGT5 affects the TME of GC. In this study, the relationship 
between GGT5 and immune genes of GC was investigated, 
revealing a positive relation between GGT5 and immune-
active genes and chemokine receptors, particularly CXCL12, 
CXCR4, and TGFB1. CXCL12 is a small protein that binds 
with CXCL4 on tumor cells, triggering the anti-apoptosis 
pathway via Bcl-2 upregulation signal pathways and the 
EMT pathway via the Rho-ROCK pathway [42]. Elevated 
expression of CXCR4 and/or CXCL12 expression has been 

examined in larger tumors and lymphatic invasion samples 
in gastric cancer [43], as well as decreased response to radio- 
and chemo-therapy in various cancer types [44]. TGFB1 
facilitates the progression and evasion of cancers, suppress-
ing antitumor immune responses. TGFB1 has been shown 
to play a role in the immune escape of gastric cancer, with 
the mechanism likely involving the suppression of CD8+ 
T cells and increases in regulatory T (Treg) cells [45, 46]. 
Therefore, GGT5 may exert a pro-tumor effect by regulating 
immune genes such as CXCL12 and CXCL4 in the tumor 
microenvironment. This finding prompts further investiga-
tion into the involvement of immune cells. In tumor metabo-
lism, GGT5 exhibits catalytic activity in both hydrolysis and 
transpeptidation reactions. As one of the few extracellular 
enzymes identified with the capability to cleave gamma-
glutamyl bonds, GGT5 assumes a significant role in the ini-
tial stage of glutathione metabolism, involving the cleavage 
of gamma-glutamyl bonds [47]. Consequently, attenuating 
the expression of GGT5 would impede GSH metabolism 
and enhance anti-tumor capabilities. The application of 
GGsTOP, a remarkably selective and potent irreversible 
inhibitor of GGT activity, can markedly lower the expres-
sion of GGT5, hinder the proliferation and chemotherapy 
resistance of lung adenocarcinoma cells [48]. These find-
ings underscore the importance of GGT5 as a novel target 
for anti-tumor therapy. Exploration of the GGT5 amino acid 
sequence reveals distinctive residues that interact with the 
glutathione active site, providing a theoretical groundwork 
for the future development of drugs targeting GGT5 [49].

In our study, CIBERSORT analysis revealed the infiltra-
tion of 8 kinds of immune cells between different expression 
group of GGT5 in gastric cancer. To better understand the 
underlying mechanism of GGT5 and TME, further investiga-
tion of the relationship between GGT5 and these immune-
related cells is necessary. The correlation analysis indicated 
that GGT5 has a positive correlation with CD8 T cell, Tregs, 
B cells naïve, monocytes, and resting Mast cells, while it has 
a negative correlation with resting CD4 memory T cells. 
Similar trend was found in EPIC, MCP-counter, xCell, and 
ESTIMATE analysis. It has been reported that CD8+ T cells 
play a crucial role in tumor immune resistance with PD-
L1, and increases in CD8+ T cells are associated with poor 
PFS and OS of gastric cancer [50]. Tregs, promoted by the 
TNFR2 signaling pathway, are identified as immune suppres-
sors, and their accumulation in the TME of GC is considered 
a risk factor in prognosis [51]. Also, the infiltration of CD4+ 
T cells is higher in patients with T3 stage of GC compared to 
that in T1 and T2 stage, implying a critical effect of CD4+ 
T cells in the prognosis of gastric cancer [52]. We next 
conducted scRNA analysis to identify the heterogeneity of 
immune cell types within the TME of gastric cancer, which 
were initially clustered into eight cell types. By combin-
ing the results of immune infiltration and scRNA analysis, 

Fig. 7   Overview of single cells from T cells a the t-SNE plot shows 
11 clusters and different subsets of T cells, b the expression value 
of GGT5 in each subgroup of T cells indicates that GGT5 is highly 
expressed in C0-CD8-IL7R, C5-CD8-CCR7, and C8-CD8-TK1. c, 
d different trajectories of T cells, CD8+ T cells, and CD4+ T cells, 
with the shade and color for the pseudotime and clusters calculated 
by monocle, e the expression level of GGT5 in CD8+ T cells and 
CD4+ T cells, f pseudotime analysis of GGT5 ± T cells, g the degree 
of activity of 3 GSH metabolism gene sets from the MSigDB data-
base based on the AUC value shows that glutathione metabolism is 
actively expressed in T cells

◂
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we explored the specialty of T cells, which prompted fur-
ther investigation. A previous study demonstrated that GSH 
metabolism is dispensable for early T cell activation but can 
promote T cell growth [53]. In our study, we evaluated the 
involvement of GSH metabolism in T cells and subsequently 
identified characteristic T cell subsets. Our results indicated 
that GGT5 is mainly involved in three CD8+ T cell subsets 
named C0-CD8-IL7R, C5-CD8-CCR7, and C8-CD8-TK1. 
Furthermore, we isolated CD8+ T cells and CD4+ T cells; it 
was found that GGT5 was extremely higher in CD8+ T cells 
than that in CD4+ T cells. These results exhibit a strong 
correlation with CD8+ T cells. According to previous stud-
ies, the loss of IL-7 and IL-7R can lead to severe immune 
deficiency, and IL-7R acts a vital role in the generation and 
long-term maintenance of memory CD8+ T cells [54]. Defi-
ciency in CCR7 can impair the function of memory CD8+ T 
cells to sustain IL-7 and IL-7R, which has a negative effect 
on the survival and homeostasis of memory CD8+ T cells 
[55]. TK1, which is associated with CD8+ T cells [56], is a 
marker of abnormal tumor cell proliferation. Its concentra-
tion increases with lesion growth, disease progression, and 
distant metastasis [57]. In summary, our findings indicate a 
connection between GGT5 and memory CD8+ T cells. Next, 
we investigated GGT5 and 28 immune cell types based on 
ssGSEA analysis. Our findings demonstrated that memory 
CD8+ T cells, including TCM and TEM, were more abun-
dant in the group with higher GGT5 expression and in the 
higher tumor stage group. This suggests a role for GGT5 in 
maintaining CD8+ T cells, especially TCM and TEM cells.

Three kinds of memory T cells have now been reported in 
peripheral blood: central memory T cells (TCM) located in 
secondary lymphoid tissues and reactivated during second-
ary infection; effector memory T cells (TEM) that circu-
late in various tissues and are cytotoxic; and tissue-resident 
memory T cells (TRM) that persist in tissues without circu-
lating [58, 59]. It has been shown that cancer patients treated 
with ICIs show an increasing frequency of memory T cells, 
both TCM and TEM cells, and that infiltration of memory 
CD8+ T cells is associated with poor prognosis [60, 61]. 
Our findings in this study are consistent with these previ-
ous results. We conducted mIHC analysis to investigate the 

expression mode of GGT5 in GC tissues and its correlation 
with the response to immunotherapy and found that patients 
with a poor response to immunotherapy have higher GGT5 
expression and more memory CD8+ T cell accumulation. In 
addition, our analysis using monocle revealed that memory 
T cell clusters, specifically C0-CD8-IL7R and C5-CD8-
CCR7, predominantly accumulate in the early and middle 
stages of T cell differentiation. Unlike effector T cells, mem-
ory T cells do not fully transition but persist, contributing to 
long-term immunological memory. Consequently, memory 
T cells are positioned within the intermediate stage of CD8+ 
T cell differentiation, according to the linear model, owing 
to their shared characters of transcriptional, phenotypic, 
and epigenetics with both effector and naïve T cells [62]. 
Notably, the impact of GGT5 on T cells has not been previ-
ously reported, and our findings indicate that the expression 
of GGT5 mostly accumulates during the early and middle 
period of the T cell trajectory, mirroring the distribution of 
memory CD8+ T cells. This finding implies a potential role 
for GGT5 in sustaining the longevity of memory CD8+ T 
cells throughout the progress of gastric cancer.

Previous studies have already shown that a reduction in 
GSH levels and a rise in ROS levels can impair the formation 
and maintenance stage of memory CD8 T cells. In contrast, 
exogenous GSH can shield TCM and TEM cells from apopto-
sis [63, 64]. Nevertheless, the connection between GGT5, an 
active gene in GSH metabolism, and memory CD8+ T cells 
has rarely been explored and reported. Our study is the first to 
propose that GGT5 wields a remarkable effect on the initiation 
and progression of gastric cancer, while concurrently regu-
lating the immune milieu by preserving live memory CD8+ 
T cells. Nevertheless, our study still has several shortcom-
ings, which are detailed below: (1) Future clinical investi-
gations involving multiple centers and extensive cohorts are 
imperative to validate this predictive signature before deem-
ing it clinically beneficial; (2) additional experiments, includ-
ing both overexpression and knockdown studies, as well as 
immune/tumor co-culture experiments, are essential to clarify 
the functional impact of GGT5 on the development and pro-
gression of gastric cancer; (3) future progress of foundational 
experiments concerning molecular structure research and the 
exploration of GGT5's druggable potential is crucial for its 
potential application in clinical therapy.

Conclusion

This study shows that GGT5 serves as an active gene of 
GSH metabolism and promotes progression, drug resistance, 
and immune microenvironmental remodeling in gastric can-
cer. Although some of these processes have been reported 
before, the specific mechanism of how this occurs still 

Fig. 8   a ssGSEA analysis of 28 kinds of immune cells in high/low 
expression of GGT5 and different stage of GC patients, suggesting 
that memory CD8+ T cells, especially TCM and TEM, are more 
prevalent in GGT5 high tumors and advanced stages of GC, b the 
correlation of GGT5 with TCM and TEM, showing a positive asso-
ciation with TCM and TEM, c mIHC analysis shows expression level 
of CD45RO, CD8, CCR7, GGT5 in GC patients receiving immu-
notherapy. Group 1 represents 3 patients which are evaluated as PR 
according to RECIST. Group 2 represents patients which are evalu-
ated as non-PR. mIHC expression analysis for CD45RO, CD8, CCR7, 
and GGT5 reveals that the tumors of GC patients non-responsive to 
immunotherapy have enhanced expression of GGT5 and memory 
CD8+ T cell markers. Magnification, × 400

◂



	 Cancer Immunology, Immunotherapy (2024) 73:131131  Page 18 of 19

remain unknown. Moreover, the interplay between GGT5 
and memory CD8+ T cells and their influence on gastric 
cancer has rarely been studied. A deeper comprehension 
of the role of GGT5 in these pathways may offer valuable 
insights for the treatment of gastric cancer.
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