Skip to main content
. 2024 May 16;5:0100. doi: 10.34133/cbsystems.0100

Table  1.

The performance of the latest state-of-the-art 3D skeleton-based methods on NTU-RGB+D dataset

NTU-RGB+D dataset
Rank Paper Year Accuracy (C-View) Accuracy (C-Subject) Method
1 Wang et al. [55] 2023 98.7 94.8 Two-stream Transformer
2 Duan et al. [134] 2022 97.5 93.2 Dynamic group GCN
3 Liu et al. [135] 2023 96.8 92.8 Temporal decoupling GCN
4 Zhou et al. [56] 2022 96.5 92.9 Transformer
5 Chen et al. [136] 2021 96.8 92.4 Topology refinement GCN
6 Zeng et al. [137] 2021 96.7 91.6 Skeletal GCN
7 Liu et al. [103] 2020 96.2 91.5 Disentangling and unifying GCN
8 Ye et al. [138] 2020 96.0 91.5 Dynamic GCN
9 Shi et al. [139] 2019 96.1 89.9 Directed graph neural networks
10 Shi et al. [95] 2018 95.1 88.5 Two-stream adaptive GCN
11 Zhang et al. [140] 2018 95.0 89.2 LSTM-based RNN
12 Si et al. [141] 2019 95.0 89.2 AGC-LSTM(Joints&Part)
13 Hu et al. [142] 2018 94.9 89.1 Nonlocal S-T + frequency attention
14 Li et al. [101] 2019 94.2 86.8 GCN
15 Liang et al. [143] 2019 93.7 88.6 3S-CNN + multitask ensemble learning
16 Song et al. [144] 2019 93.5 85.9 Richly activated GCN
17 Zhang et al. [145] 2019 93.4 86.6 Semantics-guided GCN
18 Xie et al. [77] 2018 93.2 82.7 RNN+CNN+Attention