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In contrast to the simian immunodeficiency virus SIVmac239, which replicates poorly in rhesus monkey
alveolar macrophages, a variant with nine amino acid changes in envelope (SIVmac239/316E) replicates effi-
ciently and to high titer in these same cells. We examined levels of viral DNA, RNA, antigen, and infectious
virus to identify the nature of the block to SIVmac239 replication in these cells. Low levels of viral antigen
(0.1 to 1.0 ng of p27 per ml) and infectious virus (100 to 1,000 infectious units per ml) were produced in the
supernatant 1 to 4 days after SIVmac239 infection, but these levels did not increase subsequently. SIVmac239
DNA was synthesized in these macrophage cultures during the initial 24 h after infection, but the levels did not
increase subsequently. Quantitation of the numbers of infectious cells in cultures over time and the results of
experiments in which cells were reexposed to SIVmac239 after the initial exposure indicated that only a small
proportion of cells were susceptible to SIVmac239 infection in these alveolar macrophage cultures and
that the vast majority (>95%) of cells were refractory to SIVmac239 infection. In contrast to the results with
SIVmac239, the levels of viral antigen, infectious virus, and viral DNA increased exponentially 2 to 7 days after
infection by SIVmac239/316E, reaching levels greater than 100 ng of p27 per ml and 100,000 infectious units
per ml. Since SIVmac239/316E has previously been described as a virus capable of infecting cells in a relatively
CD4-independent fashion, we examined the levels of CD4 expression on the surface of fresh and cultured
alveolar macrophages from rhesus monkeys. The levels of CD4 expression were extremely low, below the limit
of detection by flow cytometry, on greater than 99% of the macrophages. CCR51 cells were profoundly depleted
only from alveolar macrophage cultures infected with SIVmac239/316E. High concentrations of an antibody to
CD4 delayed but did not block replication of SIVmac239/316E. The results suggest that the adaptation of
SIVmac316 to efficient replication in alveolar macrophages results from its ability to infect these cells in a
CD4-independent fashion or in a CD4-dependent fashion even at extremely low levels of surface CD4 expres-
sion. Since resident macrophages in brains and lungs of humans also express little or no CD4, our findings
predict the presence of human immunodeficiency virus type 1 that is relatively CD4 independent in the lung
and brain compartments of infected people.

The primate lentiviruses human immunodeficiency virus
(HIV) and simian immunodeficiency virus (SIV) infect CD41

T lymphocytes and macrophages as major target cells (4, 8, 21,
23, 31, 32, 36, 39, 54). The gene for the viral envelope (Env)
proteins determines the capability of virus to infect these cells
(24, 43, 45, 61). Specific regions in Env play important roles in
binding of virus to receptors and in the subsequent entry of
virus into cells via fusion between the viral membrane and the
cell membrane of target cells (25, 62, 65). Because CD4 and
chemokine receptors in the target cells are utilized by primate
lentiviruses as the primary receptor and coreceptors, respec-
tively (7, 10, 11, 13–15, 19, 20, 22, 29, 37, 38, 40, 57), sequence
variation in Env proteins can influence the interaction of the
virus with these receptors and coreceptors which can result in
changes in the cell tropism of the virus. During HIV type 1
(HIV-1) infection, the emergence of T-cell-tropic viruses from
macrophagetropic viruses has been primarily ascribed to a
change from use of the coreceptor CCR5 to use of CXCR4
(9, 59). CCR5 and GPR15/BOB have been found to be the
principal coreceptors of the SIVmac strains characterized to
date (11, 15, 19, 29, 40). CD4-independent virus entry has been

confirmed for particular isolates of SIVmac (15, 41) and HIV-2
(18, 51). Thus, Env of SIV determines macrophage tropism,
relative CD4 dependence, and coreceptor usage (16, 58).

We have been studying the mechanism underlying the re-
stricted replication of SIVmac239 in alveolar tissue macro-
phages (42, 43, 54). Variant viruses that are highly competent
for replication in alveolar macrophages emerge in approxi-
mately 30% of the monkeys that develop AIDS following
infection with SIVmac239 (12; R. C. Desrosiers and D. J.
Ringler, unpublished data). Analyses of variant viruses have
demonstrated that four amino acid changes (V to M at residue
67, K to E at residue 176, G to R at residue 382, and K to T at
residue 573) in Env are primarily responsible for fully produc-
tive infection of the variant viruses in tissue macrophage cul-
tures as well as for disease manifestations associated with
SIV infection of tissue macrophages (12, 30, 43). Three of
these changes, at residues 67, 176, and 382 (MER), are suf-
ficient to confer high replicative capacity. Although the V3
region of SIVmac can determine cell tropism (28), none of
these sequence changes that affect high replicative capacity to
SIVmac239 in tissue macrophages reside in V3. Supporting
these results, entry of SIVmac239 into macrophages was found
to be similar to that of derivatives with these sequence changes
(42). However, the mechanisms which restrict SIVmac239 rep-
lication in tissue macrophages and allow sequence variants to
replicate vigorously remain to be elucidated.
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Here we show that SIVmac239 infection of alveolar macro-
phage cultures is restricted to a small portion of the total cell
population. The ability of variant viruses to replicate vigorously
in alveolar macrophages appears to be related to their ability
to infect in a relatively CD4-independent fashion or at ex-
tremely low CD4 densities on the cell surface.

We used SIVmac239 with wild-type nef (27) and the recom-
binant virus with env of SIVmac316 (called SIVmac239/316E)
(42, 43) as shown in Fig. 1A. Virus stocks were prepared as
described elsewhere (27, 42–44). Virus stocks used to quantify
newly synthesized viral DNA were subjected to DNase diges-

tion. There was no significant difference in 50% tissue culture
infective dose per microgram of p27 antigen between the two
stocks. Macrophages were obtained from bronchoalveolar la-
vage (BAL) specimens from healthy, mature rhesus monkeys
that were serologically negative for SIV, type D retrovirus, and
foamy virus. For most experiments, lymphocytes and nonad-
herent cells were removed by extensive pipetting and exchange
of medium 2 to 3 h after incubation of cells in a CO2 incubator.
More than 95% of the cells were confirmed to be macrophages
as previously documented (54). For the data shown in Fig. 5
and 6, the total cell population from BAL fluid was used. For

FIG. 1. (A) Nine amino acid substitutions in Env between SIVmac239 (239) and SIVmac239/316E (316). Four amino acids (residues 67, 176, 382, and 573) are
primarily responsible for the higher replicative capacity of SIVmac239/316E than of SIVmac239 in macrophages. V1 to V5 refer to variable regions in Env (5). Locations
of sequences corresponding to HIV-1 V3 and the stop codon (p) are indicated. (B and C) SIV replication in macrophages monitored by p27gag antigen concentration
in culture supernatant. Here, 2 3 105 macrophages were infected with 1, 10, or 100 ng of p27gag antigen. Culture medium was collected daily, followed by a wash with
Hanks balanced salt solution and replacement with fresh medium. Representative results are shown for two different monkey donors. Kinetics of SIV growth varies
with the source of macrophage preparations.

FIG. 2. Infectious titer of SIV in supernatants of macrophage cultures infected with SIVmac239 (239) or SIVmac239/316E (316). Here, 2 3 105 macrophages were
infected with a high dose of SIV (100 ng of p27 antigen). Infectious SIV titer (50% tissue culture infective dose [TCID50]) of culture supernatant collected at 24-h
intervals (0 to 0.5, 0.5 to 1.5, 1.5 to 2.5, and 2.5 to 3.5 days) was determined by endpoint dilution. Infectivity of diluted culture supernatant was determined by using
CEMx174 cells.
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the data shown in Fig. 1 to 4 and the tables, cells were infected
2 days after plating.

Production of virus from infected cell cultures was moni-
tored by measuring the levels of p27gag antigen in cell-free cul-
ture supernatants. Production of SIVmac239 generally did not
exceed 1 ng of p27 per ml from these tissue macrophage cul-
tures. Figure 1B and C show the results of independent anal-
yses with BAL cultures from two different rhesus monkeys. Peak
Gag antigen production resulting from infection by SIVmac239/
316E was 100 to 1,000 times higher than what was observed
with SIVmac239 (Fig. 1B and C), consistent with our prior
results (42, 43). Increasing the multiplicity of infection (MOI)
over a 100-fold range did not appear to affect the peak height
of production of either virus, but it did appear to affect the
kinetics of appearance of p27 antigen for both viruses (Fig. 1B
and C). Virus production peaked much earlier with SIVmac239
than with SIVmac239/316E (Fig. 1B and C). The titers of

infectious virus produced early after infection paralleled the
p27 antigen measurements (Fig. 2).

Although replication of SIVmac239 is severely restricted in
alveolar macrophages, synthesis of viral DNA by reverse tran-
scription was previously found to be normal or near normal for
24 h of observation after exposure of cells to SIVmac239 (42,
43). We extended these earlier findings by extending the period
of observation for up to 8 days. As was observed previously,
levels of newly synthesized viral DNA at 1 day postinfection
(dpi) were comparable between SIVmac239 and SIVmac239/
316E (Fig. 3A to C). After 1 dpi, however, the patterns di-
verged dramatically. Levels of viral DNA in macrophages in-
fected with SIVmac239/316E increased dramatically between 1
and 6 dpi concomitant with the spread of the infection through
the culture (see also infectious center assays described below).
Levels of viral DNA did not increase when dissemination of
infection was blocked by reverse transcriptase inhibitors
(RTIs) (Fig. 3B). Levels of viral DNA in macrophages infected
with SIVmac239 decreased dramatically after 1 day (Fig. 3A).
The pattern of decreasing SIVmac239 DNA levels occurred
similarly with or without the addition of RTIs at 24 h postin-
fection (p.i.). These differences in viral DNA kinetics were
observed in four of four independent experiments (Fig. 3D).
These results suggested instability of SIVmac239 DNA in in-
fected cells or a loss of infected cells from the cultures by cell
death. They also indicated a failure of SIVmac239 to spread
through the cultures.

We next examined the numbers of infected cells over time in
these macrophage cultures. The proportion of infected cells
varied with the macrophage preparation (Table 1). Whereas 25
and 1.6% of cells were infected with SIVmac239/316E at 1 dpi
with two independent macrophage preparations, 3.1 and 0.9%

FIG. 3. (A and B) Viral DNA in macrophages infected with SIVmac239 (A)
and SIVmac239/316E (B); (C) standards (STDs) for SIV DNA and cell DNA;
(D) viral DNA relative to DNA amount at 1 dpi in macrophages with RTIs.
Mean values of four experiments and standard deviations are shown. Here, 2 3
105 macrophages were infected with a high dose of virus stock (100 ng of p27
antigen). Subsequently, the cells were maintained in the presence or absence of
RTIs, which were supplemented 24 h p.i. Total cell DNA was prepared at 1, 2,
4, 6, and 8 dpi and subjected to PCR analyses with primers for Gag or b-globin.

TABLE 1. Proportion of infected cells by infectious center assay

Expta dpi

% of macrophages producing
infectious SIV

SIVmac239 SIVmac239/316E

A 1 3.1 25
2 1.3 67
3 0.5 100

B 1 0.9 1.6
2 0.7 1
3 0.4 Not done

a In experiments A and B, 2 3 105 and 105 cells, respectively, were infected
with SIV equivalent to 100 ng of p27gag.

TABLE 2. Effect of reexposure with SIVmac239 on
viral DNA levels in macrophages

Expta Day dpi SIV DNA copy no./
100 cells

Ratio, SIV DNA level/
level at 1 dpi

A 1 1 140 1.0
2 2 61 0.44
3 3 27 0.19
4 4 16 0.11
5 5 11 0.08
5 5 1 1 15 0.11
5 1 190 1.4

B 1 1 13.0 1.0
2 2 3.4 0.26
3 3 2.3 0.18
4 4 0.7 0.05
4 4 1 1 2.3 0.18

a See the footnote to Table 1.
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of the macrophages were infected with SIVmac239 at the same
time in the same two macrophage preparations (Table 1). By
3 dpi, most of the cells in the culture were infected by
SIVmac239/316E. However, the numbers of cells infected with
SIVmac239 did not increase over the same period; in fact, they
decreased (Table 2). These results are consistent with a small
proportion of cells susceptible to SIVmac239 and a failure of
SIVmac239 to spread to the vast majority of cells in the cul-
tures.

We also examined the susceptibility of cells to reexposure to
SIVmac239 subsequent to the initial round of infection by
SIVmac239. Aliquots of the macrophages for each of these
experiments were exposed to SIVmac239 on day 0 (2 days after
plating), and identical aliquots were left unexposed. Levels of
viral DNA were measured at days 1, 2, 3, 4, and 5 (Table 2,
experiment A). On day 5, cells (both previously exposed and
unexposed) were again given SIVmac239, and levels of viral
DNA were measured 1 day later. The results indicated that on
day 5, SIVmac239 was able to infect a susceptible population
of cells in the cultures that had not been previously exposed to
virus, but few or no susceptible cells remained in the cultures

that had been previously exposed to SIVmac239. An indepen-
dent test gave similar results (Table 2, experiment B). When
SIVmac239/316E was used as the second infecting virus strain,
it was able to establish infection in an uncompromised fashion
(data not shown). These results are consistent with the above
findings indicating that only a small minority of cells are sus-
ceptible to SIVmac239 in these alveolar macrophage cultures.

We analyzed levels of viral RNA by RNA PCR with the two
sets of primers shown in Fig. 4A. RNAs for gag and tat/rev were
analyzed. In SIVmac239/316E-infected cells, viral RNA levels
increased from days 1 to 2 and remained high 2 and 3 dpi
during the spreading infection (Fig. 4B). In SIVmac239-in-
fected cells, levels of viral RNA increased until 2 dpi and
then decreased (Fig. 4B), consistent with the viral DNA analysis.
Viral RNA levels at 2 days after infection with SIVmac239/
316E were approximately five times higher than those observed
with SIVmac239 (Fig. 3B), consistent with slightly increased
levels of SIVmac239/316E DNA at 1 dpi.

Flow cytometric analysis of BAL specimens revealed two
populations of cells as shown in Fig. 5, alveolar macrophages
(R2) and a minor population of lymphocytes (R1). The pheno-
type of these cells was confirmed by demonstrating that cells
within R1, the lymphocyte gate, were predominantly CD31

CD41 or CD31 CD42, consistent with helper or cytotoxic
lymphocyte populations, respectively. The larger cells were
shown to express the mannose receptor, consistent with a pop-
ulation of macrophages (33, 50). However, more than 99% of
these macrophages did not express CD4 detectably on their
surface, as determined by flow cytometry. Using multiple rep-

FIG. 4. Viral RNA in macrophages infected with SIVmac239 or SIVmac239/
316E. (A) Primers used for RNA PCR. A 142-bp gag sequence was amplified
with primers M97 and M98; 206 bp corresponding to doubly spliced RNA for tat
and rev was amplified with primers M114 and M117 (46). SD, splicing donor site;
SA, splicing acceptor site. Numbers in parentheses are nucleotide numbers of
SIVmac239 (52). (B) Total cell RNA was prepared from the macrophages
infected with a high dose of SIV (100 ng of p27 antigen) at 1, 2, and 3 dpi.
Expression of viral RNAs for gag and tat/rev was examined by reverse transcrip-
tion-PCR using cDNA synthesized with random hexamer. b-Actin RNA was
amplified as a control cellular RNA. Comparable results were obtained in six
independent experiments.

FIG. 5. Expression of CD4 on lymphocytes and macrophages isolated via
BAL as determined by flow cytometry. A lymphocyte region (R1) and a macro-
phage region (R2) were established using FSC/SSC (forward scatter/side scatter)
in the same sample (A). (B and C) Expression of CD4 and CD3 on cells in the
lymphocyte gate (B) and expression of CD4 and the mannose receptor on
alveolar macrophages (C). Quadrants were established on matched isotype con-
trols using the same gating strategy. Antibodies used for immunophenotyping of
rhesus BAL fluid included anti-CD3 (6G12; kindly provided by J. Wong, Mas-
sachusetts General Hospital) (1), anti-CD4 (OKT4; American Type Culture
Collection), anti-CD8 (Leu-2a; Becton Dickinson), and anti-mannose receptor
(Pharmingen, Carpinteria, Calif.). Cells were stained according to standard pro-
tocols (4). Four-color flow cytometry analysis of the cells was performed using a
FACS Vantage (Becton Dickinson).
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licate analyses of BAL samples from three rhesus monkeys, the
frequency of CD41 macrophages was 0.24% 6 0.2%. The SIV
coreceptor CCR5 was shown to be expressed on a percentage
of the CD4-negative alveolar macrophages (Fig. 6). BAL sam-
ples were divided into three groups: uninfected, infected with
SIVmac239, and infected with SIVmac239/316E. BAL samples
infected with SIVmac239/316E demonstrated a profound
loss of CCR51 cells as early as 3 dpi. This observation suggests
that CCR51 CD42 cells are the principal early targets of
SIVmac239/316E in these alveolar macrophage cultures.

The antibodies for these flow cytometric determinations
have been used repeatedly by our laboratories and the labora-
tories of others to identify CD4 and CCR5 on the surface of
rhesus monkey cells with good sensitivity (2, 34, 35, 48, 49,
53, 55, 66). For the present experiments, we used appropriate
CD4/CCR5-positive and -negative controls to establish gating
and sensitivity. The level of CD4 on BAL that we report here
is markedly reduced compared to rhesus monkey peripheral
blood monocytes/macrophages. In fact, we have routinely used
the same OKT4 monoclonal antibody and flow cytometry
methods to routinely identify CD4 on the surface of blood
monocytes from rhesus monkeys (56). Thus, the macrophages
from BAL fluid are indeed significantly different from mono-
cytes/macrophages from peripheral blood in the level of
surface CD4 expression.

Finally, we examined the ability of monoclonal antibody to
CD4 to block replication of SIVmac239/316E. High concen-
tration of the 19thy5D7 monoclonal antibody significantly
slowed the kinetics of virus appearance, but the CD4 blockage
was not highly effective at inhibiting viral replication (Fig. 7).
These results are consistent with previous testing in which the
same monoclonal antibody inhibited but did not completely
block the early appearance of newly synthesized SIVmac239/
316E DNA after exposure of virus to alveolar macrophage
cultures (42).

The vast majority of lung macrophages from BAL samples
appear to be refractory to infection by SIVmac239. The estab-
lishment of early infection by SIVmac239 in these alveolar
macrophage cultures appears to be due to a small population
of susceptible cells beyond which SIVmac239 cannot spread
significantly. Although we have not shown directly what these
susceptible cells are, it is likely that they are the small fraction
of CD41 macrophages in these cultures. Consistent with this,
entry of SIVmac239 into the early susceptible population and
viral DNA synthesis were effectively blocked by antibody to
CD4 (42). Some of these susceptible cells could very well
express levels of CD4 below our ability to detect them by flow
cytometry. Thus, the block to replication of SIVmac239 in
alveolar macrophages appears to relate to the absence of suf-
ficient CD4 on the surface of the vast majority of these cells.

FIG. 6. CCR5 expression on uninfected and SIV-infected BAL samples. The surface expression of CD4 and CCR5 on BAL samples was determined by flow
cytometry on baseline samples (A), as well as on uninfected cells after 3 days (B) and 7 days (C) in culture. (D and E) Analysis of BAL samples from the same donor
infected with SIV239; (F and G) samples infected with SIVmac239/316E. Quadrants were established with matched isotype controls.
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It is not entirely clear to what extent the decay in SIVmac239
DNA levels is actually due to DNA instability versus the die-off
of productively infected cells. The decay in numbers of infec-
tious cells over time (Table 1), the inability to get expected
levels of SIVmac239 DNA at day 4 or 5 after an initial expo-
sure to SIVmac239 (Table 2), and the die-off of CCR5-positive
cells infected with SIVmac239/316E all argue that die-off of the
small numbers of SIVmac239-infected cells is likely to be a
major factor in the loss of SIVmac239 DNA over time. How-
ever, in addition to major limitations in the amount of CD4
needed to allow SIV239 entry into the vast majority of alveolar
macrophages, intracellular blocks may also exist.

About 30 to 50% of monkeys that die with AIDS from
SIVmac239 infection have marked, characteristic tissue lesions
in brain and/or lung (12). The infected cell type that vastly
predominates in the pathologic lesions in these tissues is the
macrophage. The appearance of SIV encephalitis and giant
cell pneumonia in monkeys is uniformly associated with the
evolution of virus variants with high replicative capacity for
tissue macrophages not only at the New England Regional
Primate Research Center with strain SIVmac239 (12, 30, 43)
but also at other research centers (3). Strains with specific
sequence changes that allow high replicative capacity in mac-
rophages have been characterized as able to infect cells in a
fashion that is less dependent, or independent, of the presence
of CD4 (15–17, 41, 58).

Our studies indicate that the ability of SIVmac239/316E and
similar strains to replicate efficiently in cultured tissue macro-
phages appears to relate to the low or absent levels of CD4 on
these cells and the decreased dependence of these strains on
CD4. Thus, SIVmac239/316E may be able to replicate in tissue
macrophages lacking detectable CD4 because of an ability to
infect independent of this receptor. Evidence has also been
presented that SIVmac239/316E has a higher affinity for CD4
than SIVmac239 (58; R. E. Means and R. C. Desrosiers, un-
published data). Furthermore, strains of SIV that have been
described as “CD4 independent” usually, but not always, infect
much better with CD4 present on the surface of the cell than
in its absence (15–17, 41, 58). Thus, the increased affinity of

SIVmac239/316E for CD4 may allow infection of tissue mac-
rophages with an extremely low density of CD4 (below our
ability to detect by flow cytometry) in a CD4-dependent fash-
ion. It is important to note that these properties, and the
sequence changes that are required to bring them about, are
not an unusual feature of one SIV isolate or one monkey but
a quite uniform feature of virtually all monkeys that die with
SIV encephalitis or giant cell pneumonia (3, 12, 15, 30, 43, 54).

Our results clearly predict the evolution of HIV-1 strains
with the properties of relative CD4 independence in the brains
and lungs of at least some people with tissue-specific HIV-1
disease manifestations. The dearth of CD4 on the surface of
human alveolar macrophages, similar to rhesus monkey alve-
olar macrophages, has been reported (37, 64). Resident mac-
rophages in brains of both monkeys and humans are also
largely low for CD4 expression (63), and the same sorts of SIV
envelope sequence changes that allow high replicative capacity
in lung macrophages occur in the brain (3, 30). It is not clear
if analyses have been done appropriately to determine whether
such changes or properties occur with some regularity at a
terminal stage of brain or lung disease in humans (6, 22, 26, 37,
47, 60).
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