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Three-dimensional skeleton-based action recognition (3D SAR) has gained important attention within 
the computer vision community, owing to the inherent advantages offered by skeleton data. As a result, a 
plethora of impressive works, including those based on conventional handcrafted features and learned feature 
extraction methods, have been conducted over the years. However, prior surveys on action recognition 
have primarily focused on video or red-green-blue (RGB) data-dominated approaches, with limited coverage 
of reviews related to skeleton data. Furthermore, despite the extensive application of deep learning methods in 
this field, there has been a notable absence of research that provides an introductory or comprehensive review 
from the perspective of deep learning architectures. To address these limitations, this survey first underscores 
the importance of action recognition and emphasizes the significance of 3-dimensional (3D) skeleton data as 
a valuable modality. Subsequently, we provide a comprehensive introduction to mainstream action recognition 
techniques based on 4 fundamental deep architectures, i.e., recurrent neural networks, convolutional neural 
networks, graph convolutional network, and Transformers. All methods with the corresponding architectures 
are then presented in a data-driven manner with detailed discussion. Finally, we offer insights into the current 
largest 3D skeleton dataset, NTU-RGB+D, and its new edition, NTU-RGB+D 120, along with an overview of 
several top-performing algorithms on these datasets. To the best of our knowledge, this research represents 
the first comprehensive discussion of deep learning-based action recognition using 3D skeleton data.

Introduction

Action analysis, a pivotal and vigorously researched topic in the 
field of computer vision, has been under investigation for several 
decades [1–4]. The ability to recognize actions is of paramount 
importance, as it enables us to understand how humans interact 
with their surroundings and express their emotions [5,6]. This 
recognition can be applied across a wide range of domains, 
including intelligent surveillance systems, human–computer 
interaction, virtual reality, and robotics [7–9]. In recent years, 
the field of skeleton-based action recognition has made signifi-
cant strides, surpassing conventional hand-crafted methods. This 
progress has been chiefly driven by substantial advancements in 
deep learning methodologies [10–19].

Traditionally, action recognition has relied on various data 
modalities, such as red-green-blue (RGB) image sequences 
[20–24], the depth image sequences [25,26], videos, or a fusion 
of these modalities (e.g., RGB combined with the optical flow) 
[27–31]. These approaches have yielded impressive results through 
various techniques. Compared to skeleton data, which offers a 
detailed topological representation of the human body through 
joints and bones, these alternative modalities often prove com-
putationally intensive and less robust when confronted with 
complex backgrounds and variable conditions. This includes 
challenges posed by variations in body scales, viewpoints, and 
motion speeds [32,33].

Furthermore, the availability of sensors like the Microsoft 
Kinect [34] and advanced human pose estimation algorithms 
[35–38] has facilitated the acquisition of accurate 3-dimensional 
(3D) skeleton data [39]. Figure 1 provides a visual representa-
tion of human skeleton data. In this case, 25 body joints are 
captured for a given human body. Skeleton sequences possess 
several advantages over other modalities, characterized by 
3 notable features: (a) Intraframe spatial information, where 
strong correlations exist between joints and their adjacent 
nodes, enabling the extraction of rich structural information. 
(b) Interframe temporal information, which captures strong 
and clear temporal correlations between frames of each body 
joint, enhancing the potential for action recognition. (c) A co-
occurrence relationship between spatial and temporal domains 
when considering joints and bones, offering a holistic per-
spective. These unique attributes have catalyzed substantial 
research endeavors in human action recognition and detec-
tion. The escalating integration of skeleton data is anticipated 
to pervade diverse applications in the field.

The recognition of human actions using skeleton sequences 
predominantly hinges on a temporal dimension, transforming 
it into both a spatial and temporal information modeling chal-
lenge. As a result, traditional approaches in skeleton-based 
methods focus on extracting motion patterns from these 
sequences, prompting extensive research into handcrafted 
features. [31,40–44]. These features often entail capturing the 
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relative 3D rotations and translations among different joints or 
body parts [13,45]. However, it has become evident that hand-
crafted features perform well only on specific datasets [46], 
highlighting the challenge that features tailored for one data-
set may not be transferable to others. This issue hampers the 
generalization and broader application of action recognition 
algorithms.

With the remarkable development and outstanding perfor-
mance of deep learning methods in various computer vision 
tasks, such as image classification [47,48] and object detection 
[49,50], the application of deep learning to skeleton data for 
action recognition has gained prominence. Nowadays, deep 
learning techniques utilizing recurrent neural networks (RNNs) 
[51], convolutional neural networks (CNNs) [52], graph convo-
lutional networks (GCNs), and Transformer-based methods have 
emerged in this field [53,54]. Figure 2 provides an overview of 
the general pipeline for 3D skeleton-based action recognition 
(3D SAR) using deep learning, starting from raw RGB sequences 
or videos and culminating in action category prediction. RNN-
based methods leverage skeleton sequences as natural time series 
data, treating joint coordinates as sequential vectors, aligning 
well with the RNN’s capacity for processing time series informa-
tion. To enhance the learning of temporal context within skeleton 
sequences, variants like long short-term memory (LSTM) and 
gated recurrent unit (GRU) have been employed. Meanwhile, 
CNNs complement RNN-based techniques, as they excel at cap-
turing spatial cues in the input data, which RNNs may lack. 
Additionally, a relatively recent approach, the GCNs has gained 
attention for its ability to model skeleton data in a natural topo-
logical graph structure, with joints and bones as vertices and 
edges, respectively, offering advantages over alternative formats 
like images or sequences. Transformer-based methods [55–60] 
capture the spatial-temporal relation of the input 3D skeleton 
data mainly based on its core multihead self-attention (MSA) 
mechanism.

All these 3 kinds of deep learning-based architectures have 
already gained unprecedented performance, but most review 
works just focus on traditional techniques or deep learning-
based methods just with the RGB image or RGB-D data method. 
Ronald Poppe et al. [61] firstly addressed the basic challenges 
and characteristics of this domain and then gave a detailed illu-
mination of basic action classification methods about direct 
classification and temporal state-space models. Daniel and 
Remi et al. [62] showed an overall overview of the action representa-
tion only in both spatial and temporal domains. Though the 
methods mentioned above provide some inspiration that may 
be used for input data preprocessing, neither skeleton sequence 
nor deep learning strategies were taken into account. Recently, 
Wu et al. [63] and Herath et al. [64] offered a summary of deep 
learning-based video classification and captioning tasks, in 
which the fundamental structure of CNN, as well as RNNs, was 
introduced, and the latter made a clarification about common 
deep architectures and quantitative analysis for action recogni-
tion. To our best knowledge, [65] is the first work recently giving 
an in-depth study in 3D SAR, which concludes this issue from 
the action representation to the classification methods. In the 
meantime, it also offers some commonly used datasets such as 
UCF, MHAD, MSR daily activity 3D, etc. [66–69], while it does 
not cover the emerging GCN based methods. Finally, [46] pro-
posed a new review based on Kinect-dataset-based action rec-
ognition algorithms, which organized a thorough comparison 
of those Kinect-dataset-based techniques with various types of 
input data including RGB, Depth, RGB+Depth, and skeleton 
sequences. Reference [70] presented an overview of the action 
recognition across all the data modalities but without present-
ing the Transformer-based methods. In addition, all these 
works mentioned above also ignore the differences and moti-
vations among CNN-based, RNN-based, GCN-based, and 
Transformer-based methods, especially when taking the 3D 
skeleton sequences into account.

Fig. 1. Examples of skeleton data in NTU RGB+D / NTU RGB+D 120 datasets [131,132]. (A) Configuration of 25 body joints in the dataset. (B) RGB+joints representation of 
the human body.
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To address these issues comprehensively, this survey aims 
to provide a detailed summary of 3D SAR employing 4 funda-
mental deep learning architectures: RNNs, CNNs, GCNs, and 
Transformers. Additionally, we delve into the motivations 
behind the choice of these models and offer insights into poten-
tial future directions for research in this field.

In summary, our study encompasses 4 key contributions:
• A comprehensive introduction about the superiority of 3D 

skeleton sequence data and characteristics of 3 kinds of funda-
mental deep architectures are presented in a detailed and clear 
manner, and a general pipeline in 3D SAR using deep learning 
methods is illustrated.

• Within each type of deep architecture, numerous contem-
porary methods leveraging skeleton data are introduced, focus-
ing on data-driven approaches. These encompass spatial-temporal 
modeling, innovative skeleton data representation, and methods 
for co-occurrence feature learning.

• The discussion begins by addressing the latest challenging 
datasets, notably the NTU-RGB+D 120, along with an explora-
tion of several top-ranked methods. Subsequently, it delves into 
envisaged future directions in this domain.

• The initial study comprehensively examines 4 founda-
tional deep architectures, encompassing RNN-based, CNN-
based, GCN-based, and Transformer-based methods within 
the domain of 3D SAR.

3D SAR with Deep Learning
While existing surveys have offered comprehensive compari-
sons of action recognition techniques based on RGB or skeleton 
data, they often lack a detailed examination from the perspec-
tive of neural networks. To bridge this gap, we provide a concise 

introduction to the fundamental properties of each architecture 
(Preliminaries: Basic properties of RNNs, CNNs, GCNs, and 
Transformers). Then our survey provides an exhaustive discus-
sion and comparison of RNN-based (RNN-based methods), 
CNN-based (CNN-based methods), GCN-based (GCN-based 
methods), and Transformer-based (Transformer-based meth-
ods) methods for 3D SAR. We will explore these methods in-
depth, highlighting their strengths and weaknesses, and introduce 
several latest related works as case studies, focusing on specific 
limitations or classic spatial-temporal modeling challenges 
associated with these neural network models.

Preliminaries: Basic properties of RNNs, CNNs, 
GCNs, and Transformers
Before delving into the specifics of each method, we provide a 
brief overview of the fundamental architecture, outlining their 
respective advantages, disadvantages, and coarse selection cri-
teria under the 3D SAR setting.

RNNs
RNNs are ideal for capturing temporal dependencies in sequences 
of joint movements over time and are suited for modeling action 
sequences due to their ability to retain temporal information. 
However, RNNs are also vulnerable to long-term dependencies, 
potentially missing complex relationships in lengthy sequences, 
and are computationally inefficient due to sequential processing, 
leading to longer training times for large-scale datasets.

CNNs
CNNs are not only effective in capturing spatial patterns from the 
joint coordinates, recognizing spatial features within individual 

Fig. 2. The general pipeline of skeleton-based action recognition using deep learning methods. Firstly, the skeleton data was obtained in 2 ways, directly from depth sensors 
or from pose estimation algorithms. The skeleton will be sent into RNNs, CNNs, GCNs, or Transformer-based neural networks. Finally, we get the accurate action category.
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frames of the 3D skeleton data but also great for local spatial 
relationships among joints. However, CNNs are limited to captur-
ing temporal evolution in sequences, potentially missing out on 
the temporal dynamics crucial for action recognition.

GCNs
GCNs are designed to manage graph-structured data such as 
skeletal joint connections in action recognition, enabling the 
learning of relationships between joints and their connectivity 
while integrating spatial and temporal information. However, 
GCNs can be sensitive to noisy or irregular connections among 
joints, potentially impacting recognition accuracy, particularly 
in complex actions.

Transformers
Transformers is not only efficient at capturing long-range 
dependencies without the vanishing/exploding gradient issue 
but also versatile in handling multiple modalities and learn-
ing global relationships. However, it is also computationally 
intensive due to attention mechanisms, potentially requiring 
substantial computational resources. What is more, compared 
to RNNs, it is also limited to sequential locality

RNN-based methods
Recursive connections within the RNN structure are established 
by feeding the output of the previous time step as the input to 
the current time step, as demonstrated in prior work [71]. This 
approach is known to be effective for processing sequential data. 
In a similar vein, models like the standard RNN, LSTM, and 
GRU were introduced to address limitations such as gradient-
related issues and the modeling of long-term temporal depen-
dencies that were present in the standard RNN.

From the first aspect, spatial-temporal modeling can be seen 
as the principle in action recognition tasks. Due to the weakness 
of the spatial modeling ability of RNN-based architecture, the 
performance of some related methods generally could not gain 
a competitive result [72–74]. Recently, Hong et al. [75] pro-
posed a novel 2-stream RNN architecture to model both tem-
poral dynamics and spatial configurations for skeleton data. 
Figure 3 shows the framework of their work. An exchange of 
the skeleton axes was applied for the data level preprocessing 
for the spatial dominant learning. Unlike [75], Jun et al. [76] 
stepped into the traversal method of a given skeleton sequence 
to acquire the hidden relationship of both domains. Compared 
with the general method which arranges joints in a simple chain 
so that ignores the kinetic dependency relations between adja-
cent joints, the mentioned tree-structure-based traversal would 
not add false connections between body joints when their rela-
tion is not strong enough. Then, using an LSTM with a trusted 
gate, the input is treated discriminately, through which, if the 
tree-structured input unit is reliable, the memory cell will be 
updated by importing input latent spatial information. Inspirited 
by the property of CNN, which is extremely suitable for spatial 
modeling. Li et al. [77] incorporated an attention RNN with a 
CNN model to enhance the complexity of spatial-temporal 
modeling. Initially, they introduced a temporal attention mod-
ule within a residual learning module, allowing for the recali-
bration of temporal attention across frames within a skeleton 
sequence. Subsequently, they applied a spatial-temporal convo-
lutional module to this first module, treating the calibrated joint 
sequences as images. Furthermore, in the work by Lin et al. [78], 
an attention recurrent relation LSTM network was employed. 

This network combines a recurrent relation network for spatial 
features with a multilayer LSTM to capture temporal features 
within skeleton sequences.

The second aspect involves the network structure, serving as 
a solution to address the limitations of standard RNNs. While 
RNNs are inherently suitable for sequence data, they often suffer 
from well-known problems like gradient exploding and vanish-
ing. Although LSTM and GRU have alleviated these issues to 
some extent, the use of hyperbolic tangent and sigmoid activa-
tion functions can still result in gradient decay across layers. In 
response, new types of RNN architectures have been proposed 
[79–81]. Shuai et al. [81] introduced an independently recurrent 
neural network (IndRNN) designed to address gradient explod-
ing and vanishing problems, making it feasible and more robust 
to construct longer and deeper RNNs for high-level semantic 
feature learning. This modification for RNNs is not limited to 
skeleton-based action recognition but can also find applications 
in other domains, such as language modeling. In the IndRNN 
structure, neurons in one layer operate independently of each 
other, enabling the processing of much longer sequences.

Finally, the third aspect is the data-driven pipeline. In the 
consideration that not all joints are informative for an action 
analysis, [82] add global context-aware attention to LSTM net-
works, which selectively focus on the informative joints in a 
skeleton sequence. Figure 4 illustrates the visualization of the 
proposed method, from the figure we can conclude that the 
more informative joints are addressed with a red circle color 
area, indicating those joints are more important for this special 
action. In addition, because the skeletons provided by datasets 
or depth sensors are not perfect, which would affect the result 
of an action recognition task, [83] transform skeletons into 
another coordinate system for the robustness to scale, rotation 
and translation first and then extract salient motion features 
from the transformed data instead of sending the raw skeleton 
data to LSTM. Figure 4B shows the feature representation 
process.

Numerous valuable works have utilized RNN-based methods 
to address challenges related to large viewpoint changes and the 
relationships among joints within a single skeleton frame. However, 
it is essential to acknowledge that in specific modeling aspects, 
RNN-based methods may exhibit limitations compared to CNN-
based approaches. In the following sections, we delve into an 
intriguing question: How do CNN-based methods perform tem-
poral modeling, and how can they strike the right balance between 
spatial and temporal information in action recognition?

CNN-based methods
While CNNs offer efficient and effective high-level semantic 
cue learning, they are primarily tailored for regular image 
tasks. However, action recognition from skeleton sequences 
presents a distinct challenge due to its inherent time-dependent 
nature. Achieving the right balance and maximizing the uti-
lization of both spatial and temporal information within a 
CNN-based architecture remains a challenging endeavor.

Typically, from the spatial-temporal modeling aspect, most of 
the CNN-based methods explored the representation of 3D skel-
eton sequences. Specifically, to accommodate the input require-
ments of CNNs, 3D-skeleton sequence data undergoes the 
transformation from a vector sequence to a pseudo-image format. 
However, achieving a suitable representation that effectively com-
bines both spatial and temporal information can be challenging. 
Consequently, many researchers opt to encode skeleton joints 
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into multiple 2D pseudo-images, which are subsequently fed into 
CNNs to facilitate the learning of informative features [84,85]. 
Wang et al. [86] proposed the joint trajectory maps, which rep-
resent spatial configuration and dynamics of joint trajectories 
into 3 texture images through color encoding. However, this 
kind of method is a little complicated and also loses importance 
during the mapping procedure. To tackle this shortcoming, 
Li et al. [87] used a translation-scale invariant image mapping 
strategy which firstly divided human skeleton joints in each 
frame into 5 main parts according to the human physical struc-
ture, then those parts were mapped to 2D form. This method 
makes the skeleton image consist of both temporal information 
and spatial information. However, though the performance 
was improved, there is no reason to take skeleton joints as iso-
lated points, cause in the real world, imitate connection exists 
among our body, for example, when waiting for the hands, not 
only the joints directly within the hand should be taken into 
account, but also other parts such as shoulders and legs are 
considerable. Li et al. [88] proposed the shape-motion repre-
sentation from geometric algebra, which addressed the impor-
tance of both joints and bones and fully utilized the information 
provided by the skeleton sequence. Similarly, [13] also use the 

enhanced skeleton visualization to represent the skeleton data, 
and Carlos et al. [89] also proposed a new representation named 
SkeleMotion based on motion information that encodes the 
temporal dynamics by explicitly computing the magnitude and 
orientation values of the skeleton joints. Figure 5A shows the 
shape-motion representation proposed by [88], while Fig. 5B 
illustrates the SkeleMotion representation. What is more, simi-
larly to SkeleMotion, [90] uses the framework of SkeleMotion 
but is based on tree structure and reference joints for a skeleton 
image representation.

Commonly, CNN-based methods represent a skeleton sequence 
as an image by encoding temporal dynamics and skeleton joints as 
rows and columns, respectively. However, this simplistic approach 
may limit the model’s ability to capture co-occurrence features, as 
it considers only neighboring joints within the convolutional 
kernel and may overlook latent correlations involving all joints. 
Consequently, CNNs might fail to learn the corresponding and 
useful features. In response to this limitation, Chao et al. [91] intro-
duced an end-to-end framework designed to learn co-occurrence 
features through a hierarchical methodology. This approach gradu-
ally aggregates different levels of contextual information, beginning 
with the independent encoding of point-level information, which 

Fig. 3. Examples of mentioned methods for dealing with spatial modeling problems. (A) Two-stream framework that enhances the spatial information by adding a new stream 
[75]. (B) Data-driven technique that addresses the spatial modeling ability by giving a transform toward original skeleton sequence data [76].
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is then assembled into semantic representations within both tem-
poral and spatial domains.

Besides explorations in the representation of 3D skeleton 
sequences, there also exist some other problems in CNN-based 

techniques. For example, to find a balance between the model 
size and the corresponding inference efficiency, DD-Net [14] 
was proposed to model double feature and double motion via 
CNN for efficient solutions. Kim et al. [92] proposed to use 

Fig. 4. Data-driven based method. (A) Different importance among different joints for a given skeleton action [82]. (B) Feature representation processes, from left to right are 
original input skeleton frames, transformed input frames, and extracted salient motion features, respectively [83].
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the temporal CNN for modeling the interpretable spatiotem-
poral cues [93]. As a result, the point-level feature of each joint 
is learned. In addition, 2-stream and 3-stream CNN-based 
heavy models are also proposed for improving the representa-
tion learning ability for spatial-temporal modeling [94]. So 
the skeleton-based action recognition using CNN is still an 
open problem waiting for researchers to dig in.

GCN-based methods
Drawing inspiration from the inherent topological graph struc-
ture of human 3D-skeleton data, distinct from the sequential 
vector or pseudo-image treatments in RNN-based or CNN-
based methods. Recently, the graph convolution network has 
been adopted in this task frequently due to the effective repre-
sentation of the graph structure data. Generally, 2 kinds of graph-
related neural networks can be found, i.e., the graph neural 
networks and RNNs, and graph and convolutional neural net-
works (GCNs). In this survey, we mainly pay attention to the 
latter. This focus yielded compelling results, as evidenced by 
the performance of the GCN-based method on the rank board. 
Furthermore, merely encoding the skeleton sequence into a vec-
tor or 2D grid fails to fully capture the interdependence among 
correlated joints from the skeleton’s perspective. Conversely, 
GCNs present adaptability to diverse structures, such as the skel-
eton graph. Nonetheless, the principal challenge within GCN-
based approaches persists in the handling of skeleton data, 
particularly in structuring the original data into a coherent graph 

format. Yan et al. [53] first presented a novel model, the spatial-
temporal graph convolutional networks (ST-GCNs), for skeleton- 
based action recognition. Specifically, the approach first involved 
the creation of a spatial-temporal graph, wherein the joints func-
tioned as graph vertices, establishing inherent connections 
within the human body structure and across temporal sequences 
as the graph edges. Following this step, the ST-GCN’s higher-
level feature maps on the graph underwent classification using 
a standard Softmax classifier, assigning them to their respective 
action categories. This work has notably directed attention 
toward employing GCNs for skeleton-based action recognition, 
resulting in a surge of recent related research [95–100].

Built upon GCNs, 2 main common aspects are explored, i.e., 
more representative manner for the construction of the skel-
eton data and more effective designs of the GCN-based model 
[101,102].

From the first aspect, [101] proposed the action-structural 
graph convolutional networks (AS-GCNs) could not only rec-
ognize a person’s action but also use a multitask learning strat-
egy to output a prediction of the subject’s next possible pose. 
The constructed graph in this work can capture richer depen-
dencies among joints by 2 modules called Actional Links and 
Structural Links. Figure 6 shows the feature learning and its 
generalized skeleton graph of AS-GCN. Multitask learning 
strategy used in this work may be a promising direction because 
the target task would be improved by the other task as a comple-
mentary. To capture and enhance richer feature representations, 

Fig.  5.  Examples of the proposed representation skeleton image. (A) Skeleton sequence shape-motion representations [88] generated from "pick up with one hand" on 
Northwestern-UCLA dataset [133]. (B) SkeleMotion representation workflow [90].
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Shi et al. [95] introduced the 2s-AGCN, which incorporates an 
adaptive topology graph. This approach allows for automatic 
updates leveraging the neural network’s backpropagation algo-
rithm, effectively enhancing the characterization of joint con-
nection strengths. Liu et al. [103] proposes MS-G3D which 
constructs a unified spatial-temporal graph. This big spatial-
temporal graph is composed of several subgraphs, and each sub-
graph represents the spatial relationships of joints on a certain 
frame. This form of the adjacent matrix can effectively model the 
relationship between different joints in different frames. Similarly, 
there are also a lot of following-up methods proposed for con-
structing more representative graphs [104–106].

From the second aspect, traditional GCNs operate as straight 
feed-forward networks, limiting low-level layers’ access to seman-
tic information from higher-level layers. To address this, Yang 
et al. [107] introduce the feedback graph convolutional network 
(FGCN) aimed at incrementally acquiring global spatial-temporal 
features. Departing from direct manipulation of the complete 
skeleton sequence, FGCN adopts a multistage temporal sampling 
strategy to sparsely extract a sequence of input clips from the 
skeleton data. Furthermore, Bian et al. [108] introduces a struc-
tural knowledge distillation scheme aimed at mitigating accuracy 
loss resulting from low-quality data, thereby enhancing the mod-
el’s resilience to incomplete skeleton sequences. Fang et al. [109] 
presents the spatial-temporal slow-fast graph convolutional net-
work (STSF-GCN), which conceptualizes skeleton data akin to a 
unified spatial-temporal topology, reminiscent of MS-G3D.

From the preceding introduction and discussion, it is evi-
dent that the predominant concern revolves around data-
driven approaches, seeking to uncover latent insights within 
3D skeleton sequence data. In the realm of GCN-based action 
recognition, the central query persists: “How do we extract this 

latent information?” This question remains an ongoing chal-
lenge. Particularly noteworthy is the inherent temporal-spatial 
correlation within the skeleton data itself. The optimal utiliza-
tion of these 2 aspects warrants further exploration. There 
remains substantial potential for enhancing their effectiveness, 
calling for deeper investigation and innovative strategies to maxi-
mize their utilization.

Transformer-based methods
Transformers [110] demonstrated their overwhelming power 
on a broad range of language tasks (e.g., text classification, 
machine translation, or question answering [110,111]), and 
the vision community follows it closely and extends it for vision 
tasks, such as image classification [48,112,113], object detec-
tion [49,50], segmentation [114], image restoration [115,116], 
and point cloud registration [117–119]. The emergence of 
transformer algorithms marks a pivotal shift in point-centric 
research. These transformer-based methods are gradually 
challenging the dominance of GCN methods, showcasing 
promising advancements in computational efficiency and 
accuracy. Upon analysis, we firmly believe that transformer-
based approaches retain robust potential and are poised to 
become the mainstream technique in the future.

The core module in Transformer, MSAs [48,110] aggregate 
sequential tokens with normalized attention as: zj =

∑

i Softmax
�

QK
√

d

�

i

V i,j where Q, K and V are query, key and value matri-

ces, respectively. d is the dimension of query and key, and zj 
is the j-th output token. This step usually represents the context 
relation computation and update of the overall 3D skeleton fea-
tures. Building upon the MSA from the Transformer for solving 

Fig. 6. Feature learning with generalized skeleton graphs [101].
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the 3D-SAR problem, there are lots of transformer architecture-
based solutions are proposed.

In particular, Cho et al. [120] proposed a novel model called 
Self-Attention Network (SAN) that completely utilizes the self-
attention mechanism to model spatial-temporal correlations. 
Shi et al. [121] proposed a decoupled spatial-temporal atten-
tion network (DSTA-Net) that contains spatial-temporal atten-
tion decoupling, decoupled position encoding, and global 
spatial regularization. DSTA-Net decouples the skeleton data 
into 4 streams, namely, spatial-temporal stream, spatial stream, 
slow-temporal stream, and fast-temporal stream; each data 
stream focuses on expressing a particular aspect of the action. 
Plizzari et al. [122] proposed a novel Spatial-Temporal Transformer 
network (ST-TR) in which the spatial self-attention module and 
temporal self-attention module are used to capture the correla-
tion between different nodes in a frame and the dynamic rela-
tionship between the same node in the whole frames. To handle 
action sequences of varying lengths proficiently, Ibh et al. [123] 
proposed TemPose, which leaves out the padded temporal and 
interaction tokens in the attention map. At the same time, 
Tempose codes the position of the player and the position of the 
badminton ball to predict the action class together.

The Transformer-based approach effectively mitigates the 
issue of solely concentrating on local information and excels 
in capturing extensive dependencies over long sequences. 
When applied to tasks involving skeleton-based human behav-
ior recognition, the Transformer architecture demonstrates 
adeptness in capturing temporal relationships. However, its 
efficacy in modeling spatial relationships remains constrained 
due to limitations in capturing and encoding the intricate 
high- dimensional semantic information inherent in skeleton 
data [124,125]. Simultaneously, numerous approaches have 
emerged that amalgamate the Transformer with GCNs or 
CNNs, thereby forming hybrid architectures. These models 
are designed with the aspiration of harnessing the strengths 
inherent in each fundamental architecture. By combining the 
Transformer’s capabilities with the specialized strengths of 
RNNs, CNNs, or GCNs, these hybrid models aim to achieve 
a more comprehensive and powerful framework for diverse 
tasks [56,126–128].

Latest Datasets and Performance
Skeleton sequence datasets such as MSRAAction3D [129], 3D 
Action Pairs [130], and MSR Daily Activity3D [68] have be ana-
lyzed in lots of previous surveys [46,64,65]. In this survey, we 
mainly address the following 2 recent datasets, NTU-RGB+D 
[131] and NTU-RGB+D 120 [132].

The NTU-RBG+D dataset, introduced in 2016, stands as a 
significant resource, comprising 56,880 video samples gathered 
through Microsoft Kinect-v2. This dataset holds a prominent 
position as one of the largest collections available for skeleton-
based action recognition. It furnishes the 3D spatial coordinates 
of 25 joints for each human depicted in an action, as illustrated 
in Fig. 1A. For assessing the proposed methods, 2 evaluation pro-
tocols are suggested: Cross-Subject and Cross-View. The Cross-
Subject setting involves 40,320 samples, with 16,560 allocated for 
training and evaluation, employing a split of 40 subjects into 
training and evaluation groups. In the case of Cross-View, com-
prising 37,920 and 18,960 samples, the evaluation uses camera 1 
while training is conducted using cameras 2 and 3. Recently, an 
extended version of the original NTU-RGB+D dataset known as 

NTU-RGB+D 120 has been introduced. This extended dataset 
comprises 120 action classes and encompasses a total of 114,480 
skeleton sequences, significantly expanding the scope. Add-
itionally, the viewpoints have increased to 155.

In Tables 1 and 2, we present the performance of recent 
skeleton- based techniques relevant to NTU-RGB + D and 
NTU-RGB + D 120 datasets, respectively. Note that in NTU-
RGB+D, “CS” stands for Cross-Subject, and “CV” stands for 
Cross-View. For NTU-RGB + D120, there are 2 settings, i.e., 
Cross-Subject (C-Subject), and Cross-Setup (C-Setup).

Based on the observation of the performance of these 2 data-
sets, we find that it is evident that existing algorithms have 
achieved impressive performances in the original NTU-RGB+D 
dataset. However, the newer NTU-RGB+D 120 poses a signifi-
cant challenge, indicating that further advancements are needed 
to effectively address this more complex dataset. It is worth not-
ing that the GCN-based methods achieved the leading results 
compared to the other 2 architectures. In addition to the very 
fundamental architectures (i.e., RNNs, CNNs, and GCN), the 
most recent Transformer [110] based methods also show their 
promising performance on both datasets. It is also easy to find 
that a hybrid Transformer and other architectures also further 
boost the overall performance of the 3D SAR.

Discussion
Considering the performance and attributes of the aforemen-
tioned deep architectures, several critical points warrant further 
discussion concerning the criteria for architecture selection. In 
terms of accuracy and robustness, GCNs demonstrate potential 
excellence by adeptly capturing spatial and temporal relation-
ships among joints. RNNs exhibit proficiency in capturing 
temporal dynamics, while CNNs excel in identifying spatial 
features. When evaluating computational efficiency, CNNs 
boast faster processing capabilities owing to their parallel 
processing nature, contrasting with RNNs’ slower sequential 
processing. Additionally, RNNs tend to excel in recognizing 
fine-grained actions, where temporal dependencies play a cru-
cial role, while CNNs may better suit the recognition of gross 
motor actions based on spatial configurations. Considering 
factors like dataset size and hardware resources, the choice 
becomes more adaptable, contingent on the final model’s scale. 
The size of the dataset and available computational resources 
for training become pivotal considerations, as different archi-
tectures might entail varying requirements. In summary, when 
recognizing actions reliant on temporal sequences, RNNs prove 
suitable for capturing the nuanced temporal dynamics within 
joint movements. In contrast, CNNs excel in identifying static 
spatial features and local patterns among joint positions. 
However, for comprehensive action recognition, leveraging 
both spatial and temporal relationships among joints, GCNs 
offer a beneficial approach when dealing with 3D skeletal data.

A possible in-practical solution can be also proposed to inte-
grate not only one architecture but also a combination of them. 
This may make the final model absorb the advantages of each 
fundamental architecture. Furthermore, beyond the choice of deep 
architectures, the trajectory of 3D skeleton action recognition 
(SAR) navigation is a crucial consideration. Building upon our 
earlier discussions, we deduce that long-term action recognition, 
optimizing 3D-skeleton sequence representations, and achieving 
real-time operation remain significant open challenges. Moreover, 
annotating action labels for given 3D skeleton data remains 
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Table  1. The performance of the latest state-of-the-art 3D skeleton-based methods on NTU-RGB+D dataset

NTU-RGB+D dataset

Rank Paper Year Accuracy (C-View) Accuracy (C-Subject) Method

1 Wang et al. [55] 2023 98.7 94.8 Two-stream Transformer

2 Duan et al. [134] 2022 97.5 93.2 Dynamic group GCN

3 Liu et al. [135] 2023 96.8 92.8 Temporal decoupling GCN

4 Zhou et al. [56] 2022 96.5 92.9 Transformer

5 Chen et al. [136] 2021 96.8 92.4 Topology refinement GCN

6 Zeng et al. [137] 2021 96.7 91.6 Skeletal GCN

7 Liu et al. [103] 2020 96.2 91.5 Disentangling and unifying GCN

8 Ye et al. [138] 2020 96.0 91.5 Dynamic GCN

9 Shi et al. [139] 2019 96.1 89.9 Directed graph neural networks

10 Shi et al. [95] 2018 95.1 88.5 Two-stream adaptive GCN

11 Zhang et al. [140] 2018 95.0 89.2 LSTM-based RNN

12 Si et al. [141] 2019 95.0 89.2 AGC-LSTM(Joints&Part)

13 Hu et al. [142] 2018 94.9 89.1 Nonlocal S-T + frequency attention

14 Li et al. [101] 2019 94.2 86.8 GCN

15 Liang et al. [143] 2019 93.7 88.6 3S-CNN + multitask ensemble learning

16 Song et al. [144] 2019 93.5 85.9 Richly activated GCN

17 Zhang et al. [145] 2019 93.4 86.6 Semantics-guided GCN

18 Xie et al. [77] 2018 93.2 82.7 RNN+CNN+Attention

Table 2. The performance of the latest state-of-the-art 3D skeleton-based methods on NTU-RGB+D 120 dataset

NTU-RGB+D 120 dataset

Rank Paper Year Accuracy (C-Subject) Accuracy (C-Setup) Method

1 Wang et al. [55] 2023 92.0 93.8 Two-stream Transformer

2 Xu et al. [146] 2023 90.7 91.8 Language knowledge-assisted

3 Zhou et al. [56] 2022 89.9 91.3 Transformer

4 Duan et al. [134] 2022 89.6 91.3 Dynamic group GCN

5 Chen et al. [136] 2021 88.9 90.6 Topology refinement GCN

6 Chen et al. [147] 2021 88.2 89.3 Spatial-temporal GCN

7 Liu et al. [103] 2020 86.9 88.4 Disentangling and unifying GCN

8 Cheng et al. [148] 2020 85.9 87.6 Shift GCN

9 Caetano et al. [90] 2019 67.9 62.8 Tree structure + CNN

10 Caetano et al. [89] 2019 67.7 66.9 SkeleMotion

11 Liu et al. [149] 2018 64.6 66.9 Body pose evolution map

12 Ke et al. [150] 2018 62.2 61.8 Multitask CNN with RotClips

13 Liu et al. [151] 2017 61.2 63.3 Two-stream attention LSTM

14 Liu et al. [12] 2017 60.3 63.2 Skeleton visualization (single stream)

15 Jun et al. [152] 2019 59.9 62.4 Online+Dilated CNN

16 Ke et al. [153] 2017 58.4 57.9 Multitask learning CNN

17 Jun et al. [82] 2017 58.3 59.2 Global context-aware attention LSTM

18 Jun et al. [76] 2016 55.7 57.9 Spatiotemporal LSTM
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exceptionally labor-intensive. Exploring avenues such as unsuper-
vised or weakly-supervised strategies, along with zero-shot 
learning, may pave the way forward.

Conclusion
This paper presents an exploration of action recognition using 
3D skeleton sequence data, employing 4 distinct neural net-
work architectures. It underscores the concept of action recog-
nition, highlights the advantages of skeleton data, and delves 
into the characteristics of various deep architectures. Unlike 
prior reviews, our study pioneers a data-driven approach, pro-
viding comprehensive insights into deep learning methodolo-
gies, encompassing the latest algorithms spanning RNN-based, 
CNN-based, GCN-based, and Transformer-based techniques. 
Specifically, our focus on RNN and CNN-based methods cen-
ters on addressing spatial-temporal information by leveraging 
skeleton data representations and intricately designed net-
work architectures. In the case of GCN-based approaches, our 
emphasis lies in harnessing joint and bone correlations to their 
fullest extent. Furthermore, the burgeoning Transformer archi-
tecture has garnered significant attention, often employed in 
conjunction with other architectures for action recognition 
tasks. Our analysis reveals that a fundamental challenge across 
diverse learning structures lies in effectively extracting perti-
nent information from 3D skeleton data. The topology graph 
emerges as the most intuitive representation of human skeleton 
joints, a notion substantiated by the performance metrics 
observed in datasets like NTU-RGB+D. However, this does 
not negate the suitability of CNN or RNN-based methods for 
this task. On the contrary, the introduction of innovative strate-
gies, such as multi-task learning, shows promise for substan-
tial improvements, particularly in cross-view or cross-subject 
evaluation protocols. Nevertheless, achieving further accuracy 
enhancements on datasets like NTU-RGB+D presents increas-
ing difficulty due to the already high-performance levels attained. 
Hence, redirecting focus toward more challenging datasets, such 
as the enhanced NTU-RGB+D 120 dataset, or exploring other 
fine-grained human action datasets becomes imperative. Finally, 
we delve into an exhaustive discussion on the selection of foun-
dational deep architectures and explore potential future pathways 
in 3D skeleton-based action recognition.
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